G51MAL Machines and Their Languages Lecture 1

Administrative Details and Introduction

Henrik Nilsson

University of Nottingham, UK

551MALMachines and Their LanguagesLecture 1 – p.1/38

Finding People and Information (2)

Main module web page:

www.cs.nott.ac.uk/~nhn/G51MAL

Coursework/Tutorial web page:

www.cs.nott.ac.uk/~wss/teaching/mal

Finding People and Information (1)

Henrik Nilsson
 Room B47, Computer Science Building
 e-mail: nhn@cs.nott.ac.uk

tel: 0115 846 6506

- Teaching Assistants:
 - Ondrej Rypacek e-mail: oxr@cs.nott.ac.uk
 - Wouter Swierstra (head TA)
 e-mail: wss@cs.nott.ac.uk

G51MALMachines and Their LanguagesLecture 1 – p.2/3

Contacting Me

- I will be available immediately after each lecture for course-related matters.
- Make an appointment if necessary.
- Please keep e-mail traffic to a minimum.

Aims of the Course

- To familiarize you with key Computer Science concepts in central areas like
 - Automata Theory
 - Formal Languages
 - Models of Computation
 - Complexity Theory
- To equip you with tools with wide applicability in the fields of CS and IT, e.g. for
 - Complier Construction
 - Text Processing
 - XML

G51MALMachines and Their LanguagesLecture 1 - p.5/38

Literature

- Main reference: Hopcroft, Motwani, & Ullman. Introduction to Automata Theory, Languages, and Computation, 2nd edition, Addison Wesley, 2001.
- Dr. Thorsten Altenkirch's G51MAL updated lecture notes.
- Your own notes from the lectures!
- Possibly a new version of the lecture notes later.
- Supplementary material, e.g. slides, sample program code.

Organization

- Lectures: Two per week.
- Tutorials: Weekly in small (≈ 15 students) groups.

You are expected to participate regularly!

- Coursework: Weekly compulsory exercises.
 Marked and then discussed during tutorials.
- Assessment: 2 hour exam in May/June, 100% of the mark.

G51MALMachines and Their LanguagesLecture 1 - p.6/38

Literature (2)

Literature (3)

If you are curious about an important application area you might want to check out:

Alfred V Aho, Ravi Sethi, Jeffrey D. Ullman. *Compilers — Principles, Techniques, and Tools*, Addison-Wesley, 1986. (The "Dragon Book".)

G51MALMachines and Their LanguagesLecture 1 - p.9/38

Content

- 1. Mathematical models of computation, such as:
 - Finite automata
 - Pushdown automata
 - Turing machines
- 2. How to specify formal languages?
 - Regular expressions
 - Context free grammars
 - Context sensitive grammars
- 3. The relation between 1 and 2.

Literature (4)

G51MALMachines and Their LanguagesLecture 1 - p.10/38

Why Study Automata Theory?

Finite automata are a useful model for important kinds of hardware and software:

- Software for designing and checking digital circuits.
- Lexical analyzer of compilers.
- Finding words and patterns in large bodies of text, e.g. in web pages.
- Verification of systems with finite number of states, e.g. communication protocols.

Why Study Automata Theory? (2)

The study of Finite Automata and Formal Languages are intimately connected. Methods for specifying formal languages are very important in many areas of CS, e.g.:

- Context Free Grammars are very useful when designing software that processes data with recursive structure, like the parser in a compiler.
- Regular Expressions are very useful for specifying lexical aspects of programming languages and search patterns.

G51MAI Machines and Their Languages Lecture 1 – p. 13/38

Example: Regular Expressions (1)

Suppose you need to locate a piece of text in a directory containing a large number of files of various kinds. You recall only that the text mentions the year 1900-something.

The following UNIX-command will do the trick:

Why Study Automata Theory? (3)

Automata are essential for the study of the limits of computation. Two issues:

- What can a computer do at all? (Decidability)
- What can a computer do efficiently? (Intractability)

G51MALMachines and Their LanguagesLecture 1 – p.14/38

Example: Regular Expressions (2)

The result is a list of names of files containing text matching the pattern, together with the matching text lines:

```
history.txt: In 1933 it became notes.txt: later on, around 1995,
```

Example: The Halting Problem (1)

Consider the following program. Does it terminate for all values of n > 1?

```
while (n > 1) {
    if even(n) {
        n = n / 2;
    } else {
        n = n * 3 + 1;
    }
}
```

651MALMachines and Their LanguagesLecture 1 – p.17/38

Example: The Halting Problem (3)

Then the following important decidability result should perhaps not come as a total surprise:

It is impossible to write a program that decides if another, arbitrary, program terminates (halts) or not.

What might be surprising is that it is possible to prove such a result. This was first done by the British mathematician *Alan Turing*.

Example: The Halting Problem (2)

Not as easy to answer as it might first seem.

Say we start with n = 7, for example:

In fact, for all numbers that have been tried (a lot!), it does terminate . . .

... but no one has ever been able to **prove** that it always terminates!

G51MALMachines and Their LanguagesLecture 1 - p.18/38

Alan Turing (1)

Alan Turing (1912–1954):

- Introduced an abstract model of computation, *Turing Machines*, to give a precice definition of what problems that can be solved by a computer.
- Instrumental in the success of British code breaking efforts during WWII.
- Thorsten recommends Andrew Hodges biography *Alan Turing: the Enigma*.

Alan Turing (2)

G51MALMachines and Their LanguagesLecture 1 - p.21/38

Noam Chomsky (2)

Noam Chomsky (1)

Noam Chomsky (1928–):

- American linguist who introduced Context
 Free Grammars in an attempt to describe
 natural languages formally.
- Also introduced the Chomsky Hierarchy which classifies grammars and languages and their descriptive power.
- Chomsky is also widely known for his controversial political views and his criticism of the foreign policy of U.S. governments.

G51MALMachines and Their LanguagesLecture 1 - p.22/38

The Chomsky Hierarchy

Languages

The terms *language* and *word* are used in a strict technical sense in this course:

- A language is a set of words.
- A word is a sequence (or string) of symbols.

 ϵ denotes the **empty word**, the sequence of zero symbols.

G51MALMachines and Their LanguagesLecture 1 – p.25/38

Alphabet, Word, and Language

alphabet $\Sigma = \{a, b\}$

words over Σ $\epsilon, a, b, aa, ab, ba, bb,$

 $aaa, aab, aba, abb, baa, bab, \dots$

languages $\emptyset, \{\epsilon\}, \{a\}, \{b\}, \{a, aa\},$

 $\{\epsilon, a, aa, aaa\},\$

 $\{a^n|n\geq 0\},$

 $\{a^nb^n|n\geq 0, n \text{ even}\}$

Note the distinction between ϵ , \emptyset , and $\{\epsilon\}$!

Symbols and Alphabets

What is a symbol, then?

Anything, but it has to come from an **alphabet** Σ which is a **finite** set.

A common (and important) instance is $\Sigma = \{0, 1\}.$

 ϵ , the empty word, is **never** an symbol of an alphabet.

G51MALMachines and Their LanguagesLecture 1 – p.26/3

All Words over an Alphabet (1)

Given an alphabet Σ we define the set Σ^* as set of words (or sequences) over Σ :

- The empty word $\epsilon \in \Sigma^*$.
- given a symbol $x \in \Sigma$ and a word $w \in \Sigma^*$, $xw \in \Sigma^*$.
- These are all elements in Σ^* .

This is called an *inductive definition*.

All Words over an Alphabet (2)

Example: Given $\Sigma = \{0, 1\}$, some elements of Σ^* are

- ϵ (the empty word)
- 0, 1
- 00, 10, 01, 11
- 000, 100, 010, 110, 010, 110, 011, 111
- . . .

We are just applying the inductive definition.

Note: although there are infinitely many words in Σ^* , each word has a *finite* length!

G51MALMachines and Their LanguagesLecture 1 - p.29/38

Concatenation of Words (2)

Concatenation is associative and has unit ϵ :

$$u(vw) = (uv)w$$
$$\epsilon u = u = u\epsilon$$

where u, v, w are words.

Concatenation of Words (1)

An important operation on Σ^* is *concatenation*:

given
$$w,v\in\Sigma^*$$
, their concatenation $wv\in\Sigma^*$.

For example, concatenation of ab and ba yields abba.

This operation can be defined by primitive recursion:

$$\begin{aligned}
\epsilon v &= v \\
(xw)v &= x(wv)
\end{aligned}$$

G51MALMachines and Their LanguagesLecture 1 - p.30/38

Languages Revisited

The notion of a language L of a set of words over an alphabet Σ can now be made precise:

- $L \subseteq \Sigma^*$, or equivalently
- $L \in \mathcal{P}(\Sigma^*)$.

Examples of Languages (1)

Some examples of languages:

- The set $\{0010,00000000,\epsilon\}$ is a language over $\Sigma = \{0,1\}.$
 - This is an example of a *finite* language.
- The set of words with odd length over $\Sigma = \{1\}.$
- The set of words that contain the same number of 0s and 1s is a language over $\Sigma = \{0, 1\}$.

51MAI Machines and Their Languages ecture 1 - n 33/38

Examples of Languages (3)

• The set of programs that, if executed successfully on a Windows machine, prints the text "Hello World!" in a window. This is a language over $\Sigma = \{0, 1\}$.

Examples of Languages (2)

- The set of words which contain the same number of 0s and 1s modulo 2 (i.e. both are even or odd) is a language over $\Sigma = \{0, 1\}$.
- The set of palindromes using the English alphabet, e.g. words which read the same forwards and backwards like abba. This is a language over {a, b, ..., z}.
- The set of correct Java programs. This is a language over the set of UNICODE characters.

G51MALMachines and Their LanguagesLecture 1 - p.34/3

Concatenation of Languages (1)

Concatenation of words is extended to languages by:

$$MN = \{uv \mid u \in M \land v \in N\}$$

Example:

$$M = \{\epsilon, a, aa\}$$

$$N = \{b, c\}$$

$$MN = \{uv \mid u \in \{\epsilon, a, aa\} \land v \in \{b, c\}\}$$

$$= \{\epsilon b, \epsilon c, ab, ac, aab, aac\}$$

$$= \{b, c, ab, ac, aab, aac\}$$

Concatenation of Languages (2)

Concatenation of languages is associative:

$$L(MN) = (LM)N$$

Concatenation of languages has zero ∅:

$$L\emptyset = \emptyset = \emptyset L$$

• Concatenation of languages has unit $\{\epsilon\}$:

$$L\{\epsilon\} = L = \{\epsilon\}L$$

Concatenation of Languages (3)

Concatenation distributes through set union:

$$L(M \cup N) = LM \cup LN$$
$$(L \cup M)N = LN \cup MN$$

But note e.g. $L(M \cap N) \neq LM \cap LN!$ For example, with $L=\{\epsilon,a\}$, $M=\{\epsilon\}$, $N=\{a\}$, we have

$$L(M \cap N) = L\emptyset = \emptyset$$

$$LM \cap LN = \{\epsilon, a\} \cap \{a, aa\} = \{a\}$$