Solutions to Coursework Problems, Set 2

20 March 2019

1. (a) i.

S	$\underset{G}{\Rightarrow}$	$X Y X$
	by $S \rightarrow X Y X$	
\Rightarrow	$a b Y X$	by $X \rightarrow a b$
\Rightarrow	$a b c d X$	by $Y \rightarrow c d$
	\vec{G}	$a b c d a b$
	by $X \rightarrow a b$	

When giving derivation sequences in a context-free grammar, it is normally not necessary to justify every single step as it usually is obvious which production was used. The justified derivation sequence above was given for explanatory purposes. Also, when the grammar is clear from the context, it is not necessary to explicitly state in which grammar the derivation is carried out. Thus, answers like the following are perfectly OK too:

$$
S \underset{G}{\Rightarrow} X Y X \underset{G}{\Rightarrow} a b Y X \underset{G}{\Rightarrow} a b c d X \underset{G}{\Rightarrow} a b c d a b
$$

or

$$
S \Rightarrow X Y X \Rightarrow a b Y X \Rightarrow a b c d X \Rightarrow a b c d a b
$$

ii.

S	\vec{G}	$Y X Y$
$\underset{G}{\Rightarrow} c X d X Y$	by $S \rightarrow Y X Y$	
$\underset{G}{\Rightarrow} c a Y b d X Y$	by $Y \rightarrow c X d$	
$\underset{G}{\Rightarrow} \quad c a c d b d X Y$	by $X \rightarrow a Y b$	
$\underset{G}{\Rightarrow} \quad c a c d b d a Y b Y$	by $Y \rightarrow c d$	
$\underset{G}{\Rightarrow} \quad c a c d b d a c d b Y$	by $Y \rightarrow c d$	
$\underset{G}{\Rightarrow}$	$c a c d b d a c d b c d$	by $Y \rightarrow c d$

Note: the above is a left-most derivation as the left-most non-terminal is being expanded in each step. But any order of expanding the terminals is fine (unless a left-most or a right-most derivation is required explicitly). [Marking: 3 and 7 marks respectively, for a total of 10 marks]
(b) No, $a b c c d d a b \notin L(G)$. From the start symbol S, we can either derive $X Y X$ or $Y X Y$. As the only way to derive words starting with an a is to use the productions for X, the first derivation step must be $S \Rightarrow X Y X$. The word $a b c c d d a b$ both starts and ends with the word $a b$. As there is no way to derive ϵ from Y, the production $X \rightarrow a Y b$ cannot be used to derive $a b$. Instead the production $X \rightarrow a b$ must be used in both cases. Thus we get a derivation $S \Rightarrow X Y X \Rightarrow a b Y X \Rightarrow a b Y a b$. That means that we now must derive $c c d d$ from Y. There are only two productions for Y. We cannot use $Y \rightarrow c d$ as we then only would get the word $c d$, not $c c d d$. And we cannot use $Y \rightarrow c X d$ either as any word derivable from X starts with an a and ends with a b. [Marking: 10 marks]
2. (a) The explanations are only for clarifying and not needed for full marks.
i. Correct
ii. Not correct (unbalanced parentheses)
iii. Correct
iv. Not correct ($\mathrm{x}=0$ is a statement (Stmt), not an expression (Expr), in J).
v. Correct
vi. Not correct (missing semicolon)
vii. Correct
viii. Not correct (print must be followed by an expression (Expr))
ix. Correct
x. Not correct (every J program must start with an opening brace and end with a closing brace)
[Marking: 1 mark each, 10 marks in total]
(b) Derivation tree for $\{$ if (z) $\{$ print 1 ; print $\mathrm{x}+\mathrm{y}$; \}\}:

[Marking: 10 marks]
(c) Yes, the grammar is ambiguous. For example, $\{$ print $\mathrm{x}+\mathrm{y}+\mathrm{z}$; \} is a syntactically valid J program with two different derivation trees:

[Marking: 10 marks]
3. First identify the immediately left-recursive non-terminals. Then group the productions for each such non-terminal into two groups: one where each RHS starts with the non-terminal in question, and one where they don't:

$$
\begin{aligned}
A & \rightarrow A \alpha_{1}|\ldots| A \alpha_{m} \\
A & \rightarrow \beta_{1}|\ldots| \beta_{n}
\end{aligned}
$$

Then replace those productions with new productions for A and productions for A^{\prime}, where A^{\prime} is a new name, as follows:

$$
\begin{aligned}
A & \rightarrow \beta_{1} A^{\prime}|\ldots| \beta_{n} A^{\prime} \\
A^{\prime} & \rightarrow \alpha_{1} A^{\prime}|\ldots| \alpha_{m} A^{\prime} \mid \epsilon
\end{aligned}
$$

There are two immediately left-recursive non-terminals in the given grammar: X and Y. The grammar is essentially already grouped as required. Applying the above transformation rule to both the X and Y productions yields:

$$
\begin{aligned}
S & \rightarrow a S \mid b X \\
X & \rightarrow Y X d X^{\prime} \mid Y X^{\prime} \\
X^{\prime} & \rightarrow X c X^{\prime} \mid \epsilon \\
Y & \rightarrow g Y^{\prime} \\
Y^{\prime} & \rightarrow e Y^{\prime}\left|f Y^{\prime}\right| \epsilon
\end{aligned}
$$

[Marking: 15 marks]
4. (a) $N_{\epsilon}=\{S, A, B\}$. A is nullable because $A \rightarrow \epsilon$ is a production. B is nullable because $B \rightarrow \epsilon$ is a production. S is nullable because $S \rightarrow A B B$ is a production and both A and B are nullable. C is not nullable because the right-hand sides of all productions for C include one or more terminals (c or $e f$), meaning it is clear ϵ cannot be derived from C. For the same reasons as C, D is not nullable. [Marking: 5 marks]
(b) Keeping in mind which non-terminals are nullable, we obtain the following equations:

$$
\begin{aligned}
\operatorname{first}(A) & =\operatorname{first}(a A) \cup \operatorname{first}(\epsilon) \\
& =\{a\} \cup \emptyset \\
& =\{a\} \\
\operatorname{first}(B) & =\operatorname{first}(B C D b) \cup \operatorname{first}(\epsilon) \\
& =(\operatorname{first}(B) \cup \operatorname{first}(C D b)) \cup \emptyset \\
& =\operatorname{first}(B) \cup(\operatorname{first}(C) \cup \emptyset) \\
& =\operatorname{first}(B) \cup \operatorname{first}(C) \\
& \\
\operatorname{first}(C) & =\operatorname{first}(c D) \cup \operatorname{first}(e f) \\
& =\{c\} \cup\{e\} \\
& =\{c, e\} \\
\operatorname{first}(D) & =\operatorname{first}(d C) \cup \operatorname{first}(f e) \\
& =\{d\} \cup\{f\} \\
& =\{d, f\}
\end{aligned}
$$

The solutions of the equations for first (A), first (C), and first (D) are manifest. Recall that an equation of the form $X=X \cup Y$, in the absence of other constraints on X, simplifies to $X=Y$ when we are looking for the smallest solution. The equation for $\operatorname{first}(B)$ has the form $X=X \cup Y$ and there are no other constraints on first (B). The smallest solution is thus given by $\operatorname{first}(B)=\operatorname{first}(C)=\{c, e\}$.
Now we can turn to setting up and solving the equation for first (S), again keeping in mind which non-termainals are nullable:

$$
\begin{aligned}
\operatorname{first}(S) & =\operatorname{first}(A A S) \cup \operatorname{first}(A B B) \\
& =(\operatorname{first}(A) \cup \operatorname{first}(A) \cup \operatorname{first}(S)) \cup(\operatorname{first}(A) \cup \operatorname{first}(B) \cup \operatorname{first}(B)) \\
& =\operatorname{first}(S) \cup \operatorname{first}(A) \cup \operatorname{first}(B) \\
& =\operatorname{first}(S) \cup\{a\} \cup\{c, e\} \\
& =\operatorname{first}(S) \cup\{a, c, e\}
\end{aligned}
$$

Again, an equatiom of the form $X=X \cup Y$, with no further constraints on first (S), meaning that the smallest solution is simply first $(S)=\{a, c, e\}$.
[Marking: 10 marks]
(c) Note: very detailed account below for clarity. It is sufficient to just state the constraints according to the definitions and then simplify.
Constraints for follow (S). Note that S only appear in one RHS, of the production $S \rightarrow A A S$, where it appears last; i.e. the string following S is just ϵ, and by definition we have nullable (ϵ). The constraints for S are thus:

| $\{\$\}$ | \subseteq follow (S) |
| ---: | :--- | ---: |
| first (ϵ) | \subseteq follow (S) |
| follow (S) | \subseteq follow (S) |

Constraints for follow (A) follow from the productions where A occurs in the RHS, i.e.

$$
\begin{aligned}
& S \rightarrow A A S \\
& S \rightarrow A B B \\
& A \rightarrow a A
\end{aligned}
$$

(note: nullable (S), nullable (B), and nullable (ϵ)):

first (A)	\subseteq follow (A)
follow (S)	\subseteq follow (A)
$\operatorname{first}(S)$	\subseteq follow (A)
follow (S)	\subseteq follow (A)
first (B)	\subseteq follow (A)
follow (S)	\subseteq follow (A)
$\operatorname{first}(\epsilon)$	\subseteq follow (A)
follow (A)	\subseteq follow (A)

Constraints for follow (B) follow from the productions where B occurs in the RHS, i.e.

$$
\begin{aligned}
& S \rightarrow A B B \\
& B \rightarrow B C D b
\end{aligned}
$$

(note: nullable (B), nullable (ϵ), \neg nullable $(C D b)$):

first (B)	\subseteq follow (B)	
follow (S)	\subseteq	follow (B)
first (ϵ)	\subseteq follow (B)	
follow (S)	\subseteq follow (B)	
first $(C D b)$	\subseteq follow (B)	

Constraints for follow (C) follow from the productions where C occurs in the RHS, i.e.

$$
\begin{aligned}
& B \rightarrow B C D b \\
& D \rightarrow d C
\end{aligned}
$$

(note: \neg nullable $(D b)$ and nullable (ϵ)):

$$
\begin{aligned}
\text { first }(D b) & \subseteq \text { follow }(C) \\
\text { first }(\epsilon) & \subseteq \text { follow }(C) \\
\text { follow }(D) & \subseteq \text { follow }(C)
\end{aligned}
$$

Constraints for follow (D) follow from the productions where D occurs in the RHS, i.e.

$$
\begin{aligned}
& B \rightarrow B C D b \\
& C \rightarrow c D
\end{aligned}
$$

(note: \neg nullable(b) and nullable (ϵ)):

$$
\begin{aligned}
\text { first }(b) & \subseteq \text { follow }(D) \\
\text { first }(\epsilon) & \subseteq \text { follow }(D) \\
\text { follow }(C) & \subseteq \text { follow }(D)
\end{aligned}
$$

Using

$$
\begin{aligned}
\operatorname{first}(\epsilon) & =\emptyset \\
\operatorname{first}(S) & =\{a, c, e\} \\
\operatorname{first}(A) & =\{a\} \\
\operatorname{first}(B) & =\{c, e\} \\
\operatorname{first}(C D b) & =\text { first }(C) \cup \emptyset \\
& =\{c, e\} \cup \emptyset=\{c, e\} \\
\operatorname{first}(D b) & =\operatorname{first}(D) \cup e m p t y s e t \\
& =\{d, f\} \cup \emptyset=\{d, f\} \\
\operatorname{first}(b) & =\{b\}
\end{aligned}
$$

and eliminating trivial constraints (of the types $\emptyset \subseteq X$ and $X \subseteq X$) yields:

$$
\begin{aligned}
\{\$\} & \subseteq \text { follow }(S) \\
\{a\} & \subseteq \text { follow }(A) \\
\text { follow }(S) & \subseteq \text { follow }(A) \\
\{a, c, e\} & \subseteq \text { follow }(A) \\
\{c, e\} & \subseteq \text { follow }(A) \\
& \\
\{c, e\} & \subseteq \text { follow }(B) \\
\text { follow }(S) & \subseteq \text { follow }(B) \\
\{c, e\} & \subseteq \text { follow }(B) \\
\{d, f\} & \subseteq \text { follow }(C) \\
\text { follow }(D) & \subseteq \text { follow }(C)
\end{aligned}
$$

$$
\begin{aligned}
\{b\} & \subseteq \text { follow }(D) \\
\text { follow }(C) & \subseteq \text { follow }(D)
\end{aligned}
$$

Noting that follow $(C) \subseteq$ follow $(D) \wedge$ follow $(D) \subseteq$ follow (C) implies follow $(C)=$ follow (D), this is equivalent to:

$$
\begin{array}{rlrl}
\{\$\} & \subseteq & \text { follow }(S) \\
\{a\} \cup \text { follow }(S) \cup\{a, c, e\} \cup\{c, e\} & \subseteq & \text { follow }(A) \\
\{c, e\} \cup \text { follow }(S) \cup\{c, e\} & \subseteq \text { follow }(B) \\
\{d, f\} \cup\{b\} & \subseteq \text { follow }(C)=\text { follow }(D)
\end{array}
$$

which can be further simplified to the final constraints:

$$
\begin{aligned}
\{\$\} & \subseteq \text { follow }(S) \\
\{a, c, e\} \cup \text { follow }(S) & \subseteq \text { follow }(A) \\
\{c, e\} \cup \text { follow }(S) & \subseteq \text { follow }(B) \\
\{b, d, f\} & \subseteq \text { follow }(C)=\text { follow }(D)
\end{aligned}
$$

[Marking: 15 marks]
(d) The smallest set satisfying the constraint for follow (S) is obviously just $\{\$\}$. Substituting this into the remaining constraints makes the smallest sets sat-
isfying those obvious too. Thus:

$$
\begin{aligned}
\operatorname{follow}(S) & =\{\$\} \\
\text { follow }(A) & =\{a, c, e\} \cup\{\$\}=\{a, c, e, \$\} \\
\text { follow }(B) & =\{c, e\} \cup\{\$\}=\{c, e, \$\} \\
\text { follow }(C) & =\{b, d, f\} \\
\text { follow }(D) & =\{b, d, f\}
\end{aligned}
$$

[Marking: 5 marks]

