
G52GRP 2012–2013: Lecture 3
Project Site

and
Version Control with Subversion

Henrik Nilsson

University of Nottingham, UK

G52GRP 2012–2013: Lecture 3 – p.1/41

This Lecture

• Indefero project site
• Why use version control systems?
• Subversion
• Using Subversion

G52GRP 2012–2013: Lecture 3 – p.2/41

Sharing Code and Documents (1)

G52GRP 2012–2013: Lecture 3 – p.3/41

Sharing Code and Documents (1)

• Passing copies from person to person using
e.g. e-mail or USB memory sticks?

G52GRP 2012–2013: Lecture 3 – p.3/41

Sharing Code and Documents (1)

• Passing copies from person to person using
e.g. e-mail or USB memory sticks?

Might work for a single document where
people “take turns”, but otherwise recipe for
disaster!

G52GRP 2012–2013: Lecture 3 – p.3/41

Sharing Code and Documents (1)

• Passing copies from person to person using
e.g. e-mail or USB memory sticks?

Might work for a single document where
people “take turns”, but otherwise recipe for
disaster!
- Who’s got the latest version?

G52GRP 2012–2013: Lecture 3 – p.3/41

Sharing Code and Documents (1)

• Passing copies from person to person using
e.g. e-mail or USB memory sticks?

Might work for a single document where
people “take turns”, but otherwise recipe for
disaster!
- Who’s got the latest version?
- Who’s got the right to edit?

G52GRP 2012–2013: Lecture 3 – p.3/41

Sharing Code and Documents (1)

• Passing copies from person to person using
e.g. e-mail or USB memory sticks?

Might work for a single document where
people “take turns”, but otherwise recipe for
disaster!
- Who’s got the latest version?
- Who’s got the right to edit?
- How to ensure that everyone sees

up-to-date versions of everything?
- . . .

G52GRP 2012–2013: Lecture 3 – p.3/41

Sharing Code and Documents (2)

• A shared repository is a better idea!

G52GRP 2012–2013: Lecture 3 – p.4/41

Sharing Code and Documents (2)

• A shared repository is a better idea!
- A School-hosted Indefero project has been

set up for each group. Sign in with your CS
credentials at:
https://code.cs.nott.ac.uk

G52GRP 2012–2013: Lecture 3 – p.4/41

Sharing Code and Documents (2)

• A shared repository is a better idea!
- A School-hosted Indefero project has been

set up for each group. Sign in with your CS
credentials at:
https://code.cs.nott.ac.uk

- Provides additional project management
features beyond a shared repository.

G52GRP 2012–2013: Lecture 3 – p.4/41

Sharing Code and Documents (2)

• A shared repository is a better idea!
- A School-hosted Indefero project has been

set up for each group. Sign in with your CS
credentials at:
https://code.cs.nott.ac.uk

- Provides additional project management
features beyond a shared repository.

- The designated gp12-XXX Indefero project
should (in most cases) be your central
repository for code and documentation.

G52GRP 2012–2013: Lecture 3 – p.4/41

Sharing Code and Documents (2)

• A shared repository is a better idea!
- A School-hosted Indefero project has been

set up for each group. Sign in with your CS
credentials at:
https://code.cs.nott.ac.uk

- Provides additional project management
features beyond a shared repository.

- The designated gp12-XXX Indefero project
should (in most cases) be your central
repository for code and documentation.

• Additionally, a Unix group has been created
for each group on the School’s Linux servers.

G52GRP 2012–2013: Lecture 3 – p.4/41

Indefero Features (1)
• Project Management:

- Project description (using Markdown syntax).
- Access rights (who can access and change

what: defaults should work for most
groups).

- Detailed configuration of many of the other
features (e.g. “tags”, notification e-mails).

G52GRP 2012–2013: Lecture 3 – p.5/41

Indefero Features (1)
• Project Management:

- Project description (using Markdown syntax).
- Access rights (who can access and change

what: defaults should work for most
groups).

- Detailed configuration of many of the other
features (e.g. “tags”, notification e-mails).

• Source code repository:
- Version control using Subversion.
- Not just for code, but can also be used for

reports, design documents, and more.
G52GRP 2012–2013: Lecture 3 – p.5/41

Indefero Features (2)

• Documentation
- Detailed project description (including

aims, vision), agendas, meeting minutes,
design documents, QA plans, . . .

- Hyperlinks between documents
- Markdown syntax

G52GRP 2012–2013: Lecture 3 – p.6/41

Indefero Features (2)

• Documentation
- Detailed project description (including

aims, vision), agendas, meeting minutes,
design documents, QA plans, . . .

- Hyperlinks between documents
- Markdown syntax

• Issue tracking

G52GRP 2012–2013: Lecture 3 – p.6/41

Indefero Features (2)

• Documentation
- Detailed project description (including

aims, vision), agendas, meeting minutes,
design documents, QA plans, . . .

- Hyperlinks between documents
- Markdown syntax

• Issue tracking
• Downloads

- Various releases
- Source, binaries for various platforms, . . .

G52GRP 2012–2013: Lecture 3 – p.6/41

Group Project Site Deliverable

• Group Project Site: first “deliverable” of
G52GRP

G52GRP 2012–2013: Lecture 3 – p.7/41

Group Project Site Deliverable

• Group Project Site: first “deliverable” of
G52GRP

• Due 2 November

G52GRP 2012–2013: Lecture 3 – p.7/41

Group Project Site Deliverable

• Group Project Site: first “deliverable” of
G52GRP

• Due 2 November
• Designed to get your project site off the

ground and ensure everyone understands the
basics of Indefero and Subversion

G52GRP 2012–2013: Lecture 3 – p.7/41

Group Project Site Deliverable

• Group Project Site: first “deliverable” of
G52GRP

• Due 2 November
• Designed to get your project site off the

ground and ensure everyone understands the
basics of Indefero and Subversion

• Nominate a Project Site Master ASAP!

G52GRP 2012–2013: Lecture 3 – p.7/41

Group Project Site Deliverable

• Group Project Site: first “deliverable” of
G52GRP

• Due 2 November
• Designed to get your project site off the

ground and ensure everyone understands the
basics of Indefero and Subversion

• Nominate a Project Site Master ASAP!
• See the Group Project Handbook for further

details.

G52GRP 2012–2013: Lecture 3 – p.7/41

Other Ways To Share & Coordinate (1)

What about other (possibly external) solutions?
For example:

G52GRP 2012–2013: Lecture 3 – p.8/41

Other Ways To Share & Coordinate (1)

What about other (possibly external) solutions?
For example:

• GitHub, Gitorious, Bitbucket, . . .
• Google Docs

G52GRP 2012–2013: Lecture 3 – p.8/41

Other Ways To Share & Coordinate (1)

What about other (possibly external) solutions?
For example:

• GitHub, Gitorious, Bitbucket, . . .
• Google Docs
• Dropbox

G52GRP 2012–2013: Lecture 3 – p.8/41

Other Ways To Share & Coordinate (1)

What about other (possibly external) solutions?
For example:

• GitHub, Gitorious, Bitbucket, . . .
• Google Docs
• Dropbox
• Facebook

G52GRP 2012–2013: Lecture 3 – p.8/41

Other Ways To Share & Coordinate (1)

What about other (possibly external) solutions?
For example:

• GitHub, Gitorious, Bitbucket, . . .
• Google Docs
• Dropbox
• Facebook
• Google+
• . . .

G52GRP 2012–2013: Lecture 3 – p.8/41

Other Ways To Share & Coordinate (2)

OK, and may even be needed, but:

G52GRP 2012–2013: Lecture 3 – p.9/41

Other Ways To Share & Coordinate (2)

OK, and may even be needed, but:
• Group Project Site deliverable must still be

done as specified.

G52GRP 2012–2013: Lecture 3 – p.9/41

Other Ways To Share & Coordinate (2)

OK, and may even be needed, but:
• Group Project Site deliverable must still be

done as specified.
• All documents and code must be backed up

on School servers!

G52GRP 2012–2013: Lecture 3 – p.9/41

Other Ways To Share & Coordinate (2)

OK, and may even be needed, but:
• Group Project Site deliverable must still be

done as specified.
• All documents and code must be backed up

on School servers!
Temporary unavailability of external hosting,
or external host going out of business (or your
own, private machines dying, getting stolen,
. . .), are not valid extenuating circumstances.

G52GRP 2012–2013: Lecture 3 – p.9/41

Other Ways To Share & Coordinate (2)

OK, and may even be needed, but:
• Group Project Site deliverable must still be

done as specified.
• All documents and code must be backed up

on School servers!
Temporary unavailability of external hosting,
or external host going out of business (or your
own, private machines dying, getting stolen,
. . .), are not valid extenuating circumstances.

• You may have to copy certain data across to
the project site for submission purposes.

G52GRP 2012–2013: Lecture 3 – p.9/41

Other Ways To Share & Coordinate (3)

Additionaly:

G52GRP 2012–2013: Lecture 3 – p.10/41

Other Ways To Share & Coordinate (3)

Additionaly:
• Social networking sites like Facebook were

designed for . . .

G52GRP 2012–2013: Lecture 3 – p.10/41

Other Ways To Share & Coordinate (3)

Additionaly:
• Social networking sites like Facebook were

designed for . . . social networking, not
software development.

G52GRP 2012–2013: Lecture 3 – p.10/41

Other Ways To Share & Coordinate (3)

Additionaly:
• Social networking sites like Facebook were

designed for . . . social networking, not
software development.

• Consequently, lack key features like version
control and issue tracking.

G52GRP 2012–2013: Lecture 3 – p.10/41

Other Ways To Share & Coordinate (3)

Additionaly:
• Social networking sites like Facebook were

designed for . . . social networking, not
software development.

• Consequently, lack key features like version
control and issue tracking.

• Grops that did use Facebook reported that
the social aspects were a constant source of
distraction.

G52GRP 2012–2013: Lecture 3 – p.10/41

Other Ways To Share & Coordinate (4)

G52GRP 2012–2013: Lecture 3 – p.11/41

Why Use Version Control Systems? (1)

OK, doc and code shared. Problem solved? No . . .

G52GRP 2012–2013: Lecture 3 – p.12/41

Why Use Version Control Systems? (1)

OK, doc and code shared. Problem solved? No . . .
• If a team of people involved, how to

coordinate the work on the shared source
code and documentation?

G52GRP 2012–2013: Lecture 3 – p.12/41

Why Use Version Control Systems? (1)

OK, doc and code shared. Problem solved? No . . .
• If a team of people involved, how to

coordinate the work on the shared source
code and documentation?

• As the source and documentation evolves,
how to
- keep track of changes
- keep track of consistent configurations
- insulate against “work in progress”
- . . .

G52GRP 2012–2013: Lecture 3 – p.12/41

Why Use Version Control Systems? (2)

Version control systems

G52GRP 2012–2013: Lecture 3 – p.13/41

Why Use Version Control Systems? (2)

Version control systems
• originally addressed the second problem

(hence the name)

G52GRP 2012–2013: Lecture 3 – p.13/41

Why Use Version Control Systems? (2)

Version control systems
• originally addressed the second problem

(hence the name)
• but modern ones also provide very

sophisticated support for
- teams of programmers working on shared

source and documentation
- distributed teams of programmers (over the

Internet)

G52GRP 2012–2013: Lecture 3 – p.13/41

Basic Model

(Pictures from Collins-Sussman, Fitzpatrick,
Pilato: Version Control with Subversion.)

G52GRP 2012–2013: Lecture 3 – p.14/41

The Problem to Avoid

G52GRP 2012–2013: Lecture 3 – p.15/41

The Lock, Modify, Unlock Model

G52GRP 2012–2013: Lecture 3 – p.16/41

The Copy, Modify, Merge Model (1)

G52GRP 2012–2013: Lecture 3 – p.17/41

The Copy, Modify, Merge Model (2)

G52GRP 2012–2013: Lecture 3 – p.18/41

Version Control

A version control system provides

G52GRP 2012–2013: Lecture 3 – p.19/41

Version Control

A version control system provides
• a “time travel” facility: arbitrary earlier

versions of the repository can be retrieved

G52GRP 2012–2013: Lecture 3 – p.19/41

Version Control

A version control system provides
• a “time travel” facility: arbitrary earlier

versions of the repository can be retrieved
• facilities for supporting parallel,

non-interfering development, e.g. through
what looks like separate copies, . . .

G52GRP 2012–2013: Lecture 3 – p.19/41

Version Control

A version control system provides
• a “time travel” facility: arbitrary earlier

versions of the repository can be retrieved
• facilities for supporting parallel,

non-interfering development, e.g. through
what looks like separate copies, . . .

• . . . while maximizing sharing and
facilitating reintegration of lines of
development.

G52GRP 2012–2013: Lecture 3 – p.19/41

What Is Subversion? (1)

• Free, open-source version control system.

G52GRP 2012–2013: Lecture 3 – p.20/41

What Is Subversion? (1)

• Free, open-source version control system.
• Manages files and directories, allowing older

versions of (a part of) a file hierarchy to be
retrieved at any point in time, pinpointing
changes, keeping track of metadata such as
logs for information about changes, etc.

G52GRP 2012–2013: Lecture 3 – p.20/41

What Is Subversion? (1)

• Free, open-source version control system.
• Manages files and directories, allowing older

versions of (a part of) a file hierarchy to be
retrieved at any point in time, pinpointing
changes, keeping track of metadata such as
logs for information about changes, etc.

• Handles both text and binary data (like Word
documents, images)

G52GRP 2012–2013: Lecture 3 – p.20/41

What Is Subversion? (1)

• Free, open-source version control system.
• Manages files and directories, allowing older

versions of (a part of) a file hierarchy to be
retrieved at any point in time, pinpointing
changes, keeping track of metadata such as
logs for information about changes, etc.

• Handles both text and binary data (like Word
documents, images)

• Supports concurrent development (the Copy,
Modify, Merge model), both locally and
remotely (over a network).

G52GRP 2012–2013: Lecture 3 – p.20/41

What Is Subversion? (2)

• Also does support locking (mainly intended
for binary data that cannot easily be merged:
images, Word documents, other
application-specific binary data, . . .)

G52GRP 2012–2013: Lecture 3 – p.21/41

What Is Subversion? (2)

• Also does support locking (mainly intended
for binary data that cannot easily be merged:
images, Word documents, other
application-specific binary data, . . .)

• Other helpful features like
- file portability (e.g. transparent conversion

between CR/LF and LF line ending
conventions)

- automation through hooks (e.g. sending
e-mail after changes committed)

G52GRP 2012–2013: Lecture 3 – p.21/41

What Is Subversion? (3)
Main reference (freely available on-line):

Collins-Sussman, Fitzpatrick, Pilato:
Version Control with Subversion

G52GRP 2012–2013: Lecture 3 – p.22/41

Architecture of Subversion

G52GRP 2012–2013: Lecture 3 – p.23/41

Getting Started
• Use either the command-line interface, or a

Subversion client like Tortoise (Windows,
shell extension), or from within IDEs like
NetBeans, Eclipse (with Subclipse plugin).

G52GRP 2012–2013: Lecture 3 – p.24/41

Getting Started
• Use either the command-line interface, or a

Subversion client like Tortoise (Windows,
shell extension), or from within IDEs like
NetBeans, Eclipse (with Subclipse plugin).

• Command-line interface used in the following:
principles remain the same regardless of
access mode.

G52GRP 2012–2013: Lecture 3 – p.24/41

Getting Started
• Use either the command-line interface, or a

Subversion client like Tortoise (Windows,
shell extension), or from within IDEs like
NetBeans, Eclipse (with Subclipse plugin).

• Command-line interface used in the following:
principles remain the same regardless of
access mode.

• Check out a copy of the repository, e.g.:
svn checkout \

https://code.cs.nott.ac.uk/svn/gp12-nhn

G52GRP 2012–2013: Lecture 3 – p.24/41

Getting Started
• Use either the command-line interface, or a

Subversion client like Tortoise (Windows,
shell extension), or from within IDEs like
NetBeans, Eclipse (with Subclipse plugin).

• Command-line interface used in the following:
principles remain the same regardless of
access mode.

• Check out a copy of the repository, e.g.:
svn checkout \

https://code.cs.nott.ac.uk/svn/gp12-nhn

• Change directory: cd gp12-nhn.
G52GRP 2012–2013: Lecture 3 – p.24/41

Accessing the Repository
The command-line Subversion client is called
svn. It has many subcommands, e.g.:

• svn list

• svn add

• svn copy

• svn commit

G52GRP 2012–2013: Lecture 3 – p.25/41

Accessing the Repository
The command-line Subversion client is called
svn. It has many subcommands, e.g.:

• svn list

• svn add

• svn copy

• svn commit

It is always possible to get help, including on
specific subcommands:

• svn help

• svn help copy
G52GRP 2012–2013: Lecture 3 – p.25/41

Initial Repository Structure (1)

Let’s pupulate the repository with some initial
structure. The Subversion book recommends
three main directories for each project:

G52GRP 2012–2013: Lecture 3 – p.26/41

Initial Repository Structure (1)

Let’s pupulate the repository with some initial
structure. The Subversion book recommends
three main directories for each project:

• trunk: for the main development

G52GRP 2012–2013: Lecture 3 – p.26/41

Initial Repository Structure (1)

Let’s pupulate the repository with some initial
structure. The Subversion book recommends
three main directories for each project:

• trunk: for the main development
• branches: for branched-off developments

(may later be merged back into main branch)

G52GRP 2012–2013: Lecture 3 – p.26/41

Initial Repository Structure (1)

Let’s pupulate the repository with some initial
structure. The Subversion book recommends
three main directories for each project:

• trunk: for the main development
• branches: for branched-off developments

(may later be merged back into main branch)
• tags: named “snap shots” of the

development; often a “release”.

G52GRP 2012–2013: Lecture 3 – p.26/41

Initial Repository Structure (1)

Let’s pupulate the repository with some initial
structure. The Subversion book recommends
three main directories for each project:

• trunk: for the main development
• branches: for branched-off developments

(may later be merged back into main branch)
• tags: named “snap shots” of the

development; often a “release”.

Branches and Tags are created by copying: svn
copy

G52GRP 2012–2013: Lecture 3 – p.26/41

Initial Repository Structure (2)

Under trunk we might want to have
subdirectories for subprojects, e.g.:

• src: for source code
• doc: for documentation

G52GRP 2012–2013: Lecture 3 – p.27/41

Initial Repository Structure (2)

Under trunk we might want to have
subdirectories for subprojects, e.g.:

• src: for source code
• doc: for documentation

Subversion does not make any particular assump-
tions: the directory structure can be what you like.

G52GRP 2012–2013: Lecture 3 – p.27/41

Initial Repository Structure (2)

Under trunk we might want to have
subdirectories for subprojects, e.g.:

• src: for source code
• doc: for documentation

Subversion does not make any particular assump-
tions: the directory structure can be what you like.

AND! It is easy to change the structure later by
simply moving around files and directories.

G52GRP 2012–2013: Lecture 3 – p.27/41

Initial Repository Structure (3)

Let’s create this directory structure:

marian$ mkdir trunk

marian$ mkdir branches

marian$ mkdir tags

marian$ mkdir trunk/src

marian$ mkdir trunk/doc

G52GRP 2012–2013: Lecture 3 – p.28/41

Initial Repository Structure (4)
Let’s tell subversion all these directories have
been added:

marian$ svn add trunk

marian$ svn add branches

marian$ svn add tags

marian$ svn add trunk/src

marian$ svn add trunk/doc

Then, let’s commit to the central repository:

marian$ svn commit

G52GRP 2012–2013: Lecture 3 – p.29/41

Checking Out a Working Copy

Now other people can check out a working copy
of the relevant part of the repository:

svn checkout \

https://code.cs.nott.ac.uk/svn/gp12-nhn/trunk

A trunk/doc

A trunk/src

Checked out revision 1.

G52GRP 2012–2013: Lecture 3 – p.30/41

Adding a File (1)

Let’s add a document:
isis-19% cd trunk/doc

isis-20% ooffice

isis-21% ls -l

-rw-r--r-- 1 henrik henrik 8192 Oct 23 01:45

design.doc

The location of the repository is stored with the
working copy, so Subversion commands can now
be given without giving the repository URL:
isis-49% svn status

? design.doc

G52GRP 2012–2013: Lecture 3 – p.31/41

Adding a File (2)

The status “?” indicates something which is
unknown to Subversion. We need to tell
Subversion about it:
isis-50% svn add design.doc

A (bin) design.doc

Important! The new document is now added to
the local working copy. But it (and other
changes) will not be propagated to the central
repository until we explicitly perform a commit.
isis-51% svn status

A design.doc

G52GRP 2012–2013: Lecture 3 – p.32/41

Adding a File (3)

Subversion correctly determined that our
document is a binary file. (Could have been
configured otherwise.)
isis-52% svn proplist design.doc

Properties on ’design.doc’:

svn:mime-type

isis-53% svn propget svn:mime-type \

design.doc

application/octet-stream

G52GRP 2012–2013: Lecture 3 – p.33/41

Adding a Directory

It is equally easy to add directories:
isis-54% mkdir Meeting-2012-10-23

isis-55% svn add Meeting-2012-10-23

A Meeting-2012-10-23

isis-56% emacs Meeting-2012-10-23/ideas.txt

isis-57% svn add Meeting-2012-10-23/ideas.txt

A Meeting-2012-10-23/ideas.txt

isis-58% svn status

A design.doc

A Meeting-2012-10-23

A Meeting-2012-10-23/ideas.txt

Or use svn mkdir.
G52GRP 2012–2013: Lecture 3 – p.34/41

Committing

Time to propagate the changes to the central
repository:
isis-59% svn commit \

-m "System design and ideas from meeting 23 Oct"

Adding doc/design.doc

Adding doc/Meeting-2012-10-23

Adding doc/Meeting-2012-10-23/ideas.txt

Transmitting file data .

Committed revision 2.

G52GRP 2012–2013: Lecture 3 – p.35/41

Making Changes

Let’s assume a few typos in the design are fixed:
isis-65% svn status

M design.doc

isis-66% svn commit -m "Fixed typos"

Sending doc/design.doc

Transmitting file data .

Committed revision 3.

G52GRP 2012–2013: Lecture 3 – p.36/41

Propagating Changes (1)

Assume someone else makes changes and
commits. We can check the status against the
repository and get log entries
isis-70% svn status -u

* 2 design.doc

Status against revision: 3

isis-70% svn log -r 3 design.doc

r3 | nhn | 2012-10-24 09:51:00 +0100 (Wed, 24 Oct 2012)

Fixed typos

G52GRP 2012–2013: Lecture 3 – p.37/41

Propagating Changes (2)

Let’s bring our working copy up-to-date:
isis-71% svn update

U design.doc

Updated to revision 3.

In general, it is good practice to to bring
everything up-to-date before starting to make any
changes. Minimizes the risk of conflicts.

G52GRP 2012–2013: Lecture 3 – p.38/41

Conflicts (1)

What if someone else has commited changes
before I commit?

Conflict! Text files can, however, be merged.
isis-92% svn commit

Sending Meeting-2012-10-23/ideas.txt

Transmitting file data .svn: Commit failed (details follow):

isis-83% svn update

C ideas.txt

Updated to revision 7.

G52GRP 2012–2013: Lecture 3 – p.39/41

Conflicts (2)

The differences are marked in the file. Edit as
necessary. Then:
isis-93% svn resolved idead.txt

Resolved conflicted state of ’ideas.txt’

isis-94% svn commit

(Newer versions has a more sophisticated svn
resolve command.)

G52GRP 2012–2013: Lecture 3 – p.40/41

Other useful Subversion commands

Some other commands:
• svn delete

• svn copy

• svn diff

• svn revert

• svn lock

• svn unlock

Be sure to read at least the introductory chapters
of the Subversion book (very accessible) and do
use svn help!

G52GRP 2012–2013: Lecture 3 – p.41/41

	This Lecture
	Sharing Code and Documents (1)
	Sharing Code and Documents (2)
	Indefero Features (1)
	Indefero Features (2)
	Group Project Site Deliverable
	Other Ways To Share & Coordinate (1)
	Other Ways To Share & Coordinate (2)
	Other Ways To Share & Coordinate (3)
	Other Ways To Share & Coordinate (4)
	Why Use Version Control Systems? (1)
	Why Use Version Control Systems? (2)
	Basic Model
	The Problem to Avoid
	The Lock, Modify, Unlock Model
	The Copy, Modify, Merge Model (1)
	The Copy, Modify, Merge Model (2)
	Version Control
	What Is Subversion? (1)
	What Is Subversion? (2)
	What Is Subversion? (3)
	Architecture of Subversion
	Getting Started
	Accessing the Repository
	Initial Repository Structure (1)
	Initial Repository Structure (2)
	Initial Repository Structure (3)
	Initial Repository Structure (4)
	Checking Out a Working Copy
	Adding a File (1)
	Adding a File (2)
	Adding a File (3)
	Adding a Directory
	Committing
	Making Changes
	Propagating Changes (1)
	Propagating Changes (2)
	Conflicts (1)
	Conflicts (2)
	Other useful Subversion commands

