
School of Computer Science, University of Nottingham

COMP2012/G52LAC Languages and Computation, Spring 2019
Dr. Henrik Nilsson

Solutions to Coursework Problems, Set 2
20 March 2019

1. (a) i.
S ⇒

G

XYX by S → XYX

⇒
G

abY X by X → ab

⇒
G

abcdX by Y → cd

⇒
G

abcdab by X → ab

When giving derivation sequences in a context-free grammar, it is nor-
mally not necessary to justify every single step as it usually is obvious
which production was used. The justified derivation sequence above was
given for explanatory purposes. Also, when the grammar is clear from
the context, it is not necessary to explicitly state in which grammar the
derivation is carried out. Thus, answers like the following are perfectly
OK too:

S ⇒
G

XYX ⇒
G

abY X ⇒
G

abcdX ⇒
G

abcdab

or
S ⇒ XYX ⇒ abY X ⇒ abcdX ⇒ abcdab

ii.
S ⇒

G

Y XY by S → Y XY

⇒
G

cXdXY by Y → cXd

⇒
G

caY bdXY by X → aY b

⇒
G

cacdbdXY by Y → cd

⇒
G

cacdbdaY bY by X → aY b

⇒
G

cacdbdacdbY by Y → cd

⇒
G

cacdbdacdbcd by Y → cd

Note: the above is a left-most derivation as the left-most non-terminal is
being expanded in each step. But any order of expanding the terminals is
fine (unless a left-most or a right-most derivation is required explicitly).

[Marking: 3 and 7 marks respectively, for a total of 10 marks]

(b) No, abccddab /∈ L(G). From the start symbol S, we can either derive XYX
or Y XY . As the only way to derive words starting with an a is to use the
productions for X , the first derivation step must be S ⇒ XYX . The word
abccddab both starts and ends with the word ab. As there is no way to derive
ǫ from Y , the production X → aY b cannot be used to derive ab. Instead the
production X → ab must be used in both cases. Thus we get a derivation
S ⇒ XYX ⇒ abY X ⇒ abY ab. That means that we now must derive ccdd
from Y . There are only two productions for Y . We cannot use Y → cd as
we then only would get the word cd, not ccdd. And we cannot use Y → cXd
either as any word derivable from X starts with an a and ends with a b.
[Marking: 10 marks]

1

2. (a) The explanations are only for clarifying and not needed for full marks.

i. Correct

ii. Not correct (unbalanced parentheses)

iii. Correct

iv. Not correct (x = 0 is a statement (Stmt), not an expression (Expr), in
J).

v. Correct

vi. Not correct (missing semicolon)

vii. Correct

viii. Not correct (print must be followed by an expression (Expr))

ix. Correct

x. Not correct (every J program must start with an opening brace and end
with a closing brace)

[Marking: 1 mark each, 10 marks in total]

(b) Derivation tree for { if (z) { print 1 ; print x + y ; } } :

Prog

}Stmts

Stmts

ǫ

Stmt

Stmt

A

)Expr

PrimExpr

Id

z

(if

{

A

Prog

}Stmts

Stmts

Stmts

ǫ

Stmt

;Expr

Expr

PrimExpr

Id

y

BinOp

+

Expr

PrimExpr

Id

x

print

Stmt

;Expr

PrimExpr

Num

1

print

{

[Marking: 10 marks]

2

(c) Yes, the grammar is ambiguous. For example, { print x + y + z ; } is a
syntactically valid J program with two different derivation trees:

Prog

}Stmts

Stmts

ǫ

Stmt

;Expr

Expr

Id

z

BinOp

+

Expr

Expr

Id

y

BinOp

+

Expr

Id

x

print

{

Prog

}Stmts

Stmts

ǫ

Stmt

;Expr

Expr

Expr

Id

z

BinOp

+

Expr

Id

y

BinOp

+

Expr

Id

x

print

{

[Marking: 10 marks]

3. First identify the immediately left-recursive non-terminals. Then group the pro-
ductions for each such non-terminal into two groups: one where each RHS starts
with the non-terminal in question, and one where they don’t:

A → Aα1 | . . . | Aαm

A → β1 | . . . | βn

Then replace those productions with new productions for A and productions for
A′, where A′ is a new name, as follows:

A → β1A
′ | . . . | βnA

′

A′ → α1A
′ | . . . | αmA′ | ǫ

There are two immediately left-recursive non-terminals in the given grammar: X
and Y . The grammar is essentially already grouped as required. Applying the
above transformation rule to both the X and Y productions yields:

S → aS | bX

X → Y XdX ′ | Y X ′

X ′ → XcX ′ | ǫ

Y → gY ′

Y ′ → eY ′ | fY ′ | ǫ

[Marking: 15 marks]

3

4. (a) Nǫ = {S,A,B}. A is nullable because A → ǫ is a production. B is nul-
lable because B → ǫ is a production. S is nullable because S → ABB is a
production and both A and B are nullable. C is not nullable because the
right-hand sides of all productions for C include one or more terminals (c or
ef), meaning it is clear ǫ cannot be derived from C. For the same reasons as
C, D is not nullable. [Marking: 5 marks]

(b) Keeping in mind which non-terminals are nullable, we obtain the following
equations:

first(A) = first(aA) ∪ first(ǫ)

= {a} ∪ ∅

= {a}

first(B) = first(BCDb) ∪ first(ǫ)

= (first(B) ∪ first(CDb)) ∪ ∅

= first(B) ∪ (first(C) ∪ ∅)

= first(B) ∪ first(C)

first(C) = first(cD) ∪ first(ef)

= {c} ∪ {e}

= {c, e}

first(D) = first(dC) ∪ first(fe)

= {d} ∪ {f}

= {d, f}

The solutions of the equations for first(A), first(C), and first(D) are manifest.
Recall that an equation of the form X = X ∪ Y , in the absence of other
constraints on X , simplifies to X = Y when we are looking for the smallest
solution. The equation for first(B) has the form X = X ∪ Y and there
are no other constraints on first(B). The smallest solution is thus given by
first(B) = first(C) = {c, e}.

Now we can turn to setting up and solving the equation for first(S), again
keeping in mind which non-termainals are nullable:

first(S) = first(AAS) ∪ first(ABB)

= (first(A) ∪ first(A) ∪ first(S)) ∪ (first(A) ∪ first(B) ∪ first(B))

= first(S) ∪ first(A) ∪ first(B)

= first(S) ∪ {a} ∪ {c, e}

= first(S) ∪ {a, c, e}

Again, an equatiom of the form X = X ∪ Y , with no further constraints on
first(S), meaning that the smallest solution is simply first(S) = {a, c, e}.

[Marking: 10 marks]

(c) Note: very detailed account below for clarity. It is sufficient to just state the
constraints according to the definitions and then simplify.

Constraints for follow(S). Note that S only appear in one RHS, of the pro-
duction S → AAS, where it appears last; i.e. the string following S is just ǫ,
and by definition we have nullable(ǫ). The constraints for S are thus:

{$} ⊆ follow(S)

first(ǫ) ⊆ follow(S)

follow(S) ⊆ follow(S)

4

Constraints for follow(A) follow from the productions where A occurs in the
RHS, i.e.

S → AAS

S → ABB

A → aA

(note: nullable(S), nullable(B), and nullable(ǫ)):

first(A) ⊆ follow(A)

follow(S) ⊆ follow(A)

first(S) ⊆ follow(A)

follow(S) ⊆ follow(A)

first(B) ⊆ follow(A)

follow(S) ⊆ follow(A)

first(ǫ) ⊆ follow(A)

follow(A) ⊆ follow(A)

Constraints for follow(B) follow from the productions where B occurs in the
RHS, i.e.

S → ABB

B → BCDb

(note: nullable(B), nullable(ǫ), ¬nullable(CDb)):

first(B) ⊆ follow(B)

follow(S) ⊆ follow(B)

first(ǫ) ⊆ follow(B)

follow(S) ⊆ follow(B)

first(CDb) ⊆ follow(B)

Constraints for follow(C) follow from the productions where C occurs in the
RHS, i.e.

B → BCDb

D → dC

(note: ¬nullable(Db) and nullable(ǫ)):

first(Db) ⊆ follow(C)

first(ǫ) ⊆ follow(C)

follow(D) ⊆ follow(C)

Constraints for follow(D) follow from the productions where D occurs in the
RHS, i.e.

B → BCDb

C → cD

(note: ¬nullable(b) and nullable(ǫ)):

first(b) ⊆ follow(D)

first(ǫ) ⊆ follow(D)

follow(C) ⊆ follow(D)

5

Using

first(ǫ) = ∅

first(S) = {a, c, e}

first(A) = {a}

first(B) = {c, e}

first(CDb) = first(C) ∪ ∅

= {c, e} ∪ ∅ = {c, e}

first(Db) = first(D) ∪ emptyset

= {d, f} ∪ ∅ = {d, f}

first(b) = {b}

and eliminating trivial constraints (of the types ∅ ⊆ X and X ⊆ X) yields:

{$} ⊆ follow(S)

{a} ⊆ follow(A)

follow(S) ⊆ follow(A)

{a, c, e} ⊆ follow(A)

{c, e} ⊆ follow(A)

{c, e} ⊆ follow(B)

follow(S) ⊆ follow(B)

{c, e} ⊆ follow(B)

{d, f} ⊆ follow(C)

follow(D) ⊆ follow(C)

{b} ⊆ follow(D)

follow(C) ⊆ follow(D)

Noting that follow(C) ⊆ follow(D) ∧ follow(D) ⊆ follow(C) implies follow(C) =
follow(D), this is equivalent to:

{$} ⊆ follow(S)

{a} ∪ follow(S) ∪ {a, c, e} ∪ {c, e} ⊆ follow(A)

{c, e} ∪ follow(S) ∪ {c, e} ⊆ follow(B)

{d, f} ∪ {b} ⊆ follow(C) = follow(D)

which can be further simplified to the final constraints:

{$} ⊆ follow(S)

{a, c, e} ∪ follow(S) ⊆ follow(A)

{c, e} ∪ follow(S) ⊆ follow(B)

{b, d, f} ⊆ follow(C) = follow(D)

[Marking: 15 marks]

(d) The smallest set satisfying the constraint for follow(S) is obviously just {$}.
Substituting this into the remaining constraints makes the smallest sets sat-

6

isfying those obvious too. Thus:

follow(S) = {$}

follow(A) = {a, c, e} ∪ {$} = {a, c, e, $}

follow(B) = {c, e} ∪ {$} = {c, e, $}

follow(C) = {b, d, f}

follow(D) = {b, d, f}

[Marking: 5 marks]

7

