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It’s all about IO

I I live in type-theory (a la Martin-Löf):

proofs programs
propositions specifications

I I’ve been a programmer, in control systems, machine
architecture, transaction processing, file systems.

I If programs are proofs, and I write a program that controls a
machine, what theorem is it I have proved?

I What does it mean to run a program? (I was trained in
philosophy).

I ‘Running’ 6= evaluating. (Fetch/Execute.)
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Interaction structures

Handshaken (command response) interfaces.

States S : Set
Commands C (s) : Set (s ∈ S)
Responses R(s, c) : Set (s ∈ S , c ∈ C (s))
next state n(s, c , r) ∈ S (s ∈ S , c ∈ C (s), r ∈ R(s, c))

Gives a predicate transformer

P ⊆ S 7→ { s ∈ S | (
∑

c ∈ C (s)) (
∏

r ∈ R(s, c))P(n(s, c , r) }

That’s reassuring! (Dijkstra, Hoare, refinement calculus, . . . )

I These are essentially indexed containers.

I Another thing they are is coverings – in topology.

Some work with Pierre Hyvernat on ‘pre-topology’ and linear logic
(re simulations); also computational meaning of locale conditions.
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Eating: Benedictus, benedicat

An old, venerable model of IO in functional programming is stream
processing.

I had, at the back of my head, a way of representing
continuous functions on streams (coming from intuitionism: ‘The
Bar Theorem’ (Brouwer)). I mentioned it to Neil in the pub:

Aω →c B TA(B)
∆
= (µX ) B + XA

Aω →c Bω PA(B)
∆
= (ν X ) TA(B × X )

(·) : . . . ⊗ : PBC × PAB → PAC

Some overlap with what other people are doing, who express some
interest. But there’s more!
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Eating: Benedicto, benedicatur

Final coalgebras, by their very nature often (but not always. . . )
have a nice stream-like topology. In particular this goes for
containers:

(S � P) X
∆
= (

∑
s ∈ S) XP(s)

There’s a representation of continuous function ν(F ) →c ν(G ) of
the same general form as the stream case:

(ν . . .) (µ . . .) ((
∑

. . .) . . .) + ((
∏

. . .) . . .)

In working this out, one uses (dependent types and)
induction-recursion in an essential way.
To me, this is a case study for the kind of coinduction one needs in
dependent type theory. (Which is a topic that needs exploration.)
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Turing machines and coalgebras?

I might do something on this. (For much the same reasons: Neil
likes it . . . )

But I might work on some more intricate, meta-mathematical
things. It is important (for programming) to get the theory, in
place, and maybe experiment in a non-standard direction . . . .
But still, what is it to ‘run’ a program??
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