
Languages and Computation

(COMP2012/G52LAC)

Lecture notes

Spring 2019

Thorsten Altenkirch, Venanzio Capretta, and Henrik Nilsson

March 1, 2019

Contents

1 Introduction 4
1.1 Example: Valid Java programs . . . . . . . . . . . . . . . . . . . 4
1.2 Example: The halting problem . . . . . . . . . . . . . . . . . . . 5
1.3 Example: The λ-calculus . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 P versus NP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Formal Languages 9
2.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Finite Automata 13
3.1 Deterministic finite automata . . . . . . . . . . . . . . . . . . . . 13

3.1.1 What is a DFA? . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 The language of a DFA . . . . . . . . . . . . . . . . . . . 15

3.2 Nondeterministic finite automata . . . . . . . . . . . . . . . . . . 16
3.2.1 What is an NFA? . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 The language accepted by an NFA . . . . . . . . . . . . . 18
3.2.3 The subset construction . . . . . . . . . . . . . . . . . . . 21
3.2.4 Correctness of the subset construction . . . . . . . . . . . 25

3.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Regular Expressions 29
4.1 What are regular expressions? . . . . . . . . . . . . . . . . . . . . 29
4.2 The meaning of regular expressions . . . . . . . . . . . . . . . . . 30
4.3 Algebraic laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 Translating regular expressions into NFAs . . . . . . . . . . . . . 34
4.5 Summing up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Minimization of Finite Automata 46
5.1 The table-filling algorithm . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Example of DFA minimization using the table-filling algorithm . 47

1



6 Disproving Regularity 50
6.1 The pumping lemma . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2 Applying the pumping lemma . . . . . . . . . . . . . . . . . . . . 51
6.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7 Context-Free Grammars 53
7.1 What are context-free grammars? . . . . . . . . . . . . . . . . . . 53
7.2 The meaning of context-free grammars . . . . . . . . . . . . . . . 55
7.3 The relation between regular and context-free languages . . . . . 56
7.4 Derivation trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.5 Ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.6 Applications of context-free grammars . . . . . . . . . . . . . . . 62
7.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8 Transformations of context-free grammars 66
8.1 Equivalence of context-free grammars . . . . . . . . . . . . . . . 66
8.2 Elimination of uselsss productions . . . . . . . . . . . . . . . . . 66
8.3 Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.4 Left factoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.5 Disambiguating context-free grammars . . . . . . . . . . . . . . . 68
8.6 Elimination of left recursion . . . . . . . . . . . . . . . . . . . . . 70
8.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

9 Pushdown Automata 75
9.1 What is a pushdown automaton? . . . . . . . . . . . . . . . . . . 75
9.2 How does a PDA work? . . . . . . . . . . . . . . . . . . . . . . . 76
9.3 The language of a PDA . . . . . . . . . . . . . . . . . . . . . . . 77
9.4 Deterministic PDAs . . . . . . . . . . . . . . . . . . . . . . . . . 78
9.5 Context-free grammars and push-down automata . . . . . . . . . 79

10 Recursive-Descent Parsing 81
10.1 What is parsing? . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
10.2 Parsing strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
10.3 Basics of recursive-descent parsing . . . . . . . . . . . . . . . . . 82
10.4 Handling choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
10.5 Recursive-descent parsing and left-recursion . . . . . . . . . . . . 88
10.6 Predictive parsing . . . . . . . . . . . . . . . . . . . . . . . . . . 88

10.6.1 First and follow sets . . . . . . . . . . . . . . . . . . . . . 90
10.6.2 LL(1) grammars . . . . . . . . . . . . . . . . . . . . . . . 90
10.6.3 Nullable nonterminals . . . . . . . . . . . . . . . . . . . . 91
10.6.4 Computing first sets . . . . . . . . . . . . . . . . . . . . . 92
10.6.5 Computing follow sets . . . . . . . . . . . . . . . . . . . . 93
10.6.6 Implementing a predictive parser . . . . . . . . . . . . . . 94
10.6.7 LL(1), left-recursion, and ambiguity . . . . . . . . . . . . 96
10.6.8 Satisfying the LL(1) conditions . . . . . . . . . . . . . . . 98

10.7 Beyond hand-written parsers: use parser generators . . . . . . . . 99
10.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

2



11 Turing Machines 102
11.1 What is a Turing machine? . . . . . . . . . . . . . . . . . . . . . 102
11.2 Grammars and context-sensitivity . . . . . . . . . . . . . . . . . 105
11.3 The halting problem . . . . . . . . . . . . . . . . . . . . . . . . . 106
11.4 Recursive and recursively enumerable sets . . . . . . . . . . . . . 107
11.5 Back to Chomsky . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
11.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

12 λ-Calculus 113
12.1 Syntax of λ-calculus . . . . . . . . . . . . . . . . . . . . . . . . . 113
12.2 Church numerals . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
12.3 Other data structures . . . . . . . . . . . . . . . . . . . . . . . . 117
12.4 Confluence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
12.5 Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
12.6 The universality of λ-calculus . . . . . . . . . . . . . . . . . . . . 120
12.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

13 Algorithmic Complexity 122
13.1 The Satisfiability Problem . . . . . . . . . . . . . . . . . . . . . . 123
13.2 Time Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
13.3 NP-completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
13.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A Model Answers to Exercises 128

List of exercises

Exercise 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Exercise 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Exercise 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Exercise 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Exercise 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Exercise 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Exercise 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Exercise 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Exercise 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Exercise 3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Exercise 3.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Exercise 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Exercise 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Exercise 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Exercise 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Exercise 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Exercise 7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Exercise 7.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Exercise 7.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Exercise 7.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Exercise 8.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Exercise 8.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3



Exercise 8.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Exercise 10.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Exercise 10.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Exercise 11.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Exercise 11.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Exercise 11.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Exercise 12.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Exercise 12.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Exercise 13.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Exercise 13.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Exercise 13.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

1 Introduction

This module is about two fundamental notions in computer science, languages
and computation, and how they are related. Specific topics include:

• Automata Theory

• Formal Languages

• Models of Computation

• Complexity Theory

The module starts with an investigation of classes of formal languages and
related abstract machines, considers practical uses of this theory such as parsing,
and finishes with a discussion on what computation is, what can and cannot be
computed at all, and what can be computed efficiently, including famous results
such as the Halting Problem and open problems such as P versus NP.

COMP2012/G52LACbuilds on COMP1001/G51MSCMathematics for Com-
puter Scientists. It feeds into modules such as COMP3012/G53CMP Compilers,
COMP3001/G53COMComputability, and COMP4001/G54FOPMathematical
Foundations of Programming. To give you a more concrete idea about what you
will encounter in this module, as well as the broader significance of the module
and a bit of historical context, we will illustrate with some examples.

1.1 Example: Valid Java programs

Consider the following Java fragment:

class Foo {
int n;

void printNSqrd() {
System.out.println(n * n);

}
}

As written using a text editor or as stored in a file, it is just a string of characters.
But not any string is a valid Java program. For example, Java uses specific
keywords, have rules for what identifiers must look like, and requires proper
nesting, such as a definition of a method inside a definition of a class.

This raises a number of questions:

4



• How to describe the set of strings that are valid Java programs?

• Given a string, how to determine if it is a valid Java program or not?

• How to recover the structure of a Java program from a “flat” string?

To answer such questions, we will study regular expressions and grammars to
give precise descriptions of languages, and various kinds of automata to decide if
a string belongs to a language or not. We will also consider how to systematically
derive programs that efficiently answer this type of questions, drawing directly
from the theory. Such programs are key parts of compilers, web browsers and
web servers, and in fact of any program that uses structured text in one way or
another.

A little bit of history. Context-free grammars were invented by American
linguist, philosopher, and cognitive scientist Noam Chomsky (1928–) in an at-
tempt to describe natural languages formally. He also introduced the Chomsky
Hierarchy which classifies grammars and languages and their descriptive power:

languages

finite automata

pushdown automata

Type 2 or context free

   
 

Type 3 or
regular languages

Type 1 or context sensitive 
languages

Decidable languages
Turing machines

Type 0 or recursively enumerable languages

All languages

1.2 Example: The halting problem

Consider the following program. Does it terminate for all values of n ≥ 1?

while (n > 1) {
if even(n) {

n = n / 2;

} else {
n = n * 3 + 1;

}
}

This is not as easy to answer as it might first seem. Say we start with n = 7,
for example:

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1

5



Note how the numbers both increase and decrease in a way that is very hard to
describe, which is exactly why it is so hard to analyse this program. The sequence
involved is known as the hailstone sequence, and Collatz conjecture says that the
number 1 will always be reached. And, in fact, for all numbers that have been
tried (all numbers up to 260!), the sequence does indeed terminate. But so far,
no one has been able to prove that it always will! The famous mathematician
Paul Erdős even said: “Mathematics may not be ready for such problems.” (See
Collatz conjecture, Wikipedia.)

The following important decidability result should then perhaps not come
as a total surprise:

It is impossible to write a program that decides if another, arbitrary,
program terminates (halts) or not.

This is known as the Halting Problem and it is thus one example of an undecid-
able problem: the answer cannot be determined mechanically in general1.

The undecidability of the Halting Problem was first proved by British math-
ematician, logician, and computer scientist Alan Turing (1912–1954):

Turing proved this result using Turing Machines, an abstract model of compu-
tation that he introduced in 1936 to give a precise definition of what problems
are “effectively calculable” (can be solved mechanically). Turing was further in-
strumental in the success of British code breaking efforts during World War II
and is also famous for the Turing test to decide if a machine exhibits intelligent
behaviour equivalent to, or indistinguishable from, that of a human. Andrew
Hodges has written a very good biography of Turing: Alan Turing: the Enigma
(http://www.turing.org.uk/turing/).

1 This does not mean that it is impossible to compute the answer for every instance of
such a problem. On the contrary, in specific cases, the answer can often be computed very
easily, and programs that attempt to solve undecidable problems can be very useful. But if
we do write such a program, we must necessarily be prepared to give up one way or another
with a “don’t know” answer.

6



1.3 Example: The λ-calculus

The λ-calculus is a theory of pure functions. It is very simple, having only two
constructs: definition and application of functions. The folloing is an example
of a λ-calculus term:

(λx.x)(λy.y)

Like Turing machines, the λ-calculus is a universal model of computation. It
was introduced by American mathematician and logician Alonzo Church (1903–
1995), also in 1936, a little earlier than Turing’s machine:

Alan Turing subsequently became a PhD student of Alonzo Church. They proved
that Turing machines and the λ-calculus are equivalent in terms of computa-
tional expressiveness. In fact, all proposed universal models of computation to
date have proved to be equivalent in that sense. This is captured by the Church-
Turing thesis :

What is effectively calculable is exactly what can be computed by a
Turing machine.

Functional programming languages, like Haskell, and many proof assistants
implement (variations of) the λ-calculus. This is thus an example of a theory
with very direct and practical applications.

1.4 P versus NP

Here is a seemingly innocuous question:

Can every problem whose solution can be checked quickly by a com-
puter also be solved quickly by a computer?”

“Quickly” here means in time proportional to a polynomial in the size of the
problem. Whether or not this is ths case is known as the P versus NP problem

7



and it is likely the most famous open problem in computer science, dating back
to the 1950s. Here, “P” refers to the class of problems that can be solved in
polynomial time, while “NP” refers to problems that can be solved in nonde-
terministic polynomial time, and the question is thus whether these two classes
of problems actually are the same, or P = NP.

There is an abundance of important problems where solutions can be checked
quickly, but where the best known algorithm for finding a solution is exponential
in the size of the problem.

As an example, here is one, the Subset Sum Problem: Does some nonempty
subset of given set of integers sum to zero? For example, given {3,−2, 8,−5, 4, 9},
the nonempty subset {−5,−2, 3, 4} sums to 0.

It is easy to check a proposed solution: just add all the numbers. If the initial
set contains n integers, any proposed solution (being a subset) contains at most
n integers, so we can sum all the elements with at most n additions meaning
the total time taken is proportional to n (assuming addition is a constant time
operation).

However, for finding a solution, no better way is known than essentially
checking each possible subset one after another. As there are 2n subsets of a set
with n elements, this means finding a solution takes exponential time.

Whether or not there is a better way to solve the Subset Sum Problem
might not seem particularly important, but if it were the case that P = NP,
then this would have monumental practical implications. For example, public
key cryptography, on which pretty much all secure Internet communication, such
as HTTPS, hinges, would no longer provide adequate security, and the entire
Internet security infrastructure would have to be redesigned and reimplemented.
The question here is if it is possible to quickly find the prime factors of (very)
large numbers. As long as that is not the case, public key cryptography is
considered secure.

8



2 Formal Languages

In this course we will use the terms language and word in a different way than
in everyday language:

• A language is a set of words.

• A word is a sequence, or string, of symbols.

We will write ǫ for the empty word; i.e., a sequence of length 0.
This leaves us with the question: what is a symbol? The answer is: anything,

but it has to come from an alphabet Σ that is a finite set. A common (and
important) instance is Σ = {0, 1}. Note that ǫ will never be a symbol to avoid
confusion.

Mathematically we say: Given an alphabet Σ we define the set Σ∗ as set of
words (or sequences) over Σ: the empty word ǫ ∈ Σ∗ and given a symbol x ∈ Σ
and a word w ∈ Σ∗ we can form a new word xw ∈ Σ∗. These are all the ways
elements on Σ∗ can be constructed (this is called an inductive definition). This
unary ∗-operator is known as the Kleene star (or Kleene operator or Kleene
closure).

With Σ = {0, 1}, typical elements of Σ∗ are 0010, 00000000,ǫ. Note, that we
only write ǫ if it appears on its own, instead of 00ǫ we just write 00.

Note further that Σ∗ by definition is always nonempty as the empty word ǫ
belongs to Σ∗ for any alphabet Σ, including Σ = ∅. Moreover, for any nonempty
alphabet Σ, Σ∗ is an infinite set.

It is important to realise that although there are infinitely many words over
a nonempty alphabet Σ, each word has a finite length. At first this may seem
strange: how can it be that all elements of a set with infinitely many elements
can be finite? A good way to think of an infinite set is as a process that can
generate a new element whenever we need one, as many times as we like2. But
each such element can obviously be of finite size as we at any point in time
will only have asked for finitely many elements. Conversely, if we make a set
containing a single (notionally) “infinite” element, such as a number ∞ larger
than any number except itself, or an infinitely long string, that does not make
the set itself infinite: it would still contain exactly one element.

We can now define the notion of a language L over an alphabet Σ precisely:
L ⊆ Σ∗ or equivalently L ∈ P(Σ∗)3.

Here are some informal examples of languages:

• The set {0010, 00000000, ǫ} is a language over Σ = {0, 1}. This is an
example of a finite language.

• The set of words with odd length over Σ = {1}.

• The set of words that contain the same number of 0s and 1s is a language
over Σ = {0, 1}.

2 Indeed, this is exactly how infinite data structures, such as infinite lists, are realised in
lazy languages like Haskell.

3 Given a set A, P(A) is the powerset of A; that is, the set of all possible subsets of A. For
example, if A = {a, b}, then P(A) = { ∅, {a}, {b}, {a, b} }. The number of elements |A| of a
set A, its cardinality, and the number of elements in its power set are related by |P(A)| = 2|A|.
Hence powerset.

9



• The set of words that contain the same number of 0s and 1s modulo 2
(i.e., both are even or odd) is a language over Σ = {0, 1}.

• The set of palindromes using the English alphabet, e.g. words that read
the same forwards and backwards like abba. This is a language over
{a, b, . . . , z}.

• The set of correct Java programs. This is a language over the set of
UNICODE “characters” (which correspond to numbers between 0 and
17 · 216 − 1, less some invalid subranges, 1112062 valid encodings in all).

• The set of programs that, if executed on a Windows machine, prints the
text “Hello World!” in a window. This is a language over Σ = {0, 1}.

Note the distinction between ǫ, ∅, and {ǫ}!

• ǫ denotes the empty word, a sequence of symbols of length 0.

• ∅ denotes the empty set, a set with no elements.

• {ǫ} is a set with exactly one element: the empty word.

In particular, note that ǫ is a different type (a sequence) from ∅ and {ǫ} (that
are both sets).

An important operation on Σ∗ is concatenation. This is denoted by juxtapo-
sitioning (or, if you prefer, by an “invisible operator”): given u, v ∈ Σ∗ we can
construct a new word uv ∈ Σ∗ simply by concatenating the two words. We can
define this operation by primitive recursion:

ǫv = v

(xu)v = x(uv)

Concatenation is associative and has unit ǫ:

u(vw) = (uv)w

ǫu = u = uǫ

where u, v, w are words. We use exponent notation to denote concatenation of
a word with itself. For example, u2 = uu, u3 = uuu, and so on. By definition,
u1 = u and u0 = ǫ, the unit of concatenation. Thus we can simplify repeated
concatenation using familiar-looking laws. For example: u1u0u2 = u3.

Concatenation of words is extended to concatenation of languages by:

MN = {uv |u ∈ M ∧ v ∈ N}

For example:

M = {ǫ, a, aa}

N = {b, c}

MN = {uv |u ∈ {ǫ, a, aa} ∧ v ∈ {b, c}}

= {ǫb, ǫc, ab, ac, aab, aac}

= {b, c, ab, ac, aab, aac}

Some important properties of language concatenation are:

10



• Concatenation of languages is associative:

L(MN) = (LM)N

• Concatenation of languages has zero ∅:

L∅ = ∅ = ∅L

• Concatenation of languages has unit {ǫ}:

L{ǫ} = L = {ǫ}L

• Concatenation distributes through set union:

L(M ∪N) = LM ∪ LN

(L ∪M)N = LN ∪MN

Note that concatenation does not distribute through intersection! Coun-
terexample. Let L = {ǫ, a}, M = {ǫ}, N = {a}. Then:

L(M ∩N) = L∅ = ∅
LM ∩ LN = {ǫ, a} ∩ {a, aa} = {a}

Exponent notation is used to denote iterated language concatenation: L1 = L,
L2 = LL, L3 = LLL, and so on. By definition, L0 = {ǫ} (for any language,
including ∅), which is the unit for language concatenation (just as u0 = ǫ is the
unit for concatenation of words).

The Kleene star can also be applied to languages. This intuitively means
language concatenation iterated 0 or more times:

L∗ =
∞
⋃

n=0

Ln

Note that ǫ ∈ L∗ for any language L, including L = ∅, the empty language. As
an example, if L = {a, ab}, then L∗ = {ǫ, a, ab, aab, aba, aaab, aaba, . . . }.

Alternatively (and more abstractly), L∗ can be described as the least lan-
guage (with respect to ⊆) that contains L and the empty word, ǫ, and is closed
under concatenation:

u ∈ L∗ ∧ v ∈ L∗ =⇒ uv ∈ L∗

Note the subtle difference between using the Kleene star on an alphabet Σ,
a set of symbols, as in Σ∗, and on using the Kleene star on a language L ⊆ Σ∗,
a set of words. While the result in both cases is a set of words, the types of the
arguments to the two variants of the Kleene star operation differ.

2.1 Exercises

Exercise 2.1

Let the alphabet Σ = {3, 5, 7, 9}, and let the language L = {w |w ∈ Σ∗, 1 ≤
|w| ≤ 2}. (If w is a word, |w| denotes the length of that word. If X is a finite
set, like an alphabet or finite language, |X | denotes the number of elements in
that set, its cardinality.) Answer the following questions:

11



1. Describe L in plain English.

2. Enumerate all the words in L.

3. In general, for an arbitrary alphabet Σ1 and 0 ≤ m ≤ n, how many words
are there in the language L1 = {w |w ∈ Σ∗

1,m ≤ |w| ≤ n}? That is, write
down an expression for |L1|.

4. How many words would there be in L1 if Σ1 = Σ, m = 3, and n = 7?

Exercise 2.2

Let the alphabet Σ = {a, b, c} and let L1 = {ǫ, b, ac} and L2 = {a, b, ca} be
two languages over Σ. Enumerate the words in the following languages, showing
your calculations in some detail:

1. L3 = L1 ∪ L2

2. L4 = L1{ǫ}(L2 ∩ L1)

3. L5 = L3∅L4

Exercise 2.3

Let the alphabet Σ = {a, b, c} and let L1 = {ǫ, b, bb} and L2 = {a, ab, abc} be
two languages over Σ. Enumerate the words in the following languages, showing
your calculations in some detail:

1. L3 = L1 ∩ L2

2. L4 = (L2{ǫ}L1) ∩ Σ∗

3. L5 = L3∅ ∩ L4

Exercise 2.4

Let the alphabet Σ = {a, b, c}. Enumerate the words in

L = {w |w ∈ {ǫ, a, b, bc}∗, |w| ≤ 3}

12



3 Finite Automata

Finite automata correspond to a computer with a fixed finite amount of mem-
ory4. We will introduce deterministic finite automata (DFA) first and then move
to nondeterministic finite automata (NFA). An automaton will accept certain
words (sequences of symbols of a given alphabet Σ) and reject others. The set
of accepted words is called the language of the automaton. We will show that
the class of languages that are accepted by DFAs and NFAs is the same.

3.1 Deterministic finite automata

3.1.1 What is a DFA?

A deterministic finite automaton (DFA) A = (Q,Σ, δ, q0, F ) is given by:

1. A finite set of states Q

2. A finite set of input symbols, the alphabet, Σ

3. A transition function δ ∈ Q× Σ → Q

4. An initial state q0 ∈ Q

5. A set of final states F ⊆ Q

The initial states are sometimes called start states, and the final states are
sometimes called accepting states.

As an example consider the following automaton

D = ({q0, q1, q2}, {0, 1}, δD, q0, {q2})

where

δD = {((q0, 0), q1), ((q0, 1), q0), ((q1, 0), q1), ((q1, 1), q2), ((q2, 0), q2), ((q2, 1), q2)}

if we view a function as a set of argument-result pairs. Alternatively, we can
define it case by case:

δD(q0, 0) = q1

δD(q0, 1) = q0

δD(q1, 0) = q1

δD(q1, 1) = q2

δD(q2, 0) = q2

δD(q2, 1) = q2

A DFA may be more conveniently represented by a transition table. The
transition table for the DFA D is:

δD 0 1

→ q0 q1 q0
q1 q1 q2

∗ q2 q2 q2

4 However, that does not mean that finite automata are a good model of general purpose
computers. A computer with n bits of memory has 2n possible states. That is an absolutely
enormous number even for very modest memory sizes, say 1024 bits or more, meaning that
describing a computer using finite automata quickly becomes infeasible. We will encounter a
better model of computers later, the Turing Machines.

13



A transition table represents the transition function δ of a DFA; i.e., the value
of δ(q, x) is given by the row labelled q in the column labelled x. In addition,
the initial state is identified by putting an arrow → to the left of it, and all
final states are similarly identified by a star ∗. The inclusion of this additional
information makes a transition table a self-contained representation of a DFA.

Note that the initial state also can be final (accepting). For example, for a
variation D′ of the DFA D where q0 also is final:

δD′ 0 1

→ ∗ q0 q1 q0
q1 q1 q2

∗ q2 q2 q2

Another way to represent a DFA is through a transition diagram. The tran-
sition diagram for the DFA D is:

q0 q1 q2

1

0

0

1

0, 1

The initial state is identified by an incoming arrow. Final states are drawn with
a double outline. If δ(q, x) = q′ then there is an arrow from state q to q′ that is
labelled x. For another example, here is the transition diagram for the DFA D′:

q0 q1 q2

1

0

0

1

0, 1

An alternative to the double outline for a final state is to use an outgoing
arrow. Using that convention, the transition diagram for the DFA D is:

q0 q1 q2

1

0

0

1

0, 1

Here is an example of a larger DFA over the alphabet Σ = {a, b, c} repre-
sented by a transition diagram:

A

B

C

D

E

F G

a

c

b

c

c

a

b

a

b

abb

c
a

c

a

b

c

c

a

b

14



The states are named by capital letters this time for a bit of variation: Q =
{A,B,C,D,E, F,G}. While it is common to use symbols qi, i ∈ N to name
states, we can pick any names we like. Another common choice is to use natural
numbers; i.e., Q ⊂ N ∧Q is finite.

The representation of the above DFA as a transition table is:

δ a b c

→ A B C A
B B D A
C E C A

∗ D E C F
∗ E B D F

F B C G
∗ G B C F

3.1.2 The language of a DFA

We will now discuss how a DFA accepts or rejects words over its alphabet of
input symbols. The set of words accepted by a DFA A is called the language
L(A) of the DFA. Thus, for a DFA A with alphabet Σ, L(A) ⊆ Σ∗.

To determine whether a word w ∈ L(A), the machine starts in its initial
state. Taking the DFA D above as an example, it would start in state q0. We
indicate the state of a DFA by underlining the state name:

q0 q1 q2

1

0

0

1

0, 1

Then, whenever an input symbol is read from w, the machine transitions to
a new state by following the edge labelled with this symbol. Once all symbols
in the input word w have been read, the word is accepted if the state is final,
meaning w ∈ L(A), otherwise the word is rejected, meaning w /∈ L(A).

To continue with the example, suppose w = 101. The machine D would
thus first read 1 and transition to a new state by following the edge labelled 1.
As that edge in this case forms a loop back to state q0, the machine D would
transition back into state q0:

q0 q1 q2

1

0

0

1

0, 1

The machine would then read 0 and transition to state q1 by following the edge
labelled 0. We indicate this by moving the mark along that edge to q1:

q0 q1 q2

1

0

0

1

0, 1

15



Finally, the machine would read the last 1 in the input word, moving to q2:

q0 q1 q2

1

0

0

1

0, 1

As q2 is a final state, the DFAD accepts the wordw = 101, meaning 101 ∈ L(D).
In the same way, we can determine that 0 /∈ L(D), 110 /∈ L(D), but 011 ∈ L(D).
Verify this. Indeed, a little bit of thought reveals that

L(D) = {w | w contains the substring 01}

To make the notion of the language of a DFA precise, we now give a formal
definition of L(A). First we define the extended transition function δ̂ ∈ Q×Σ∗ →

Q. Intuitively, δ̂(q, w) = q′ if the machine starting from state q ends up in state

q′ when reading the word w. Formally, δ̂ is defined by primitive recursion:

δ̂(q, ǫ) = q (1)

δ̂(q, xw) = δ̂(δ(q, x), w) (2)

where x ∈ Σ and w ∈ Σ∗. Thus, xw stands for a nonempty word the first symbol
of which is x and the rest of which is w. For example, if xw = 010, then x = 0
and w = 10. Note that w may be empty; e.g., if xw = 0, then x = 0 and w = ǫ.

As an example, we calculate δ̂D(q0, 101) = q1:

δ̂D(q0, 101) = δ̂D(δD(q0, 1), 01) by (2)

= δ̂D(q0, 01) because δD(q0, 1) = q0
= δ̂D(δD(q0, 0), 1) by (2)

= δ̂D(q1, 1) because δD(q0, 0) = q1
= δ̂D(δD(q1, 1), ǫ) by (2)

= δ̂D(q2, ǫ) because δD(q1, 1) = q2
= q2 by (1)

Using the extended transition function δ̂, we define the language L(A) of a
DFA A formally:

L(A) = {w | δ̂(q0, w) ∈ F}

Returning to our example, we thus have that 101 ∈ L(D) because δ̂D(q0, 101) =
q2 and q2 ∈ FD.

3.2 Nondeterministic finite automata

3.2.1 What is an NFA?

Nondeterministic finite automata (NFA) have transition functions that map a
given state and an input symbol to zero or more successor states. We can think
of this as the machine having a “choice” whenever there are two or more possible
transitions from a state on an input symbol. In this presentation, we will further

16



allow an NFA to have more than one initial state5. Again, we can think of this
as the machine having a “choice” of where to start. An NFA accepts a word w
if there is at least one possible way to get from one of the initial states to one
of the final states along edges labelled with the symbols of w in order.

It is important to note that although an NFA has a nondetermistic transition
function, it can always be determined whether or not a word belongs to its
language. Indeed, we shall see that every NFA can be translated into an DFA
that accepts the same language.

Here is an example of an NFA C that accepts all words over Σ = {0, 1} such
that the symbol before the last is 1:

q0 q1 q2

0, 1

1 0, 1

A nondeterministic finite automaton (NFA) A = (Q,Σ, δ, S, F ) is given by:

1. A finite set of states Q,

2. A finite set of input symbols, the alphabet, Σ,

3. A transition function δ ∈ Q× Σ → P(Q),

4. A set of initial states S ⊆ Q,

5. A set of final (or accepting) states F ⊆ Q.

Thus, in contrast to a DFA, an NFA may have many initial states, not just one,
and its transition function maps a state and an input symbol to a set of possible
successor states, not just a single state. As an example we have that

C = ({q0, q1, q2}, {0, 1}, δC, {q0}, {q2})

where δC is given by
δC 0 1

→ q0 {q0} {q0, q1}
q1 {q2} {q2}

∗ q2 ∅ ∅

Note that the entries in the table are sets of states, and that these sets may
be empty (∅), here exemplified by the entries for state q2. Again, the (in this
case only) initial state has been marked with → and the (in this case only) final
state marked with ∗ to make this a self-contained representation of the NFA.

Here is another example of an NFA, this time over the alphabet Σ = {a, b, c}
and with states Q = {0, 1, 2, 3, 4, 5} ⊂ N:

5 Note that we diverge slightly from the definition in the book [HMU01], which uses a
single initial state instead of a set of initial states. Permitting more than one initial state
allows us to avoid introducing ǫ-NFAs (see [HMU01], section 2.5).

17



0

1

2

3 4 5

a

b

b

a

a

b

c

a, b

a, b

c

c

The transition table for this NFA is:

δ a b c

→ 0 {1} {2} ∅
∗ 1 {4} {3, 4} ∅
∗ 2 {3, 4} {4} ∅

3 {1} {2} {3}
→ ∗ 4 ∅ ∅ {5}

5 ∅ ∅ {4}

Note that this NFA has multiple initial states, multiple final states, one initial
state that also is final, and that there in some cases are no possible successor
states and in other cases more than one.

3.2.2 The language accepted by an NFA

To see whether a word w ∈ Σ∗ is accepted by an NFA A, we have to consider
all possible states the machine could be in after having read a sequence of input
symbols. Initially, an NFA can be in any of its initial states. Each time an input
symbol is read, all successor states on the read symbol for each current possible
state become the new possible states. After having read a complete word w, if at
least one of the possible states is final (accepting), then that word is accepted,
meaning w ∈ L(A), otherwise it is rejected, meaning w /∈ L(A).

We will illustrate by showing how the NFA C rejects the word 100. We will
again mark the current states of the NFA by underlining the state names, but
this time there may be more than one marked state at once. Initially, as q0 is
the only initial state, we would have:

q0 q1 q2

0, 1

1 0, 1

Each time when we read a symbol we look at all the marked states. We
remove the old markers and put markers at all the states that are reachable via
an arrow marked with the current input symbol. This may include one or more
states that were marked previously. It may also be the case that no states are
reachable, in which case all marks are removed and the word rejected (as it no
longer is possible to reach any final states). In our example, after reading 1,
there would be two marked states as there are two arrows from q0 labelled 1:

q0 q1 q2

0, 1

1 0, 1

18



After reading 0, the next symbol in the word 100, there would still be two
marked states as the machine on input 0 can reach q0 from q0 and q2 from q1:

q0 q1 q2

0, 1

1 0, 1

Note that one of the marked states is a final (accepting) state, meaning the
word read so far (10) is accepted by the NFA.

However, there is one symbol left in our example word 100, and after having
read the final 0, the final state would no longer be marked because it cannot be
reached from any of the marked states:

q0 q1 q2

0, 1

1 0, 1

The NFA C thus rejects the word 100.
For another example, consider the NFA at the end of section 3.2.1. Convince

yourself that you understand how this NFA accepts the words ǫ, abcc, abcca,
and rejects abccaac. We illustrate by tracing its operation on the word bacac.
We start by marking all initial states. Then it is just a matter of systematically
exploring all possibilities:

0

1

2

3 4 5

a

b

b

a

a

b

c

a, b

a, b

c

c

After reading b:

0

1

2

3 4 5

a

b

b

a

a

b

c

a, b

a, b

c

c

After reading a:

0

1

2

3 4 5

a

b

b

a

a

b

c

a, b

a, b

c

c

19



After reading c:

0

1

2

3 4 5

a

b

b

a

a

b

c

a, b

a, b

c

c

After reading a:

0

1

2

3 4 5

a

b

b

a

a

b

c

a, b

a, b

c

c

After reading c:

0

1

2

3 4 5

a

b

b

a

a

b

c

a, b

a, b

c

c

The machine thus rejects bacac as no final state is marked. In fact, as there are
no marked states left at all, this shows that this NFA will reject all words that
start bacac. Can you find other such prefixes?

To define the extended transition function δ̂ for NFAs we use a generalisation
of the union operation ∪ on sets over a (finite) set of sets:

⋃

{A1, A2, . . . An} = A1 ∪A2 ∪ · · · ∪ An

In the special cases of the empty set of sets and a one element set of sets:

⋃

∅ = ∅
⋃

{A} = A

As an example

⋃

{{1}, {2, 3}, {1, 3}}= {1} ∪ {2, 3} ∪ {1, 3} = {1, 2, 3}

Alternatively, we can define
⋃

by comprehension, which also extends the
operation to infinite sets of sets (although we don’t need this here):

⋃

B = {x | ∃A ∈ B.x ∈ A}

20



We define δ̂ ∈ P(Q)×Σ∗ → P(Q) such that δ̂(P,w) is the set of states that
are reachable from one of the states in P on the word w:

δ̂(P, ǫ) = P (3)

δ̂(P, xw) = δ̂(
⋃

{δ(q, x) | q ∈ P}, w) (4)

where x ∈ Σ and w ∈ Σ∗. Intuitively, if P are the possible states, then δ̂(P,w)
are the possible states after having read a word w.

To illustrate, we calculate δ̂C(q0, 100):

δ̂C({q0}, 100) = δ̂C(
⋃

{δC(q, 1) | q ∈ {q0}}, 00) by (4)

= δ̂C(δC(q0, 1), 00)

= δ̂C({q0, q1}, 00)

= δ̂C(
⋃

{δC(q, 0) | q ∈ {q0, q1}}, 0) by (4)

= δ̂C(δC(q0, 0) ∪ δC(q1, 0), 0)

= δ̂C({q0} ∪ {q2}, 0)

= δ̂C({q0, q2}, 0)

= δ̂C(
⋃

{δC(q, 0) | q ∈ {q0, q2}}, ǫ) by (4)

= δ̂C(δC(q0, 0) ∪ δC(q2, 0), 0)

= δ̂C({q0} ∪ ∅, ǫ)
= {q0} by (3)

Of course, we already knew this from the worked example above illustrating
how the NFA C rejects 100. Make sure you see how the marked states after
each step coincides with the set of possible states in the calculation.

The language of an NFA can now be defined using δ̂:

L(A) = {w | δ̂(S,w) ∩ F 6= ∅}

Thus, 100 /∈ L(C) because

δ̂C(SC , 100) ∩ FC = δ̂C({q0}, 100) ∩ {q2} = {q0} ∩ {q2} = ∅

3.2.3 The subset construction

DFAs can be viewed as a special case of NFAs; i.e., those for which the there is
precisely one start state (S = {q0}) and for which the transition function always
returns singleton (one-element) sets (δ(q, x) = {q′} for all q ∈ Q and x ∈ Σ).

The opposite is also true, however: NFAs are really just DFAs “in disguise”.
We show this by for a given NFA systematically constructing an equivalent
DFA; i.e., a DFA that accepts the same language as the given NFA. NFAs are
thus no more powerful than DFAs; i.e., NFAs cannot describe more languages
than DFAs. However, in some cases, NFAs need a lot fewer states than the
corresponding DFA, and they may be easier to construct in the first place.

The subset construction: Given an NFA A = (Q,Σ, δ, S, F ) we construct the
equivalet DFA:

D(A) = (P(Q),Σ, δD(A), S, FD(A))

where

δD(A)(P, x) =
⋃

{δ(q, x) | q ∈ P} (5)

FD(A) = {P ∈ P(Q) | P ∩ F 6= ∅} (6)

21



The basic idea of this construction is to define a DFA whose states are sets
of NFA states. A set of possible NFA states thus becomes a single DFA state.
The DFA transition function is given by considering all reachable NFA states
for each of the current possible NFA states for each input symbol. The resulting
set of possible NFA states is again just a single DFA state. A DFA state is final
if that set that contains at least one final NFA state.

As an example, let us construct a DFA D(C) equivalent to C above:

D(C) = (P({q0, q1, q2}, {0, 1}, δD(C), {q0}, FD(C))

where δD(C) is given by:

δD(C) 0 1

∅ ∅ ∅
→ {q0} {q0} {q0, q1}

{q1} {q2} {q2}
∗ {q2} ∅ ∅

{q0, q1} {q0, q2} {q0, q1, q2}
∗ {q0, q2} {q0} {q0, q1}
∗ {q1, q2} {q2} {q2}
∗ {q0, q1, q2} {q0, q2} {q0, q1, q2}

and FD(C) (all the states marked with ∗ above) by:

FD(C) = {{q2}, {q0, q2}, {q1, q2}, {q0, q1, q2}}

The transition diagram is:

{q0} {q0, q1}

{q0, q2}

{q0, q1, q2}

{q1}

{q1, q2}

{q2} ∅

0

1

0

1

1

0

0

1
0, 1

0, 1
0, 1

0, 1

Accepting states have been marked by outgoing arrows.
Note that some of the states (∅, {q1}, {q2}, {q1, q2}) cannot be reached from

the initial state. This means that they can be omitted without changing the
language. We thus obtain the following automaton:

22



{q0} {q0, q1}

{q0, q2}

{q0, q1, q2}

0

1

0

1

1

0

0

1

It is possible to avoid having to perform calculations for states that cannot
be reached by carrying out the subset construction in a “demand driven” way.
The idea is to start from the initial DFA state, which is just the set of initial
NFA states S, and then only consider the DFA states (subsets of NFA states)
that appear during the course of the calculations. We illustrate this approach
by an example. Consider the following NFA N :

N = (QN = {q0, q1.q2, q3, q4}, ΣN = {0, 1, 2}, δN , SN = {q0}, FN = {q4})

where δN is given by the transition diagram:

q0

q1

q2

q3 q4

1 1, 2

00, 2

1 0, 2

Note that N has 5 states which means that the DFA D(N) has |P(QN )| = 25 =
32 states. However, as we will see, only a handful of those 32 states can actually
be reached from the initial state SN of D(N). We would thus waste quite a bit
of effort if we were to tabulate all of them.

We start from SN = {q0}, the set of start states of N, and we we compute
⋃

{δ(q, x) | q ∈ SN} for each x ∈ ΣN (equation (5)). In this case we get:

δD(N) 0 1 2

→ {q0} {q2} {q1, q3} ∅

Whenever we encounterq a state P ⊆ Q of D(N) that has not been considered
before, we add P to the table, marking any final states as such. In this case,
three new DFA states emerge ({q2}, {q1, q3}, and ∅), none of which is final:

δD(N) 0 1 2

→ {q0} {q2} {q1, q3} ∅
{q2}

{q1, q3}
∅

23



We then proceed to tabulate δD(N) for each of the new states for each x ∈ Σ,
adding any further new states to the table:

δD(N) 0 1 2

→ {q0} {q2} {q1, q3} ∅
{q2} {q0} ∅ {q0}

{q1, q3} ∅ ∪ {q4} = {q4} {q0} ∪ ∅ = {q0} {q0} ∪ {q4} = {q0, q4}
∅ ∅ ∅ ∅

Here, two new states emerge ({q4} and {q0, q4}), both final (because {q4}∩FN 6=
∅ and {q0, q4} ∩ FN 6= ∅):

δD(N) 0 1 2

→ {q0} {q2} {q1, q3} ∅
{q2} {q0} ∅ {q0}

{q1, q3} ∅ ∪ {q4} = {q4} {q0} ∪ ∅ = {q0} {q0} ∪ {q4} = {q0, q4}
∅ ∅ ∅ ∅

∗ {q4}
∗ {q0, q4}

This process is repeated until no new states emerges. Tabulating for the last
two new states reveals that no further states emerge in this case and we are thus
done, having only had to tabulate for 6 reachable out of the 32 DFA states:

δD(N) 0 1 2

→ {q0} {q2} {q1, q3} ∅
{q2} {q0} ∅ {q0}

{q1, q3} ∅ ∪ {q4} = {q4} {q0} ∪ ∅ = {q0} {q0} ∪ {q4} = {q0, q4}
∅ ∅ ∅ ∅

∗ {q4} ∅ ∅ ∅
∗ {q0, q4} {q2} ∪ ∅ = {q2} {q1, q3} ∪ ∅ = {q1, q3} ∅ ∪ ∅ = ∅

After double checking that we have not forgotten to mark any final states,
we can draw the transition diagram for D(N):

{q0}

{q2}

{q1, q3}

{q0, q4}

∅

{q4}

0

0, 2

1

1

2

1

0

0

2

2

1

0, 1, 2

0, 1, 2

Accepting states have been marked by outgoing arrows.

24



3.2.4 Correctness of the subset construction

We still have to convince ourselves that the subset construction actually works;
i.e., that for a given NFA A it really is the case that L(A) = L(D(A)). We
start by proving the following lemma, which says that the extended transition
functions coincide:

Lemma 3.1
δ̂D(A)(P,w) = δ̂A(P,w)

The result of both functions is a set of states of the NFA A: for the left-hand
side because the extended transition function on NFAs returns a set of states,
and for the right-hand side because the states of D(A) are sets of states of A.

Proof. We show this by induction over the length of the word w, |w|.

|w| = 0 Then w = ǫ and we have

δ̂D(A)(P, ǫ) = P by (1)

= δ̂A(P, ǫ) by (3)

|w| = n+ 1 Then w = xv with |v| = n.

δ̂D(A)(P, xv) = δ̂D(A)(δD(A)(P, x), v) by (2)

= δ̂A(δD(A)(P, x), v) ind.hyp.

= δ̂A(
⋃

{δA(q, x) | q ∈ P}, v) by (5)

= δ̂A(P, xv) by (4)

�

We can now use the lemma to show

Theorem 3.2
L(A) = L(D(A))

Proof.
w ∈ L(A)

⇐⇒ Definition of L(A) for NFAs

δ̂A(S,w) ∩ F 6= ∅
⇐⇒ Lemma 3.1

δ̂D(A)(S,w) ∩ F 6= ∅
⇐⇒ Definition of FD(A)

δ̂D(A)(S,w) ∈ FD(A)

⇐⇒ Definition of L(A) for DFAs
w ∈ LD(A)

�

Corollary 3.3 NFAs and DFAs recognise the same class of languages.

Proof. We have noticed that DFAs are just a special case of NFAs. On the
other hand the subset construction introduced above shows that for every NFA
we can find a DFA that recognises the same language. �

25



3.3 Exercises

Exercise 3.1

Let the alphabet ΣA = {a, b} and consider the following DFA A:

A = (QA = {0, 1, 2, 3}, ΣA, δA, q0 = 0, FA = {1, 2})

δA = {((0, a), 1), ((0, b), 2), ((1, a), 0), ((1, b), 3), ((2, a), 3), ((2, b), 0),

((3, a), 2), ((3, b), 1)}

(Here tuple notation is used to define the mapping of the transition function
δA; thus δA(0, a) = 1, δA(0, b) = 2, etc.) For the DFA A:

1. Draw its transition diagram.

2. Determine which of the following words belong to L(A):

1. ǫ

2. b

3. abaab

4. bababbba

3. Explicitly calculate δ̂A(0, abba).

4. Describe the language that the automaton recognises in English.

Exercise 3.2

Construct a DFA B over ΣB = {a, b, c, d} accepting all words where the
number of a’s is a multiple of 3. E.g. abdaca ∈ L(B) (3 a’s), but ddaabaa /∈ L(B)
(4 a’s, 4 is not a multiple of 3). Explain your construction. In particular, explain
why you chose to have the number of states you did, and explain the purpose
(or “meaning”) of each state.

Exercise 3.3

For the alphabet ΣC = {a, b, c}, construct a DFA C that recognises all words
where the number of a’s is odd and the number of b’s is divisible by 3. (There
may thus be any number of c’s.) For example, a ∈ L(C) (odd number of a’s,
the number of b’s is 0 which is divisible by 3), cbcbabc ∈ L(C) (odd number of
a’s, the number of b’s is 3 which is divisible by 3), but ǫ /∈ L(C) (even number
of a’s). Give a brief explanation of your construction, that clearly conveys the
key ideas, and give the transition diagram for your DFA as the final answer.

Exercise 3.4

For the alphabet ΣD = {0, 1, 2, 3}, construct a DFA D that precisely rec-
ognizes the words for which the arithmetic sum of the constituent symbols is
divisible by 5. For example, ǫ ∈ L(D) (there are no symbols in the empty string,
the sum is thus 0 which is divisible by 5), 0 ∈ L(D) (the sum is again 0), and
23131 ∈ L(D) (2 + 3 + 1 + 3 + 1 = 10 which is divisible by 5), but 133 /∈ L(D)
(1 + 3 + 3 = 7 which is not divisible by 5). Explain your construction.

26



Exercise 3.5

Consider the following NFA A over ΣA = {a, b, c}:

q0

q1 q2

q3 q4

a, b, c

a

b

c

a

c

b

1. Which of the following words are accepted by A and which are not?
(a) ǫ
(b) aaa
(c) bbc
(d) cbc
(e) abcacb

2. Construct a DFA D(A) equivalent to A using the “subset construction”.
Clearly show each step of your calculations in a transition table.
Hint: Some of the 32 states (i.e., the 2|QA| = 25 = 32 possible subsets of
QA) that would arise by applying the subset construction blindly to A
may be unreachable. You can therefore adopt a strategy where you only
consider states reachable from the initial state, SA.

3. Draw the transition diagram for D(A), ignoring unreachable states.

Exercise 3.6

Consider the following NFA B over ΣB = {0, 1}:

q0

q1

q2

q3 q4

1 1

00

1 0

27



1. Construct a DFA D(B) equivalent to B using the “subset construction”
and draw the transition diagram for D(B), ignoring unreachable states.
Clearly show each step of your calculations, e.g. in a transition table.

2. Carry out a sanity check on your resulting DFA D(B) as follows.
(a) Give two words over ΣB that are accepted by the NFA B and two

that are not. At least two of those should be four symbols long or
longer.

(b) Check that the DFAD(B) accepts the first two words and rejects the
other two, exactly like the NFA B. Justify your answer by listing the
sequence of states the DFA D(B) goes through for each word, and
stating whether or not the last state of that sequence is accepting.

Exercise 3.7

Consider the following NFA C over ΣC = {a, b, c}:

0 1

2

3

4

a

a

b, c b, c

b

b

b

a, c

a, c

a, c
1. Which of the following words are accepted by C and which are not?

(a) ǫ

(b) aa

(c) bb

(d) abcabc

(e) abcabca

2. Describe the language accepted by C in English.

3. Construct a DFA D(C) equivalent to C using the “subset construction”.
Clearly show each step of your calculations in a transition table. Indicate
which DFA state that is initial and which DFA states that are accepting.
Only consider states reachable from the initial state of the resulting DFA.

4. Draw the transition diagram for D(C).

28



4 Regular Expressions

To recapitulate, given an alphabet Σ, a language is a set of words L ⊆ Σ∗. So
far, we have described languages either using set theory (explicit enumeration
or set comprehensions) or through finite automata. The key benefits of using
automata is that they can describe infinite languages (unlike enumeration) and
that they directly give a mechanical way to determine language membership
(unlike comprehensions). However, from an automaton, it is not usually imme-
diately obvious what the language of that automaton is, and conversely, given
a high-level description of a language, it is often not obvious if it is possible to
describe the language using a finite automaton.

This section introduces regular expressions : a concise and much more direct
way to describe languages. Moreover, a regular expression can mechanically be
translated into a finite automaton that accept precisely the language described.
This opens up for many practical applications as languages can both be de-
scribed and recognised with ease. In fact, the opposite is also true: given a finite
automaton, it is possible to translate that into an equivalent regular expression.
Finite automata and regular expressions are thus interconvertible, meaning that
they describe the exact same class of languages: the regular languages or, ac-
cording to the Chomsky hierarchy, type 3 languages (section 1.1).

One application of regular expressions is to define patterns in programs
such as grep. Given a regular expression and a sequence of text lines as input,
grep returns those lines that match the regular expression, where matching
means that the line contains a substring that is in the language denoted by the
regular expression. The syntax used by grep for regular expressions is slightly
different from the one used here, and grep further supports some convenient
abbreviations. However, the underlying theory is exactly the same.

Other applications for regular expressions include defining the lexical syntax
of programming languages; i.e., what basic symbols, or tokens, such as identi-
fiers, keywords, numeric literals look like, as well other lexical aspects such as
white space and comments. The context-free syntax (see section 7) of a program-
ming language is then defined in terms of the tokens; i.e., the tokens effectively
constitute the alphabet of the language.

In fact, regular expression matching has so many applications that many
programming languages provide support for this capability, either built-in or
via libraries. Examples include Perl, PHP, Python, and Java. In the past, some
of those implementations were a bit naive as the regular expressions were not
compiled into finite automata. As a result, matching could be very slow, as
explained in the paper Regular Expression Matching Can Be Simple And Fast
(but is slow in Java, Perl, PHP, Python, Ruby, ...) [Cox07]. This paper is a
very good read, and once you have read these lecture notes up to and including
the present section, you will be able to appreciate it fully.

4.1 What are regular expressions?

Given an alphabet Σ (e.g., Σ = {a, b, c, . . . , z}), the syntax (i.e., form) of regular
expressions over Σ is defined inductively as follows:

1. ∅ is a regular expression.

2. ǫ is a regular expression.

29



3. For each x ∈ Σ, x is a regular expression6.

4. If E and F are regular expressions then E + F is a regular expression.

5. If E and F are regular expressions then EF (juxtapositioning; just one
after the other) is a regular expression.

6. If E is a regular expression then E∗ is a regular expression.

7. If E is a regular expression then (E) is a regular expression7.

These are all regular expressions.
To illustrate, here are some examples of regular expressions:

• ǫ

• hallo

• hallo+ hello

• h(a+ e)llo

• a∗b∗

• (ǫ+ b)(ab)∗(ǫ+ a)

As in arithmetic, there are conventions for reading regular expressions:

• ∗ binds stronger than juxtapositioning and +. For example, ab∗ is read
as a(b∗). Parentheses must be used to enforce the reading (ab)∗.

• Juxtapositioning binds stronger than +. For example, ab+ cd is read as
(ab) + (cd). Parentheses must be used to enforce the reading a(b+ c)d.

4.2 The meaning of regular expressions

In the previous section, we defined the syntax of regular expressions, their form.
We now proceed to define the semantics of regular expressions; i.e., what they
mean, what language a regular expression denotes.

To answer this question, first recall the definition of concatenation of con-
catenation of languages from section 2:

L1L2 = {uv |u ∈ L1 ∧ v ∈ L2}

We further recall the the Kleene star operation from the same section (2):

L∗ =

∞
⋃

n=0

Ln

To each regular expression E over Σ we assign a language L(E) ⊆ Σ∗ as its
meaning or semantics. We do this by induction over the definition of the syntax :

6 Note that the regular expression here is typeset in boldface, like a, to distinguish is from
the corresponding symbol, like a, typeset in a type-writer font in this and the next section (and
on occasion later on as well). Underlining is sometimes used as an alternative to boldface.

7 The parentheses have been typeset in boldface to emphasise that they are part of the
syntax of the regular expression.

30



1. L(∅) = ∅

2. L(ǫ) = {ǫ}

3. L(x) = {x} where x ∈ Σ.

4. L(E + F ) = L(E) ∪ L(F )

5. L(EF ) = L(E)L(F )

6. L(E∗) = L(E)∗

7. L((E)) = L(E)

Subtle points: In (1), the symbol ∅ is used both as a regular expression and
as the empty set (empty language). Similarly, ǫ in (2) is used in two ways: as
a regular expression and as the empty word. In (3), the regular expression is
typeset in boldface to distinguish it from the corresponding symbol. In (6), the
∗-operator is used both to construct a regular expression (part of the syntax)
and as an operation on languages. In (7), the inner parentheses on the left-hand
side, typeset in boldface, are part of the syntax of regular expressions.

Let us now calculate the meaning of each of the regular expression examples
from the previous section; i.e., the language denoted in each case:

• ǫ:

By (2):

L(ǫ) = {ǫ}

• hallo:

Consider L(ha). By (3):

L(h) = {h}

L(a) = {a}

Hence, by (5) and language concatenation (section 2):

L(ha) = L(h)L(a)

= {uv | u ∈ L(h) ∧ vL(a)

= {uv | u ∈ {h} ∧ v ∈ {a}}

= {ha}

Continuing the same reasoning we obtain:

L(hallo) = {hallo}

• hallo+ hello:

From above we know L(hallo) = {hallo} and L(hello) = {hello}. By
(4) we then get:

L(hallo+ hello) = {hallo} ∪ {hello}}

= {hallo, hello}

31



• h(a+ e)llo:

By (3) and (4) we know L(a+ e) = {a, e}. Thus, using (5) and language
concatenation, we obtain:

L(h(a+ e)llo) = L(h)L(a+ e)L(llo)

= {uvw | u ∈ L(h) ∧ v ∈ L(a+ e) ∧ w ∈ L(llo)}

= {uvw | u ∈ {h} ∧ v ∈ {a, e} ∧w ∈ {llo}}

= {hallo, hello}

• a∗b∗:

By (6):

L(a∗) = L(a)∗

= {a}∗

=

∞
⋃

n=0

{a}n

=

∞
⋃

n=0

{w1w1 . . . wn | 1 ≤ i ≤ n, wi ∈ {a}}

=

∞
⋃

n=0

{an}

= {an | n ∈ N}

Using (5) and language concatenation, this allows us to conclude:

L(a∗b∗) = L(a∗)L(b∗)

= {uv | u ∈ L(a∗) ∧ v ∈ L(b∗)}

= {uv | u ∈ {am | m ∈ N} ∧ v ∈ {bn | n ∈ N}}

= {ambn | m,n ∈ N}

That is, L(a∗b∗) is the set of all words that start with a (possibly empty)
sequence of a’s, followed by a (possibly empty) sequence of b’s.

• (ǫ+ b)(ab)∗(ǫ+ a):

Let us analyse the parts:

L(ǫ+ b) = {ǫ, b}

L((ab)∗) = {(ab)n | n ∈ N}

L(ǫ+ a) = {ǫ, a}

Thus, we have:

L((ǫ+ b)(ab)∗(ǫ + a)) = {u(ab)nv | u ∈ {ǫ, b} ∧ n ∈ N ∧ v ∈ {ǫ, a}}

In English: L((ǫ+b)(ab)∗(ǫ+a)) is the set of (possibly empty) sequences
of alternating a’s and b’s.

32



4.3 Algebraic laws

The semantics of regular expressions not only allows us to find out the meaning
of specific regular expressions, but also allows us to prove useful laws about reg-
ular expression in general. Let us illustrate by proving the following distributive
law for regular expressions:

E(F +G) = EF + EG

Note that E, F , G are variables standing for some specific but arbitrary regular
expressions, and that = here is semantic (as opposed to syntactic) equality. That
is, what we need to prove is that a regular expression of the form E(F +G) and
one of the form EF +EG always have the same meaning, i.e., denote the same
language.

We thus start from L(E(F + G)) and show step by step that this is equal
to L(EF +EG) without making any assumptions about the constituent regular
expressions E, F , and G, other than that their semantics is given by L(E) etc.

L(E(F +G))
= { Semantics of r.e. (concat.) }

L(E)L(E + F )
= { Semantics of r.e. (+) }

L(E)(L(F ) ∪ L(G))
= { Def. concat. of languages }

{w1w2 | w1 ∈ L(E) ∧ w2 ∈ (L(F ) ∪ L(G))}
= { Def. set union }

{w1w2 | w1 ∈ L(E) ∧ w2 ∈ {w | w ∈ L(F ) ∨ w ∈ L(G)}}
= { Duality between sets and predicates }

{w1w2 | w1 ∈ L(E) ∧ (w2 ∈ L(F ) ∨w2 ∈ L(G))}
= { Conjunction (∧) distributes over disjunction (∨) }

{w1w2 | (w1 ∈ L(E) ∧ w2 ∈ L(F )) ∨ (w1 ∈ L(E) ∧w2 ∈ L(G))}
= { Def. set union }

{w1w2 | (w1 ∈ L(E) ∧ w2 ∈ L(F ))} ∪ {w1w2 | (w1 ∈ L(E) ∧ w2 ∈ L(G))}
= { Def. concat. languages (twice) }

L(E)L(F ) ∪ L(E)L(G)
= { Semantics of r.e. (conacat., twice) }

L(EF ) ∪ L(EG)
= { Semantics of r.e. (+) }

L(EF + EG)

Other laws for regular expressions can be proved similarly, although induc-
tion is sometimes needed. As an exercise, prove (some of) the following:

ǫE = E

Eǫ = E

∅E = ∅

E∅ = ∅

E + (F +G) = (E + F ) +G

E(FG) = (EF )G

(E∗)∗ = E∗

ǫ + EE∗ = E∗

33



4.4 Translating regular expressions into NFAs

Theorem 4.1 A regular expression E can be translated into an equivalent NFA
N(E) such that L(N(E)) = L(E).

We refer to this translation as the “Graphical Construction”. It is a variation
of the standard way of translating regular expressions into NFAs known as
Thompson’s construction8.

Proof. The proof is by induction on the syntax of regular expressions:

1. N(∅):

which will reject everything (there are no final states). Thus:

L(N(∅)) = ∅

= L(∅)

2. N(ǫ):

This automaton accepts the empty word but rejects everything else. Thus

L(N(ǫ)) = {ǫ}

= L(ǫ)

3. N(x):

This automaton only accepts the word x. Thus:

L(N(x)) = {x}

= L(x)

4. N(E + F ): We merge the diagrams for N(E) and N(F ) into one:

8https://en.wikipedia.org/wiki/Thompson%27s construction

34



Intuitively, the NFAs for the subexpressions E and F are placed side by
side. Thus if either of the NFA accepts a word, the combined NFA accepts
this word. However, we have to ensure that the states of the constituent
NFAs do not get confused with each other. We therefore have to use the
disjoint union, defined as follows:

A ⊎B = {(0, a) | a ∈ A} ∪ {(1, b) | b ∈ B}

That is, each element of the disjoint union is “tagged” with an index
that shows from which of the two sets it originated. Thus the elements
of the constituent sets will remain distinct. The transition function of the
combined NFA also has to be defined to work on tagged states.

Thus, given the NFAs for the subexpressions E and F :

N(E) = (QE ,Σ, δE , SE, FE)

N(F ) = (QF ,Σ, δF , SF , FF )

we construct the combined NFA for the regular expression E + F :

N(E + F ) = (QE+F ,Σ, δE+F , SE+F , FE+F )

where

QE+F = QE ⊎QF

δE+F ((0, q), x) = {(0, q′) | q′ ∈ δE(q, x)}

δE+F ((1, q), x) = {(1, q′) | q′ ∈ δF (q, x)}

SE+F = SE ⊎ SF

FE+F = FE ⊎ FF

It remains to prove L(N(E + F )) = L(E + F ). We first observe that

L(N(E + F )) = L(N(E)) ∪ L(N(F ))

because the initial states SE+F of the combined NFA is the (disjoint) union
of the initial states of the constituent NFAs, and because the combined
NFA accepts a word whenever one of the constituent NFAs does.

The proof then proceeds by induction; that is, we assume that the trans-
lation is correct for the subexpressions:

L(N(E)) = L(E)

L(N(F )) = L(F )

Thus:

L(N(E + F )) = L(N(E)) ∪ L(N(F )) Above
= L(E) ∪ L(F ) Induction hypothesis
= L(E + F ) By (4)

This is what is meant by induction over the syntax of regular expressions.

35



5. N(EF ): Recall that L(EF ) = L(E)L(F ). Thus, a word w ∈ L(EF ) iff w
can be divided into two words u and v, w = uv, such that u ∈ L(E) and
v ∈ L(F ). Consequently, if we have an NFA N(E) recognising L(E) and
another NFA N(F ) recognising L(F ), we can construct an NFA recog-
nising words w = uv ∈ L(EF ) if we join the NFAs N(E) and N(F ) in
sequence in such a way that the machine moves from N(E) to an initial
state of N(F ) on the last symbol of a word u ∈ L(E).

Of course, it could be that ǫ ∈ L(E), meaning that one or more of the
initial states of N(E) are accepting. In this case, for a word w = uv with
u = ǫ, the machine needs to start in an initial state of N(F ) directly as
there is no last symbol of u = ǫ to move on.

Therefore, we consider two cases: ǫ /∈ L(E), meaning no initial state of
N(E) is accepting, and ǫ ∈ L(E), meaning at least one initial state of
N(E) is accepting. We start with the former:

The dashed lines here suggest “one or more”. So there could be one or
more initial states and one or more final states in both N(E) and N(F ).
This will be made precise shortly; the figure just conveys the general idea.

We identify every state of N(E) that immediately precedes an accepting
state; i.e., every state from which an accepting state can be reached on a
single input symbol. We then join N(E) and N(F ) into a combined NFA
N(EF ) by adding an edge from each of the identified states to all of the
initial states of N(F ) for each symbol on which an accepting state of N(E)
can be reached. The initial states of N(EF ) are the initial states of N(E)
and the final states of N(EF ) are the final states of N(F ):

This ensures that the NFA N(EF ), once it has read a word u accepted
by N(E), is ready to try to accept the remainder v of a word w = uv

36



by effectively passing v to N(F ), allowing the latter to try to accept the
remaining part v of w from any of its initial states.

We now formalise this construction. The set of states of the combined
NFA N(EF ) is again given by the disjoint union of the states of N(E)
and N(F ) to avoid confusion, and the transition function δEF as well as
the initial states SEF and final states FEF are defined accordingly.

Thus, given the NFAs for the subexpressions E and F :

N(E) = (QE ,Σ, δE , SE, FE)

N(F ) = (QF ,Σ, δF , SF , FF )

we construct the combined NFA for the regular expression EF :

N(EF ) = (QEF ,Σ, δEF , SEF , FEF )

where

QEF = QE ⊎QF

δEF ((0, q), x) = {(0, q′) | q′ ∈ δE(q, x)}

∪ {(1, q′) | δE(q, x) ∩ FE 6= ∅ ∧ q′ ∈ SF }

δEF ((1, q), x) = {(1, q′) | q′ ∈ δF (q, x)}

SEF = {(0, q) | q ∈ SE}

FEF = {(1, q) | q ∈ FF }

Now let us consider the second case: at least one of the initial states of
N(E) is accepting:

As was discussed above, this simply means that we have to arrange that the
initial states of N(F ) also be initial states of the combined NFA N(EF ):

37



We thus refine the formal definition of the initial states of N(EF ) to
account for this, yielding a definition that covers both cases:

SEF = {(0, q) | q ∈ SE}

∪ {(1, q) | SE ∩ FE 6= ∅ ∧ q ∈ SF }

It remains to prove L(N(EF )) = L(EF ). From the construction above, it
is clear that

L(N(EF )) = {uv | u ∈ L(N(E)) ∧ v ∈ L(N(F ))}

The proof again proceeds by induction; that is, we assume that the trans-
lation is correct for the subexpressions:

L(N(E)) = L(E)

L(N(F )) = L(F )

Thus:

L(N(EF )) = {uv | u ∈ L(N(E)) ∧ v ∈ L(N(F ))} Above
= {uv | u ∈ L(E) ∧ v ∈ L(F )} Ind. hyp.
= L(E)L(F ) Lang. concat.
= L(EF ) By (5)

6. N(E∗): Recall that L(E∗) = L(E)∗. Thus, a word w ∈ L(E∗) iff w can
be divided into a sequence of n ∈ N words ui, w = u1u2 . . . un, such
that ∀i ∈ [1, n] . ui ∈ L(E). Consequently, if we have an NFA N(E)
recognising L(E), we can construct an NFA recognising words w ∈ L(E∗)
by connecting 0 or more NFAs N(E) in sequence in a similar way to what
we did for the case N(EF ) above:

Here we use the * to informally suggest sequential composition of 0 or
more NFAs.

However, we need to construct a single NFA, and there is no upper bound
on the number of NFAs N(E) that we need to connect in sequence. We
resolve this by taking a single NFA N(E) and construct and NFA for
N(E∗) by making it loop back to all of its own initial states from each
state that immediately precedes an accepting state. As we also need to
allow for iteration 0 times, we further have to add one extra state that is
both initial and final thus accepting ǫ:

38



We now formalise this construction. This time, the states of N(E∗) are
almost the same as those of N(E). But we need one extra state to ensure
that N(E∗) can accept the empty word, ǫ, and we have to make sure that
this one extra state cannot be confused with any other state in N(E). We
label the new state ǫ, suggestive of its role to ensure acceptance of the
empty word, and we then form the states of N(E∗) using disjoint union
to ensure states cannot be accidentally confused. Like before, we have to
take this into account when defining the transition function δE∗ as well as
the initial states SE∗ and final states FE∗ of the NFA N(E∗).

Thus, given the NFA resulting from translating the subexpression E:

N(E) = (QE ,Σ, δE , SE, FE)

we construct the NFA for the regular expression E∗:

N(E∗) = (QE∗ ,Σ, δE∗ , SE∗ , FE∗)

where

QE∗ = QE ⊎ {ǫ}

δE∗((0, q), x) = {(0, q′) | q′ ∈ δE(q, x)}

∪ {(0, q′) | δE(q, x) ∩ FE 6= ∅ ∧ q′ ∈ SE}

δE∗((1, ǫ), x) = ∅

SE∗ = SE ⊎ {ǫ}

FE∗ = FE ⊎ {ǫ}

It remains to prove L(N(E∗)) = L(E∗). Given the construction above, we
claim that

L(N(E∗)) = {u1u2 . . . un | n ∈ N ∧ ∀i ∈ [1, n] . ui ∈ L(N(E))}

The intuition is that we can run through the automaton one or more times
and that the new state ǫ allows the NFA to accept the empty word.

The proof then again proceeds by induction; that is, we assume that the
translation is correct for the subexpression:

L(N(E)) = L(E)

39



Thus:

L(N(E∗)) = { u1u2 . . . un Above
| n ∈ N ∧ ∀i ∈ [1, n] . ui ∈ L(N(E)) }

= { u1u2 . . . un Ind. hyp.
| n ∈ N ∧ ∀i ∈ [1, n] . ui ∈ L(E) }

=
⋃∞

n=0 L(E)n Lang. concat.
= L(E)∗ Def. Kleene star
= L(E∗) By (6)

7. N((E)) = N(E): Parentheses are just used for grouping and does not
change anyting.

We need to prove L(N((E))) = L((E)). The proof is again by induction,
so we assume L(N(E)) = L(E) and then we proceed as follows:

L(N((E))) = L(N(E)) By construction
= L(E) Induction hypothesis
= L((E)) By (7)

�

It is worth pausing briefly to reflect on what we just have accomplished.
In effect, we have implemented a compiler that translates regular expressions
into NFAs, and we have proved it correct; that is, the translation preserves the
meaning (here, the described language), which after all is what we generally
expect of an accurate translation. Of course, it is a very simple compiler. Yet,
in essence, it reflects how real tools that handle regular expressions work; for
example, scanner (or lexer) generators such as Flex, Ragel, or Alex9. Moreover,
while proving the correctness of compilers for typical programming languages is
vastly more complicated than what we have seen here, there are methodological
similarities, such as proof by induction over the structure of the language.

Let us illustrate how to apply the Graphical Construction. As a first example,
we construct N(a∗b∗). We start with the innermost subexpressions and then
join the NFAs together step by step. The states are named according to how
they will be named in the final NFA to make it easier to follow the derivation.
It is fine to leave states unnamed until the end, and that is what normally is
done. We begin with the NFA for a:

0 4
a

The NFA for a∗ is obtained by adding a loop on a from state 0 to itself as
this state precedes a final state and is the only initial state, and by adding the
extra state for accepting ǫ:

9 https://en.wikipedia.org/wiki/Lexical analysis

40



0 4

a

a

5

The NFA for b∗ is constructed in the same way:

1 2

b

b

3

Now we have to join these two NFAs in sequence:

0 4

a

a

5

1 2

b

b

3

We have to pay extra attention because the automaton for the subexpression
a∗ contains a state that is both initial and final, namely state 5, resulting in
“extra” initial states when composing that automaton with the automaton for
the subexpression b∗:

0 4

a

a

5

1 2

b

b

3

a

a

The states 4 and 5 have manifestly become “dead ends”: there is no way to
reach a final state from either. For NFAs, such dead ends can simply be removed

41



(along with associated edges) without changing the accepted language. If we do
that, we obtain:

0

a
1 2

b

b

3

a

a

You may have noted that, though correct, this NFA is unnecessary com-
plicated. For example, the following NFA also accepts N(a∗b∗), but has fewer
states:

0 1

a

b

b

This is typical: the translation of regular expressions into NFAs does generally
not yield the simplest possible automata.

If we are interested in obtaining the smallest possible machine, one approach
is to first convert the resulting NFA into a DFA using the subset construction
of section 3.2.3 and then minimize this DFA as explained in section 5. If we do
this for the four-state NFA above, we obtain the following DFA:

0 1 2

a

b

b

a

a, b

As it happens, just applying the subset construction to the four-state NFA yields
this DFA directly10: it is already minimal. Try it! It is quick and a good exercise.

Let us do one more, somewhat larger, example: constructing an NFA for
((a + ǫ)(b + c))∗. We again start with the innermost subexpressions and then
join the NFAs together step by step. We have to (again) pay extra attention
because the automaton for the subexpression (a + ǫ) contains a state that is
both initial and final, resulting in “extra” initial states when composing that
automaton with the automaton for the subexpression (b + c). Also, it makes
sense to eliminate dead ends as soon as they occur, here before closing the loop
due to the top-level Kleene star. The states are named according to how they
will be named in the final NFA to make it easier to follow the derivation, but
could be left unnamed until the end if you prefer.

First, an NFA for a+ ǫ:

10 Or one isomorphic to it: the states will probably be named differently.

42



0 6
a

7

NFA for b+ c

1 2

3 4

b

c

Join the above two NFAs to obtain an NFA for (a+ ǫ)(b+ c):

0 6

7

1 2

3 4

a

a

a

b

c

Note that both state 1 and 3 remain initial states states because the left au-
tomaton has an initial state that is also accepting, meaning we need to be able
to get to the start states of the right automaton without consuming any input.

States 6 and 7 have now manifestly become dead ends because there is no way
to reach an accepting state from either. Let us remove them and all associated
edges:

0

1 2

3 4

a

a

b

c

The last step is to carry out the construction corresponding to the ∗-operator.
States 1 and 3 both immediately precede a final state, and we should thus add
corresponding transition edges from those back to all initial states. There are
three initial states, 0, 1, and 3. Thus we need an edge labelled b from 1 to each
of 0, 1, and 3 (i.e., a loop back to itself on b) and and an edge labelled c from 3
to each of 0, 1, and 3 (i.e., a loop back to itself on c). Additionally, we must not
forget to add an extra initial state which is also final (here state 5) to ensure
the NFA accepts ǫ.

43



0

1 2

3 4

5

a

a
b

b

c

c

b

b

c

c

Note that the isolated state 5 thus also is part of the final automaton.

4.5 Summing up

From the previous section we know that a language given by regular expression is
also recognized by a NFA. What about the other way: Can a language recognized
by a finite automaton (DFA or NFA) also be described by a regular expression?
The answer is yes:

Theorem 4.2 Given a DFA A there is a regular expression R(A) that recog-
nizes the same language L(A) = L(R(A)).

We omit the proof (which can be found in the [HMU01] on pp.91-93). How-
ever, we conclude:

Corollary 4.3 Given a language L ⊆ Σ∗ the following is equivalent:

1. L is given by a regular expression.

2. L is the language accepted by an NFA.

3. L is the language accepted by a DFA.

Proof. We have that 1. =⇒ 2 by theorem 4.1. We know that 2. =⇒ 3. by3.2
and 3. =⇒ 1. by 4.2. �

As indicated in the introduction, the languages that are characterised by
any of the three equivalent conditions are called regular languages or type 3
languages.

44



4.6 Exercises

Exercise 4.1

Give regular expressions defining the following languages over the alphabet Σ =
{a, b, c}:

1. All words that contain exactly one a.

2. All words that contain at least two bs.

3. All words that contain at most two cs.

4. All words such that all b’s appear before all c’s.

5. All words that contain exactly one b and one c (but any number of a’s).

6. All words such that the number of a’s plus the number of b’s is odd.

7. All words that contain the sequence abba at least once.

Exercise 4.2

Using the formal definition of the meaning of regular expressions, compute
the set denoted by the regular expression

(aa+ ǫb∗∅)(b+ c)

simplifying as far as possible. Provide a step-by-step account.

Exercise 4.3

Construct an NFA for the regular expression (a(b+c))∗ using the “graphical
construction” from the lecture notes. Provide a step-by-step account.

For NFAs it is possible to omit “dead ends”, i.e., states from which no final
state possibly can be reached, without changing the language of the automaton.
Do this as soon as dead ends emerges to reduce your work.

Exercise 4.4

Systematically construct an NFA for the regular expression

(a(∅∗ + b))∗(c+ ǫ+ ∅)

by following the graphical construction from the lecture notes. Make sure it is
clear how you undertake the construction by showing the major steps. Eliminate
“dead ends” (states from which no final state can be reached) when they appear.
The states in the final NFA should be named, but as long as it is clear what
you are doing, you can leave the states of intermediate NFAs unnamed.

45



5 Minimization of Finite Automata

[FOR REFERENCE: MINIMIZATION NOT TAUGHT SPRING 2019]
As we saw when translating regular expressions into NFAs, the resulting

automaton is not necessarily the smallest possible one. Similarly, when employ-
ing the subset construction to translate an NFA into a DFA, the result is not
always the smallest possible DFA. It is often desirable to make automatons as
small as possible. For example, if we wish to implement an automaton, the
implementation will be more efficient the smaller the automaton is.

Given an automaton, the question, then, is how to construct an equivalent
but smaller automaton. Recall that two automatons are equivalent of they ac-
cept the same language. In the following we will study a method for minimizing
DFAs: the table-filling algorithm.

Another interesting question is if there, in general, is one unique automaton
that is the smallest equivalent one, or if there can be many distinct equivalent
automatons, none of which can be made any smaller. It turns out the answer is
that the minimal equivalent DFA is unique up to naming of the states. This, in
turn, means that we have obtained a mechanical decision procedure for deter-
mining whether two regular languages are equal: simply convert their respective
representation (be it a DFA, an NFA, or a regular expression) to DFAs and
minimize them. Because the minimal DFAs are unique, the languages are equal
if and only if the minimal DFAs are equal.

5.1 The table-filling algorithm

For a DFA (Q,Σ, δ, q0, F ), p, q ∈ Q are equivalent states if and only if, for all

w ∈ Σ∗, δ̂(p, w) ∈ F ⇔ δ̂(q, w) ∈ F . If two states are not equivalent, then they
are distinguishable.

Consider the following DFA, where Σ = {a, b}, Q = {0, 1, 2, 3, 4, 5}, F =
{2, 3}:

0 1 2

34

5

a

b

a

b

a, b

a

b

a

b

a
b

The states 1 and 2 are distinguishable on ǫ because δ̂(1, ǫ) = 1 /∈ F while

δ̂(2, ǫ) = 2 ∈ F . Similarly, 0 and 1 are distinguishable on e.g. b because δ̂(0, b) =

4 /∈ F while δ̂(1, b) = 3 ∈ F . On the other hand, in this case, we can easily see
that 4 and 5 are not distinguishable on any word because it is not possible to
reach any accepting (final) state from either 4 or 5.

46



The Table-Filling Algorithm recursively constructs the set of distinguish-
able pairs of states for a DFA. When all distinguishable state pairs have been
identified, any remaining pairs of states must be equivalent. Such states can be
merged, thereby minimizing the automaton. Assume a DFA (Q,Σ, δ, q0, F ):

BASIS For p, q ∈ Q, if (p ∈ F ∧ q /∈ F ) ∨ (p /∈ F ∧ qinF ), then (p, q) is a
distinguishable pair of states. (The states p and q are distinguishable on
ǫ.)

INDUCTION For p, q, r, s ∈ Q, a ∈ Σ, if (r, s) = (δ(p, a), δ(q, a)) is a distin-
guishable pair of states, then (p, q) is also distinguishable. (If the states r
and s are distinguishable on a word w, then p and q are distinguishable
on aw.)

Theorem 5.1 If two states are not distinguishable by the table-filling algo-
rithm, then they are equivalent.

5.2 Example of DFA minimization using the table-filling

algorithm

This section illustrates how the table-filling algorithm can be used to minimize a
DFA when working by hand through a fully worked example. We will minimize
the following DFA, where Σ = {a, b}, Q = {0, 1, 2, 3, 4, 5}, F = {2, 3}:

0 1 2

34

5

a

b

a

b

a, b

a

b

a

b

a
b

First construct a table over all pairs of distinct states. That is, we do not
consider pairs (p ∈ Q, p ∈ Q) because a state obviously cannot be distinguishable
from itself. An easy way of doing constructing the table is to order the states
(e.g. numerically or alphabetically), and then list all states except the last one in
ascending order along the top, and all states except the first one in descending
order down the left-hand side of the table. The resulting table for our 6-state
DFA looks like this:

0 1 2 3 4
5
4
3
2
1

47



Then mark the state pairs that are distinguishable according to the basis
of the table-filling algorithm; i.e., the pairs where one state is accepting, and
one is not. The accepting states of our DFA are 2 and 3. Thus the state pairs
(0, 2), (0, 3), (1, 2), (1, 3), (2, 4), (2, 5), (3, 4), and (3, 5) have to be marked. List
all remaining state pairs to the right: these are the potentially equivalent states
that we now have to investigate further:

0 1 2 3 4
5 x x
4 x x
3 x x
2 x x
1

(0, 1) (0, 4) (0, 5) (1, 4)

(1, 5) (2, 3) (4, 5)

Recall that the induction step of the table-filling algorithm says that for
p, q, r, s ∈ Q and a ∈ Σ, if (r, s) = (δ(p, a), δ(q, a) is distinguishable (on some
word w), then (p, q) is (on the word aw). If, during systematic investigation of all
state combinations, we, from a state pair (p, q) on some input symbol a, reach
a state pair (r, s) for which it is not yet known whether it is distinguishable
or not, we record (p, q) under the heading for (r, s). If it later becomes clear
that (r, s) is distinguishable, that means that (p, q) also is distinguishable, and
recording this implication allows us to carry out the deferred marking at that
point.

Investigate all potentially equivalent state pairs on all input symbols (unless
we find that a pair is distinguishable, which means we can stop):

(0, 1): (δ(0, a), δ(1, a)) = (1, 2) Distinguishable! Mark in table.
(0, 4): (δ(0, a), δ(4, a)) = (1, 5) Unknown as yet. Add (0, 1) under (1, 5).

(δ(0, b), δ(4, b)) = (4, 4) Same state, no info.

Our table now looks as follows (we strike a line across the pairs we have con-
sidered):

0 1 2 3 4
5 x x
4 x x
3 x x
2 x x
1 x

———(0, 1) ———(0, 4) (0, 5) (1, 4)

(1, 5) (2, 3) (4, 5)

(0, 4)

We continue:

(0, 5): (δ(0, a), δ(5, a)) = (1, 5) Unknown as yet. Add (0, 5) under (1, 5).
(δ(0, b), δ(5, b)) = (4, 4) Same state, no info.

(1, 4): (δ(1, a), δ(4, a)) = (2, 5) Distinguishable! Mark in table.

Table:

0 1 2 3 4
5 x x
4 x x x
3 x x
2 x x
1 x

———(0, 1) ———(0, 4) ———(0, 5) ———(1, 4)

(1, 5) (2, 3) (4, 5)

(0, 4)
(0, 5)

48



Now we have come to the state pair (1, 5). If we can determine that (1, 5) is
a distinguishable pair, then we also know that the pairs (0, 4) and (0, 5) are
distinguishable:

(1, 5): (δ(1, a), δ(5, a)) = (2, 5) Distinguishable!

Thus we should mark (1, 5) along with and (0, 4) and (0, 5):

0 1 2 3 4
5 x x x x
4 x x x x
3 x x
2 x x
1 x

———(0, 1) ———(0, 4) ———(0, 5) ———(1, 4)

———(1, 5) (2, 3) (4, 5)

———(0, 4)
———(0, 5)

It remains to check the pairs (2, 3) and (4, 5):

(2, 3): (δ(2, a), δ(3, a)) = (2, 2) Same state, no info.
(δ(2, b), δ(3, b)) = (2, 3) No point in adding (2, 3) below (2, 3).

(4, 5): (δ(4, a), δ(5, a)) = (5, 5) Same state, no info.
(δ(4, b), δ(5, b)) = (4, 4) Same state, no info.

We have now systematically checked all potentially equivalent state pairs.
Two pairs remain unmarked; i.e., we have not been able to show that they are
distinguishable: (2, 3) and (4, 5). We can therefore conclude that these states
are pairwise equivalent: 2 ≡ 3 and 4 ≡ 5. We thus proceed to merge these states
by, informally, placing them “on top” of each other and “dragging along” the
edges. The result is the following minimal DFA (where the merged states have
been given the names 2 and 4):

0 1 2

4

a

b

a, b

a, b

a, b

49



6 Disproving Regularity

Regular languages are languages that can be recognized by a computer with
finite memory. Such a computer corresponds to a DFA. However, there are
many languages that cannot be recognized using only finite memory. A simple
example is the language

L = {0n1n | n ∈ N}

That is,the language of words that start with a number of 0s followed by the
same number of 1s. Note that this is different from L(0∗1∗), which is the lan-
guage of words of a sequences of 0s followed by a sequence of 1s but not neces-
sarily of the same length. (We know this to be regular because it is given by a
regular expression.)

Why can L not be recognized by a computer with finite memory? Suppose
we have 32 MiB of memory; that is, we have 32 ∗ 1024 ∗ 1024 ∗ 8 = 268435456
bits. Such a computer corresponds to an enormous DFA with 2268435456 states
(imagine drawing the transition diagram!). However, this computer can only
count to 2268435456 − 1; if it reads a word starting with more than 2268435456 − 1
0s, it will necessarily lose count! The same reasoning applies whatever finite
amount of memory we equip our computer with. Thus, an unbounded amount
of memory is needed recognize L. (Of course, 2268435456−1 is a very large number
indeed, so for practical purposes the machine will almost certainly be able to
count much further than we ever will need.)

We will now show a general theorem called the pumping lemma (for regular
languages) that allows us to prove that a certain language is not regular.

6.1 The pumping lemma

Theorem 6.1 Given a regular language L, then there is a number n ∈ N such
that all words w ∈ L that are longer than n (|w| ≥ n) can be split into three
words w = xyz s.t.

1. y 6= ǫ

2. |xy| ≤ n

3. ∀k ∈ N . xykz ∈ L

Proof. For a regular language L there exists a DFA A s.t. L = L(A). Let us
assume that A has n states. If A accepts a word w with |w| ≥ n, it must have
visited some state q twice:

q
x

y

z

We choose q such that it is the first cycle; hence |xy| ≤ n. We also know that y
is nonempty (otherwise there is no cycle). Now, consider what happens if a word
of the form xykz is given to the automaton. The automaton will clearly accept
this word; it just has to go round the cycle k times, whatever k is, including
k = 0. Thus ∀k ∈ N . xykz ∈ L.

�

50



6.2 Applying the pumping lemma

Theorem 6.2 The language L = {0n1n | n ∈ N} is not regular.

Proof. Assume L would be regular. We will show that this leads to contra-
diction using the pumping lemma.

By the pumping lemma, there is an n such that we can split each word that
is longer than n such that the properties given by the pumping lemma hold.
Consider 0n1n ∈ L. This is certainly longer than n. We have that xyz = 0n1n

and we know that |xy| ≤ n, hence y can only contain 0s. Further, because y 6= ǫ,
it must contain at least one 0. Now, according to the pumping lemma, xy0z ∈ L.
However, this cannot be the case because it contains at least one fewer 0s than
1s. Our assumption that L is regular must thus have been wrong. �

It is easy to see that the language

{1n | n is even}

is regular (just construct the appropriate DFA or use a regular expression).
However what about

{1n | n is a square}

where by saying n is a square we mean that is there is an k ∈ N s.t. n = k2. We
may try as we like: there is no way to find out whether we have a got a square
number of 1s by only using finite memory. And indeed:

Theorem 6.3 The language L = {1n | n is a square} is not regular.

Proof. We apply the same strategy as above. Assume L is regular. Then
there is a number n such we can split all longer words according to the pumping
lemma. Let us take w = 1n

2

; this is certainly long enough. By the pumping
lemma, we know that we can split w = xyz s.t. the conditions of the pumping
lemma hold. In particular we know that

1 ≤ |y| ≤ |xy| ≤ n

Using the 3rd condition we know that

xyyz ∈ L

that is |xyyz| is a square. However we know that

n2 = |w|

= |xyz|

< |xyyz| because 1 ≤ |y|

= |xyz|+ |y|

≤ n2 + n because |y| ≤ n

< n2 + 2n+ 1

= (n+ 1)2

To summarize, we have
n2 < |xyyz| < (n+ 1)2

51



That is |xyyz| lies between two subsequent squares. But then it cannot be a
square itself, and hence we have a contradiction to xyyz ∈ L. We conclude L is
not regular. �

Given a word w ∈ Σ∗ we write wR for the word read backwards. E.g. abcR =
bca. Formally this can be defined as

ǫR = ǫ

(xw)R = wRx

We use this to define the language of even length palindromes

Lpali = {wwR | w ∈ Σ∗}

E.g. for Σ = {a, b} we have abba ∈ Lpali. Using the intuition that finite au-
tomata can only use finite memory, it should be clear that this language is not
regular either: to check whether the 2nd half is the same as the 1st half read
backwards, we have to remember the first half, however long it is. Indeed, we
can show:

Theorem 6.4 Given Σ = {a, b} we have that Lpali is not regular.

Proof. We use the pumping lemma: We assume that Lpali is regular. Now
given a pumping number n we construct w = anbban ∈ Lpali, this word is
certainly longer than n. From the pumping lemma we know that there is a
splitting of the word w = xyz s.t. |xy| ≤ n and hence y may only contain a’s
and because y 6= ǫ at least one. We conclude that xz ∈ Lpali where xz = ambban

where m < n. However, this word is not a palindrome, because the sequence of
a’s at the beginning is shorter that the sequence of a’s at the end. Hence our
assumption Lpali is regular must be wrong. �

The proof works for any alphabet with at least 2 different symbols. However,
if Σ contains only one symbol, as in Σ = {1}, then Lpali is the language of an
even number of 1s and this is regular: Lpali = (11)∗.

6.3 Exercises

Exercise 6.1

Apply the pumping lemma for regular languages to show that the following
languages are not regular:

1. L1 = {anbmcn+m | m,n ∈ N} over the alphabet Σ1 = {a, b, c}.
(E.g., aabbbccccc ∈ L1, but aabbcc /∈ L1.)

2. L2 = {w ∈ Σ∗ | #a(w) = 2 × #b(w) ∧ #b(w) = 2 ×#c(w)} over the
alphabet Σ = {a, b, c}, where #a(w) denotes the number of a’s in a word
w, #b(w) the number of b’s, etc.
(E.g., abcaaba ∈ L2, but aaabbc /∈ L2, and aaaaabbc /∈ L2.)

52



7 Context-Free Grammars

This section introduces context-free grammars (CFGs) as a formalism to define
languages that is more general than regular expressions; that is, there are more
languages definable by CFGs than by regular expressions and finite automata.
The class of languages definable by CFGs is known as the context-free languages
or type 2 languages (section 1.1). We will define the notion of automata corre-
sponding to CFGs, the push down automata (PDA), later, in section 9.

Context-free grammars have an abundance of applications. A prominent ex-
ample is the definition of (aspects of) the syntax programming languages, like
C, Java, or Haskell. Another application is the document type definition (DTD)
for the SGML-family markup languages, like XML and HTML. Applications of
CFGs are discussed further in section 7.6.

7.1 What are context-free grammars?

We start be defining what context-free grammars are, their syntax, deferring
what CFGs mean, the languages they describe or their semantics, to section
7.2. A context-free grammar G = (N, T, P, S) is given by

• A finite set N of nonterminal symbols or nonterminals.

• A finite set T of terminal symbols or terminals.

• N ∩ T = ∅; i.e., the sets N and T are disjoint.

• A finite set P ⊆ N × (N ∪T )∗ of productions. A production (A,α), where
A ∈ N and α ∈ (N ∪ T )∗ is a sequence of nonterminal and terminal
symbols. It is written as A → α in the following.

• S ∈ N : the distinguished start symbol.

Nonterminals are also referred to as variables and consequently the set of
nonterminals is sometimes denoted by V . Yet another term for the the same
thing is syntactic categories. The terminals are the alphabet of the language
defined by a CFG, and for that reason the set of terminals is sometimes denoted
by Σ. Indeed, we will occasionally use that convention as well in the following.

Note that the right-hand side of a production may be empty. This is known
as an ǫ-production and written

A → ǫ

Also note that it is perfectly permissible for the same nonterminal to occur
both to the left and to the right of the arrow in a production. In fact, this is
essential: if that were not allowed, CFGs would only amount to a (possibly)
compact description of finite languages and be of little interest. A production
for a nonterminal A where the same nonterminal is the first symbol of the right-
hand side, in the leftmost position, is called immediately left-recursive; e.g.,

A → Aα

where α ∈ (N ∪ T )∗. A production for a nonterminal A where the same non-
terminal is the last symbol of the right-hand side, in the rightmost position, is
called immediately right-recursive; e.g.,

A → αA

53



Recursion can also be indirect : the left-hand side non-terminal of a production
can be reached again from the right-hand side via one or more other productions.
This is very common: see the following example for an illustration.

As an example we define a grammar for the language of arithmetic expres-
sions over a using only + and ∗. As we will see in section 7.2 where the language
described by a CFG is defined, the elements of this language are words like
a + (a ∗ a) or (a + a) ∗ (a + a). On the other hand, words like a + +a or )(a,
which manifestly do not correspond to well-formed arithmetic expressions, do
not belong to the language:

Garith = ({E, T, F}, {(, ), a,+, ∗}, P, E)

where P is given by:

P = {E → T,

E → E + T,

T → F,

T → T ∗ F,

F → a,

F → (E)}

Here, the choice E, T , F for the nonterminal symbols is meant to suggest Ex-
pression, Term, and Factor, respectively. Note that some of the productions for
E and T are immediately left-recursive, and that one of the productions for F
recursively refer back to the start symbol S. The latter is an example of indirect
recursion.

Somewhat unfortunately, T is used here both as one of the nonterminals and
to denote the set of terminals, as per the conventions outlined above. Do not
let this confuse you: the nonterminal symbol T and the set of terminal symbols
are quite distinct! Occasional name clashes are a fact of life.

To save space, we may combine all the rules with the same left-hand side,
separating the alternatives with a vertical bar. Using this convention, our set of
productions can be written

P = {E → T | E + T,

T → F | T ∗ F,

F → a | (E)}

In practice, the set of productions is often given by just listing the productions,
without explicit braces indicating a set:

E → T | E + T

T → F | T ∗ F

F → a | (E)

Either way, these are just a more convenient ways to write down exactly the
same set of productions.

54



7.2 The meaning of context-free grammars

How can we check if a word w ∈ T ∗ is in the language of a grammar? We start
with the start symbol S. Note that this is a word in (N ∪ T )∗. If there is a
production S → α, we can obtain a new word in (N ∪T )∗ by replacing the S by
the right-hand side α of the production. Should there be further nonterminals
in the resulting word, the process is repeated by looking for a production where
the left-hand side is one of those nonterminals and replacing that nonterminal
by the right-hand side of the production. This process is called a derivation.
It is often is the case that there is a choice between derivation steps as there
can be more than one nonterminal in a word and more than one production for
a nonterminal. Any word w ∈ T ∗ derived in this way belongs to the language
defined by the grammar.

Let us consider our expression grammar Garith from section 7.1. In this case,
the start symbol is E. The following is one possible derivation:

E ⇒
Garith

E + T

⇒
Garith

T + T

⇒
Garith

F + T

⇒
Garith

a+ T

⇒
Garith

a+ F

⇒
Garith

a+ (E)

⇒
Garith

a+ (T )

⇒
Garith

a+ (T ∗ F )

⇒
Garith

a+ (F ∗ F )

⇒
Garith

a+ (a ∗ F )

⇒
Garith

a+ (a ∗ a)

Generally, given a grammar G, the symbol ⇒
G

stands for the relation derives

in one step in grammar G or directly derives in grammar G. It has nothing to
do with implication. When the grammar used is clear from the context, it is
conventional to drop the subscript G and simply use ⇒, read directly derives.
In the example above, we always replaced the leftmost nonterminal symbol.
This is called a leftmost derivation. However, as was remarked before, this is
not necessary: in general, we are free to pick any nonterminal for replacement.
An alternative would be to always pick the rightmost one, which results in
a rightmost derivation. Or we could pick whichever nonterminal seems more
convenient to expand. The symbols ⇒

lm
and ⇒

rm
are sometimes used to indicate

leftmost and rightmost derivation steps, respectively.
Given any grammar G = (N, T, P, S) we define the relation directly derives

in grammar G as follows:

⇒
G

⊆ (N ∪ T )∗ × (N ∪ T )∗

αAγ ⇒
G

αβγ ⇐⇒ A → β ∈ P

55



The relation derives in grammar G, derivation in 0 or more steps, is defined as:

∗
⇒
G

⊆ (N ∪ T )∗ × (N ∪ T )∗

α0
∗
⇒
G

αn ⇐⇒ α0 ⇒
G

α1 ⇒
G

. . . αn−1 ⇒
G

αn

where n ∈ N. Thus α
∗
⇒
G

α, as n may be 0. We will also occasionally use
+
⇒
G

meaning derivation in one or more steps12.
A word α ∈ (N ∪ T )∗ such that S

∗
⇒
G

α is called a sentential form. The

language of a grammar, L(G) ⊆ T ∗, consists of all terminal sentential forms:

L(G) = {w ∈ T ∗ | S
∗
⇒
G

w}

A language that can be defined by a context-free grammar is called a context-
free language (CFL).

7.3 The relation between regular and context-free lan-

guages

A grammar in which each production has at most one non-terminal symbol in
its right-hand side is linear. For example,

G1 = ({S}, {0, 1}, {S → ǫ | 0S1}, S)

is a linear grammar. There are two special cases of linear grammars:

• A linear grammar is left-linear if each right-hand side nonterminal is the
leftmost (first) symbol in its right-hand side.

• A linear grammar is right-linear if each right-hand side nonterminal is the
rightmost (last) symbol in its right-hand side.

For example,

G2 = ({S,A}, {0, 1}, {S → ǫ | A1, A → S0}, S)

is left-linear, and

G3 = ({S,A}, {0, 1}, {S → ǫ | 0A, A → 1S}, S)

is right-linear. Collectively, left-linear and right-linear grammars are called regu-
lar grammars because the languages they describe are regular. We will not prove
this fact, but it is easy to see how right-linear grammars correspond directly to
NFAs. For example, G3 corresponds to the following NFA:

S A

0

1

12 ∗
⇒
G

is the reflexive transitive closure of ⇒
G
, and

+
⇒
G

is the transitive closure of ⇒
G
.

56



Thus we see that context-free grammars can be used to describe at least some
regular languages. On the other hand, some of the languages that we have shown
not to be regular are actually context-free. For example, the (linear) grammar
G1 above describes the language {0n1n | n ∈ N} that we proved (theorem 6.2)
not to be regular. It is worth noting that if we allow left-linear and right-linear
productions to be mixed, the resulting language is not necessarily regular. For
example, the grammar

G′
1 = ({S,A}, {0, 1}, {S → ǫ | 0A, A → S1}, S)

is equivalent to G1; i.e., describes the same, non-regular, language. Further, we
proved (theorem 6.4) that the language of even-length palindromes

Lpali = {wwR | w ∈ {a, b}∗}

is not regular. The following context-free grammar is one way of defining this
language, demonstrating that Lpali is a context-free language:

Gpali = ({S}, {a, b}, {S → ǫ | aSa | bSb}, S)

So, what is the relation between the regular and context-free languages? Are
there languages that are regular but not context-free? The answer is no:

Theorem 7.1 All regular languages are context-free.

Again, we do not give a proof, but the idea is that regular expressions can
be translated into (regular) context-free grammars. For example, a∗b∗ can be
translated into:

({A,B}, {a, b}, {A → aA | B, B → bB | ǫ}, A)

As a consequence of theorem 7.1 and the fact that we have seen that there are at
least some languages that are context-free but not regular, we have established
that the regular languages form a proper subset of the context-free ones.

7.4 Derivation trees

A derivation in a context-free grammar induce a corresponding derivation tree
that reflects the structure of the derivation: how each nonterminal was rewritten.
As an example, consider the tree representation of the derivation of a+ (a ∗ a)
in grammar Garith (section 7.2):

E

T

F

)E

T

F

a

∗T

F

a

(

+E

T

F

a

57



The central point is that the parent-child relationship reflects a derivation
step according to a production in the grammar. For example, the production
F → (E) was used once in the derivation of a+ (a ∗ a), and consequently there
is a node labelled F in the derivation tree with child nodes labelled (, E, ),
ordered from left to right.

In more detail, a tree is a derivation tree for a CFG G = (N, T, P, S) iff:

1. Every node has a label from N ∪ T ∪ {ǫ}.

2. The label of the root node is S.

3. Labels of internal nodes belong to N .

4. If a node n has label A and nodes n1, n2, . . . , nk are children of n, from left
to right, with labels X1, X2, . . .Xk, respectively, then A → X1X2 . . . Xk

is a production in P .

5. If a node n has label ǫ, then n is a leaf and the only child of its parent.

Through the notion of the yield of a derivation tree, the relationship between
a derivation tree and corresponding derivations can be made precise:

• The string of leaf labels read from left to right, eliding any ǫ bar one if it
is the only remaining symbol, constitute the yield of the tree.

• For a CFG G = (N, T, P, S), a string α ∈ (N ∪ T )∗ is the yield of some

derivation tree iff S
∗
⇒
G

α.

Note that the leaf nodes may be labelled with either terminal or nonterminal
symbols. The yield is thus a sentential form (see section 7.2) in general, and not
necessarily a word in the language of the context-free grammar.

To illustrate the above point, along with elision of superfluous ǫs from the
yield, consider the grammar

S → AB

A → aS | ǫ

B → Sb | ǫ

One derivation in this grammar is

S ⇒ AB ⇒ aSB ⇒ aABB

The corresponding derivation tree is

S

BA

S

BA

a

58



Here, the yield is the sentential form aABB.
We can continue the derivation, using the ǫ-productions for the nonterminals

A and B:
aABB ⇒ aBB ⇒ aB ⇒ a

The derivation tree for the entire derivation is

S

B

ǫ

A

S

B

ǫ

A

ǫ

a

with the yield being just a.
For an example where the yield is empty, consider the derivation

S ⇒ AB ⇒ B ⇒ ǫ

The derivation tree is

S

B

ǫ

A

ǫ

with yield ǫ.

7.5 Ambiguity

A CFG G = (N, T, P, S) is ambiguous iff there is at least one word w ∈ L(G)
such that there are

• two different derivation trees, or equivalently

• two different leftmost derivations, or equivalently

• two different rightmost derivations

for w. This is usually a bad thing because it entails that there is more than one
way to interpret a word; i.e., it leads to semantic ambiguity.

As an example consider the following variation of a grammar for simple
arithmetic expressions (SAE):

SAE = (N = {E, I,D}, T = {+, ∗, (, ), 0, 1, . . . , 9}, P, E)

where P is given by:

E → E + E

| E ∗ E

| (E)

| I

I → DI | D

D → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

59



The grammar SAE allows expressions involving numbers to be derived, unlike
Garith. Also note that this grammar is simpler in that there only is one nonter-
minal (E) involved at the level of expressions proper, as opposed to three (E,
T , F ) for Garith.

Consider the word 1 + 2 ∗ 3. The following derivation tree shows that this
word belongs to L(SAE):

E

E

E

I

D

3

∗E

I

D

2

+E

I

D

1

Note that the yield is the word above, 1 + 2 ∗ 3. But there is another tree with
the same yield:

E

E

I

D

3

∗E

E

I

D

2

+E

I

D

1

Thus, there is one word for which there are two derivation trees. This shows
that the grammar SAE is ambiguous.

As per the definition of ambiguity, another way to demonstrate ambiguity is
to find two leftmost or two rightmost derivations for a word. It is easy to see that
there is a one-to-one correspondence between a derivation tree and a leftmost
and a rightmost derivation. To illustrate, here are the two leftmost derivations
for 1 + 2 ∗ 3, corresponding to the first and to the second tree respectively:

E ⇒
lm

E + E ⇒
lm

I + E ⇒
lm

D + E ⇒
lm

1 + E ⇒
lm

1 + E ∗ E

⇒
lm

1 + I ∗ E ⇒
lm

1 +D ∗ E ⇒
lm

1 + 2 ∗ E

⇒
lm

1 + 2 ∗ I ⇒
lm

1 + 2 ∗D ⇒
lm

1 + 2 ∗ 3

and

E ⇒
lm

E ∗ E ⇒
lm

E + E ∗ E ⇒
lm

I + E ∗ E ⇒
lm

D + E ∗ E

⇒
lm

1 + E ∗ E ⇒
lm

1 + I ∗ E ⇒
lm

1 +D ∗ E ⇒
lm

1 + 2 ∗ E

⇒
lm

1 + 2 ∗ I ⇒
lm

1 + 2 ∗D ⇒
lm

1 + 2 ∗ 3

60



Note, one word, two different leftmost derivations. Thus the grammar is am-
biguous. Exercise: Find the rightmost derivation corresponding to each tree.

There are two reasons for why ambiguity is problematic. The first we already
alluded to: semantic ambiguity. Suppose we wish to assign a meaning to a word
beyond the word itself. In our case, the meaning might be the result of evaluating
the expression, for instance. Then the first tree suggests that the expression
should be read as 1+(2∗3), which evaluates to 7, while the second tree suggests
the expression should be read as (1 + 2) ∗ 3, which evaluates to 913. Note how
the bracketing reflects the tree structure in each case. We have one word with
two different interpretations and thus semantic ambiguity.

The other reason is that many methods for parsing, i.e. determining if a
given word belongs to the language defined by a CFG, do not work for ambiguous
grammars. In particular, this applies to efficient methods for parsing that usually
are what we would like to use for that very reason. We return to parsing in
section 10.

Fortunately, it is often possible to change an ambiguous grammar into an
unambiguous one that is equivalent; i.e., the language is unchanged. Such gram-
mar transformations are discussed 8. But for now, let us note that Garith was
carefully structured so as to be unambiguous. We can restructure SAE similarly:

E → E + T | T

T → T ∗ F | F

F → (E) | I

I → DI | D

D → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Now there is only one possible derivation tree for 1 + 2 ∗ 3:

E

T

F

I

D

3

∗T

F

I

D

2

+E

T

F

I

D

1

Convince yourself that this is the case. Note that this tree corresponds to the
reading 1 + (2 ∗ 3) of the expression; i.e. a reading where multiplication has
higher precedence than addition. This is, of course, is the standard convention.

13 Strictly speaking, this is just a natural and often convenient convention, because it implies
that the meaning of the whole can be understood in terms of the meaning of the parts in the
obvious way implied by the structure of the tree. However, sometimes, in real compilers, it
might be necessary or convenient to parse things in a way that does not reflect the semantics
as directly. But then the parse tree is usually transformed later into a simplified, internal
version (an Abstract Syntax Tree), the structure of which reflects the intended semantics as
described here.

61



Now, if the interpretation (1 + 2) ∗ 3 is desired, explicit parentheses have to
be used. The (only!) derivation tree for this word is:

E

T

F

I

D

3

∗T

F

)E

T

F

I

D

2

+E

T

F

I

D

1

(

Note that the addition now is a subexpression (subtree) of the overall expression,
which is what was desired.

7.6 Applications of context-free grammars

An important example for context-free languages is the syntax of programming
languages. For example, the specification of the Java programming language14

[GJS+15] uses a context-free grammar to specify the syntax of Java. Another
example is the specification of the syntax of the language used in the G53CMP
Compilers module [Nil16].

In practice, the exact details of how a grammar is presented often differs a
little bit from the conventions introduced here. The Java language specification
being a case in point. Further common variations include Backus-Naur form
(BNF)15 and Extended Backus-Naur form (EBNF)16. But these differences are
entirely superficial. For example, the symbol ::= is often used instead of →. For
another example, EBNF introduces a shorthand notation for “zero or more of”,
commonly denoted by enclosing a grammar symbol (or symbols) in curly braces
or using a Kleene-star like notation; e.g.:

A → . . . {B} . . .

or

A → . . . B∗ . . .

14 http://docs.oracle.com/javase/specs/
15 https://en.wikipedia.org/wiki/Backus%E2%80%93Naur form
16 https://en.wikipedia.org/wiki/Extended Backus%E2%80%93Naur form

62



It is easy to see that this iterative construct really just is a shorthand for basic
productions as it readily can be expressed by introducing an auxiliary nonter-
minal and a couple of associated productions, either using left recursion or right
recursion. The example above can be translated into the equivalent immediately
left-recursive (section 7.1) productions

A → . . . A1 . . .

A1 → ǫ | A1B

or into the equivalent immediately right-recursive productions

A → . . . A1 . . .

A1 → ǫ | BA1

where A1 is a the new, auxiliary, nonterminal.
Note that not all syntactic aspects of common programming languages are

captured by the context-free grammar. For example, requirements regarding
declaring variables before they are used and type correctness of expressions
cannot be captured through context-free languages. However, at least in the
area of programming languages, it is common practice to use the notion of
“syntactically correct” in the more limited sense of “conforming to the context-
free grammar of the language”. Aspects such as type-correctness are considered
separately.

Another application is the document type definition (DTD)17 for the SGML-
family markup languages, like XML and HTML. A DTD defines the document
structure including legal elements and attributes. It can be declared inline, as
a header of the document to which the definition applies, or as an external
reference.

Extensions of context-free grammars are used in computer linguistics to
describe natural languages. In fact, as mentioned in section 1.1, context-free
grammars were originally invented by Noam Chomsky for describing natural
languages. As an example, consider the following set of terminals, each an En-
glish word:

T = {the, dog, cat, that, bites, barks, catches}

We can then define a grammar G = ({S,N,NP ,VI ,VT ,VP}, T, P, S) where P
is the following set of productions:

S → NP VP
N → cat | dog

NP → the N | NP that V P
VI → barks | bites
VT → bites | catches
VP → VI | VT NP

This grammar allows us to derive interesting sentences like:

the dog that catches the cat that bites barks

17 https://en.wikipedia.org/wiki/Document type definition

63



7.7 Exercises

Exercise 7.1

Consider the following Context-Free Grammar (CFG) G:

S → X | Y
X → aXb | ǫ
Y → cY d | ǫ

S, X , Y are nonterminal symbols, S is the start symbol, and a, b, c, d are
terminal symbols.

1. Derive the following words using the grammar G. Answer by giving the
entire derivation sequence from the start symbol S:
(a) ǫ
(b) aabb
(c) cccddd

2. Does the string aaaddd belong to the language L(G) generated by the
grammar G? Provide a brief justification.

3. Give a set expression (using set comprehensions and operations on sets
like union) denoting the language L(G).

Exercise 7.2

Construct a context free grammar generating the language

L = {(ab)m(bc)n(cb)n(ba)m | m,n ≥ 1}{dn | n ≥ 0} ∪ {dn | n ≥ 2}

over the alphabet {a, b, c, d} (parentheses are only used for grouping). Note that
set concatenation has higher precedence than set union. Explain your construc-
tion.

Exercise 7.3

Consider the Context-Free Grammar (CFG) G = (N, T, P, S) where N =
{S,X, Y } are the nonterminal symbols, T = {a, b, c} are the terminal symbols,
S is the start symbol, and the set of productions P is:

S → X | Y
X → aXb | ab
Y → bY c | ǫ

Recall that the relation “derives directly in G” is a relation on strings of
terminals and non-terminals; i.e.

⇒
G

⊆ (N ∪ T )∗ × (N ∪ T )∗

such that for all α, γ ∈ (N ∪ T )∗

αAγ ⇒
G

αβγ ⇐⇒ A → β ∈ P

List all pairs (φ, θ) of the relation⇒
G

for the cases where either φ ∈ {X,XY, aXbY c, cc}

or θ = a.

64



Exercise 7.4

Consider the following Context-Free Grammar (CFG) Exp:

T → T + T | F
F → F ∗ F | P
P → N(A) | (T ) | I
N → f | g | h
A → T | ǫ
I → DI | D
D → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

T , F , P , N , A, I, D are nonterminals; +, ∗, f , g, h, (, ), 0, 1, 2, 3, 4, 5, 6, 7, 8,
9 are terminals; T is the start symbol.

1. Derive the following words in the grammar Exp where possible. If it
is possible to derive the word, give the entire left-most derivation; i.e.
always expand the left-most non-terminal of the sentential form18. If it
is not possible to derive the word, give a brief explanation as to why not.
(a) (789)
(b) 7 + g(3 ∗ 5) ∗ (f())
(c) 1 + 2 ∗ 3)
(d) 1 + 7(9)

2. Draw a derivation tree for the word 7 + (8 ∗ h(1)) + 9 in the grammar
Exp.

3. Draw another derivation tree for the word 7+(8∗h(1))+9 from 2. What
does the fact that there are two different derivation trees for one word
tell about the grammar Exp?

4. Modify the relevant productions of the grammar Exp so that a function
symbol (one of f , g, h) can be applied to zero, one, or more arguments,
separated by a single comma when there are more than one argument,
instead of just zero or one argument. For example, it should be possible
to derive words like

f(2, g(), h(3 + 4))

Explain your construction.

18 Sentential form: word derivable from the start symbol.

65



8 Transformations of context-free grammars

In this section, we discuss how context free grammars can be restructured sys-
tematically without changing the language that they describe. There are many
reasons for doing this, such as simplifying a grammar, putting it into some
specific form, or eliminating ambiguities.

8.1 Equivalence of context-free grammars

Two grammars G1 and G2 are equivalent iff

L(G1) = L(G2)

Whenever a grammar is being transformed, it is assumed that the resulting
grammar is equivalent to the original one.

For example, the following two grammars are equivalent:

G1:
S → ǫ | A

A → a | aA
G2:

S → A

A → ǫ | Aa

L(G1) = {a}∗ = L(G2). The equivalence of CFGs is in general undecidable
(section 11).

8.2 Elimination of uselsss productions

In a context free grammar G = (N, T, P, S), a nonterminal X ∈ N is

• reachable iff S
∗
⇒ αXβ for some α, β ∈ {N ∪ T }∗

• productive iff X
∗
⇒ w for some w ∈ T ∗

Phrased differently, a nonterminal X is reachable if it occurs in some senten-
tial form. Productions for nonterminals that are unreachable or unproductive,
or where an unproductive nonterminal occurs on the right-hand side, are col-
lectively knows as useless productions. Any useless production can be removed
from a grammar without changing the language.

For example, consider the following grammar, where N = {S,A,B}, T =
{a, b}, and S is the start symbol:

S → aAB | b

A → aA | a

B → bB

The nonterminal B is unproductive as there is no way to derive a word of only
terminal symbols from it. This makes the productions S → aAB and B → bB
useless. Removing those productions leaves us with:

S → b

A → aA | a

66



But now A has clearly become an unreachable nonterminal, making the produc-
tions A → aA and A → a useless too. If we remove those as well we obtain:

S → b

Of course, any terminal and nonterminals that no longer occur in any produc-
tions can also be eliminated. Thus the set of nonterminals is now just {S} and
the set of terminals just {b}.

8.3 Substitution

As a direct consequence of how derivation in a grammar is defined, it follows
that an occurrence of a non-terminal in a right-hand side may be replaced by the
right-hand sides of the productions for that non-terminal if done in all possible
ways. This is a form of substitution.

For example, consider the following grammar fragment. We assume it in-
cludes all productions for B, and we wish to eliminate the occurrence of B in
the right-hand side of the production for A:

A → XBY

B → C | D

B → ǫ

Note that there are three productions for B. By substitution, this grammar
fragment can be transformed into:

A → XCY | XDY | XY

B → C | D

B → ǫ

Thus we get one new production for A for each alternative for B. Note that
we cannot necessarily remove the productions for B: there may be other occur-
rences of B in the grammar (as the above was only a fragment). However, if
substitution renders some symbols unreachable, then the productions for those
symbols become useless and can consequently be removed (section 8.2).

Substitution can of course also be performed on recursive productions. That
is often not very useful, though, as the productions just get bigger and more nu-
merous without eliminating any nonterminals. For example, assume the follow-
ing productions are all productions for A in some grammar. Note that A → Ab
is recursive (immediately left-recursive, as it happens):

A → ǫ | Ab

We can substitute the right-hand sides of all productions for A for the one
occurrence of A in the right-hand side of A → Ab. That would leave us with:

A → ǫ | b | Abb

Thus we did not gain anything here, unless there was some specific reason for
wanting a single production that shows that A can yield a single b.

67



8.4 Left factoring

Sometimes it is useful to factor out a common prefix of the right-hand sides of
a group of productions. This is called left factoring. Left factoring can make a
grammar easier to read and understand as it captures a recurring pattern in one
place. It is sometimes also necessary for putting a grammar into a form suitable
for use with certain parsing methods (section 10).

Consider the following two productions for A. Note the common prefix XY :

A → XYX | XY ZZY

After left factoring:

A → BX | BZZY

B → XY

8.5 Disambiguating context-free grammars

Given an ambiguous context-free grammar G, it is often possible to construct
an equivalent but unambiguous grammar G′. Some context-free languages are
inherently ambiguous, meaning that every CFG generating the language is neces-
sarily ambiguous, but most languages of practical interest, such as programming
languages, can be given unambiguous CFGs.

In this section, we focus on how expression languages (like arithmetic expres-
sions or regular expressions) can be given unambiguous CFGs by structuring
the grammar to account for operator precedence and operator associativity.

The following is a CFG for simple arithmetic expressions. For simplicity, we
only consider the numbers 0, 1, and 2:

E → E + E | E ∗ E | E ↑ E | (E) | N

N → 0 | 1 | 2

E and N are nonterminals, E is the start symbol, +, ∗, ↑, (, ), 0, 1, 2 are
terminals. The grammar is ambiguous. For example, the word 0+1+2 has two
different leftmost derivations:

E ⇒
lm

E + E ⇒
lm

N + E ⇒
lm

0 + E ⇒
lm

0 + E + E ⇒
lm

0 +N + E ⇒
lm

0 + 1 + E

⇒
lm

0 + 1 +N ⇒
lm

0 + 1 + 2

E ⇒
lm

E + E ⇒
lm

E + E + E ⇒
lm

N + E + E ⇒
lm

0 + E + E ⇒
lm

0 +N + E

⇒
lm

0 + 1 + E ⇒
lm

0 + 1 +N ⇒
lm

0 + 1 + 2

We now wish to construct an equivalent but unambiguous version of the
the above grammar by making it reflect the following conventions regarding
operator precedence and associativity:

Operators Precedence Associativity

↑ highest right
∗ medium left
+ lowest left

68



For example, the word
1 + 2 ∗ 2 ↑ 2 ↑ 2 + 0

should be read as
(1 + (2 ∗ (2 ↑ (2 ↑ 2)))) + 0

That is, the structure of the (one and only) derivation tree should reflect this
reading.

To impart operator precedence on the grammar, it has to be stratified : First
the expressions have to be partitioned into different categories of expressions,
one category for each operator precedence level. We thus need to introduce
one nonterminal (or syntactic category) for each precedence level. Then it must
be arranged so that expressions belonging to the category for operators of one
precedence level only occur as subexpressions of expressions belonging to the
category for operators of the next lower precedence level. Bracketing (enclosing
an expression in some form of parentheses) should have higher precedence than
any operator. Bracketed subexpressions should thus only be allowed as subex-
pressions of expressions in the category for the highest operator precedence. The
expression enclosed in the parentheses, however, should be of the category for
the lowest operator precedence.

In our example, there are three operator precedence levels, so we introduce
three additional nonterminals (E1, E2, E3) to stratify the grammar into four
levels: one level for each operator precedence category, and one more for the
innermost expression level, the subexpressions of expressions involving operators
of the highest precedence. The resulting grammar is:

E → E1 + E1 | E1

E1 → E2 ∗ E2 | E2

E2 → E3 ↑ E3 | E3

E3 → (E) | N

N → 0 | 1 | 2

This grammar is fine in that it is unambiguous. But for practical purposes,
it is inconvenient as expressions involving more than one operator at the same
level has to be explicitly bracketed. For example, the word 0 + 1 + 2 cannot be
derived in this grammar (try it!), but a user of this little expression language
would have to write either (0 + 1) + 2 or 0 + (1 + 2).

This is where operator associativity comes into the picture: by adopting a
convention regarding associativity, expressions involving more than operator of
some specific precedence level can be implicitly bracketed. In our example, + is
left-associative (as per standard mathematical conventions), which means the
word 0+1+2 should be read as (0+1)+2; i.e. the derivation tree for 0+1+2
should branch to the left, suggesting that 0+1 is a subexpression of the overall
expression.

Imparting of associativity is achieved by making productions for left -associ-
ative operators left -recursive, and those for right -associative operators right -
recursive, as this results in the desired left-branching or right-branching struc-
ture, respectively, of the derivation tree. Note that the requirement that subex-
pressions at one precedence level must all be expressions at next higher prece-
dence level is relaxed a little, but only in a way that does not make the grammar
unambiguous.

69



In our example, the operators + and ∗ are left-associative, and the operator
↑ is right-associative. We thus make the corresponding productions left- and
right-recursive, respectively, arriving at the final version of the grammar:

E → E + E1 | E1

E1 → E1 ∗ E2 | E2

E2 → E3 ↑ E2 | E3

E3 → (E) | N

N → 0 | 1 | 2

This grammar is (again) unambiguous, but now allows words like 0 + 1 + 2.
Verify that there only is one derivation tree, and that this has the desired left-
branching structure!

As an example, let us consider the word 1 + 2 ∗ 2 ↑ 2 ↑ 2 + 0 from above.
Recall that we want the reading (1+ (2 ∗ (2 ↑ (2 ↑ 2)))) + 0. The derivation tree
for the word in the final version of the grammar is:

E

E1

E2

E3

N

0

+E

E1

E2

E2

E2

E3

N

2

↑E3

N

2

↑E3

N

2

∗E1

E2

E3

N

2

+E

E1

E2

E3

N

1

Make sure you understand how the branching structure corresponds to the de-
sired reading of the word; i.e., how precedence and associativity allowed for
implicit bracketing. As an exercise, draw the derivation tree for the explicitly
bracketed word, and compare the structure of the two trees. The trees will not
be the same, of course, as the words are not the same (as words, symbol by
symbol), but the branching structure (what is a subexpression of what) will
agree.

8.6 Elimination of left recursion

A CFG is left-recursive if there is some non-terminal A such that A
+
⇒ Aα19.

Certain parsing methods cannot handle left-recursive grammars. An example
is recursive decent parsing as described in section 10. If we want to use such
a parsing method for parsing a language L = L(G) given by a left-recursive

19 Recall that
+
⇒ means derives in one or more steps; i.e., the transitive closure of ⇒.

70



grammar G, then it first has to be transformed into an equivalent grammar G′

that is not left-recursive.
We first consider immediate left recursion (section 7.1); i.e., productions of

the form A → Aα. We assume that α cannot derive ǫ.
The key idea of the transformation is simple. Let us first consider a simplified

scenario, with one immediately left-recursive production for a nonterminalA and
one non-recursive production:

A → Aα

A → β

Then observe that all strings derivable from A using these two productions have
the form β(α)∗ once the last A has been replaced by β; i.e., β followed by zero or
more α. Now it is easy to see that the following alternative grammar generates
strings of exactly the same form:

A → βA′

A′ → αA′ | ǫ

This is arguably a more direct way to generate strings of the form β(α)∗. In
essence, the productions say: “start with β, and then tag on zero or more α”.

We now generalise and formalise this idea. In order to transform an immedi-
ately left-recursive grammar to an equivalent grammar that is not left recursive,
proceed as follows. For each nonterminal A defined by some left-recursive pro-
duction, group the productions for A

A → Aα1 | Aα2 | . . . | Aαm | β1 | β2 | . . . | βn

such that no βi begins with an A. Then replace the A productions by

A → β1A
′ | β2A

′ | . . . | βnA
′

A′ → α1A
′ | α2A

′ | . . . | αmA′ | ǫ

Assumption: no αi derives ǫ.
To illustrate, consider the immediately left-recursive grammar

S → A | B

A → ABc | AAdd | a | aa

B → Bee | b

Applying the transformation rules above yields the following equivalent right-
recursive grammar:

S → A | B

A → aA′ | aaA′

A′ → BcA′ | AddA′ | ǫ

B → bB′

B′ → eeB′ | ǫ

Let us do a sanity check on the new grammar by picking a word in the
language of the original grammar and make sure it can also be derived in the
new grammar. The derivation of the word should ideally make use of all recursive
productions in the grammar. Let us pick the word aabeeeecddbeec. The following
is the derivation tree for this word in the original grammar, demonstrating that
the word indeed is in the language generated by the grammar:

71



S

A

cB

eeB

b

A

ddA

cB

eeB

eeB

b

A

a

A

a

The derivation tree for the same word in the transformed grammar:

S

A

A′

A′

A′

ǫ

cB

B′

B′

ǫ

ee

b

ddA

A′

A′

ǫ

cB

B′

B′

B′

ǫ

ee

ee

b

a

a

Note that, while the yield is the same in both cases, the structure of the trees
are very different: the first tree is more left-branching, due to the left recursion,
and the other more right-branching, due to the right-recursion.

To eliminate general left recursion, the grammar is first transformed into an
immediately left-recursive grammar through systematic substitution (section
8.3). After this the elimination scheme set out above can be applied.

Consider the following grammar. Note that no production is immediately
left-recursive:

A → BaB

B → Cb | ǫ

C → Ab | Ac

The grammar is, however, left recursive because, for example, A ⇒ BaB ⇒

CbaB ⇒ AbbaB. Thus we have A
+
⇒ Aα (for α = bbaB in this case), demon-

strating that the grammar is left recursive.

72



To eliminate the left recursion, let us first transform this grammar into an
equivalent immediately left-recursive grammar. Let us start by eliminating C
by substituting all alternatives for C into the right-hand side of the production
B → Cb. Note that this makes C an unreachable nonterminal, making the
productions for C useless meaning they can be removed (section 8.2):

A → BaB

B → Abb |Acb | ǫ

Then we can eliminate B wherever it occurs in the leftmost position of a right-
hand side in the productions for A. The grammar is now immediately left-
recursive:

A → AbbaB | AcbaB | aB

B → Abb |Acb | ǫ

Alternatively, B can be eliminated completely from the productions for A, mak-
ing B an unreachable terminal allowing the productions for B to be removed:

A → AbbaAbb | AcbaAbb | aAbb

| AbbaAcb | AcbaAcb | aAcb

| Abba | Acba | a

Let us go with the smaller version (fewer productions):

A → AbbaB | AcbaB | aB

B → Abb |Acb | ǫ

Only the productions for A are immediately left-recursive. Applying the trans-
formation to eliminate left recursion gives us:

A → aBA′

A′ → bbaBA′ | cbaBA′ | ǫ

B → Abb |Acb | ǫ

Note that A appears to the left in B-productions; yet the grammar is no longer
left-recursive. Why?

73



8.7 Exercises

Exercise 8.1

The grammar Exp from exercise 7.4 is ambiguous. Fix this problem; i.e., modify
the grammar, without changing the language of the grammar, so that all words
in the language have exactly one derivation tree. You do not need to prove that
this holds for the resulting grammar, but you should explain what you did and
why.

Exercise 8.2

1. Construct a simple, unambiguous grammar according to the following:

• The integer literals are the only primitive expressions. An integer
literal is either 0, or a non-empty word of decimal digits (0, 1, . . . ,
9) not starting with 0 and with a single optional minus sign (−) in
front. E.g. 0, 1, 42, −234 are all valid integer literals, but 01, −0,
−− 1 are not.

• There are four binary operators:

Operators Precedence Associativity
< 1 (lowest) non-associative
⊕ 2 left
⊗ 3 left
↑ 4 (highest) right

• Additionally, it should be possible to use parentheses for grouping
in the standard way.

2. Draw the derivation tree for 42 < 0 ⊗ −10⊗ (1 ⊕ 7) ↑ 2 and verify that
its structure reflects the specification above.

Exercise 8.3

The following context-free grammar is immediately left-recursive:

S → Sa | XbS | a

X → XXX | Y Y Y | XY Y | Y Y X

Y → cY | dY | e

S, X , and Y are nonterminals, S is the start symbol, and a, b, c, d, and e are
terminals.

Transform it into an equivalent right-recursive grammar. Explicitly show
the result of the grouping step in addition to the final result after applying the
actual transformation step to the productions that need transformation.

74



9 Pushdown Automata

[FOR REFERENCE: PDA NOT TAUGHT SPRING 2019]
We will now consider a new notion of automata Pushdown Automata (PDA).

PDAs are finite automata with a stack; i.e., a data structure that can be used
to store an arbitrary number of symbols (hence PDAs have an infinite set of
states) but which can be only accessed in a last-in-first-out (LIFO) fashion.
The languages that can be recognized by PDA are precisely the context-free
languages.

9.1 What is a pushdown automaton?

A Pushdown Automaton P = (Q,Σ,Γ, δ, q0, Z0, F ) is given by the following
data

• A finite set Q of states,

• A finite set Σ of input symbols (the alphabet),

• A finite set Γ of stack symbols,

• A transition function

δ ∈ Q× (Σ ∪ {ǫ})× Γ → Pfin(Q × Γ∗)

Here Pfin(A) are the finite subsets of a set; i.e., this can be defined as

Pfin(A) = {X | X ⊆ A ∧X is finite.}

Thus, PDAs are in general nondeterministic because they may have a
choice of transitions from any state. However, there are always only finitely
many choices.

• An initial state q0 ∈ Q,

• An initial stack symbol Z0 ∈ Γ,

• A set of final states F ⊆ Q.

As an example we consider a PDA P that recognizes the language of even
length palindromes over Σ = {0, 1}: L = {wwR | w ∈ {0, 1}∗}. Intuitively, this
PDA pushes the input symbols on the stack until it guesses that it is in the
middle and then it compares the input with what is on the stack, popping of
symbols from the stack as it goes. If it reaches the end of the input precisely at
the time when the stack is empty, it accepts.

P0 = ({q0, q1, q2}, {0, 1}, {0, 1,#}, δ, q0,#, {q2})

75



where δ is given by the following equations:

δ(q0, 0,#) = {(q0, 0#)}
δ(q0, 1,#) = {(q0, 1#)}
δ(q0, 0, 0) = {(q0, 00)}
δ(q0, 1, 0) = {(q0, 10)}
δ(q0, 0, 1) = {(q0, 01)}
δ(q0, 1, 1) = {(q0, 11)}
δ(q0, ǫ,#) = {(q1,#)}
δ(q0, ǫ, 0) = {(q1, 0)}
δ(q0, ǫ, 1) = {(q1, 1)}
δ(q1, 0, 0) = {(q1, ǫ)}
δ(q1, 1, 1) = {(q1, ǫ)}
δ(q1, ǫ,#) = {(q2, ǫ)}
δ(q, w, z) = ∅ everywhere else

To save space we may abbreviate this by writing:

δ(q0, x, z) = {(q0, xz)}
δ(q0, ǫ, z) = {(q1, z)}
δ(q1, x, x) = {(q1, ǫ)}
δ(q1, ǫ,#) = {(q2, ǫ)}
δ(q, x, z) = ∅ everywhere else

where q ∈ Q, x ∈ Σ, z ∈ Γ. We obtain the previous table by expanding all the
possibilities for q, x, z.

We draw the transition diagram of P by labelling each transition with a
triple x, Z, γ with x ∈ Σ, Z ∈ Γ, γ ∈ Γ∗:

q0 q1 q2

x, z, xz

ǫ, z, z

x, x, ǫ

ǫ,#, ǫ

9.2 How does a PDA work?

At any time the state of the computation of a PDA P = (Q,Σ,Γ, δ, q0, Z0, F ) is
given by:

• the state q ∈ Q the PDA is in,

• the input string w ∈ Σ∗ that still has to be processed,

• the contents of the stack γ ∈ Γ∗.

Such a triple (q, w, γ) ∈ Q×Σ∗×Γ∗ is called an Instantaneous Description (ID).
We define a relation ⊢

P
⊆ ID × ID between IDs that describes how the PDA

can change from one ID to the next one. Because PDAs in general are nonde-
terministic, this is a relation (not a function); i.e., there may be more than one
possibility.

There are two possibilities for ⊢
P
:

76



1. (q, xw, zγ) ⊢
P
(q′, w, αγ) if (q′, α) ∈ δ(q, x, z)

2. (q, w, zγ) ⊢
P
(q′, w, αγ) if (q′, α) ∈ δ(q, ǫ, z)

In the first case the PDA reads an input symbol and consults the transition
function δ to calculate a possible new state q′ and a sequence of stack symbols
α that replaces the currend symbol on the top z.

In the second case the PDA ignores the input and silently moves into a new
state and modifies the stack as above. The input is unchanged.

Consider the word 0110. What are possible sequences of IDs for P0 starting
with (q0, 0110,#) ?

(q0, 0110,#) ⊢
P0

(q0, 110, 0#) 1. with (q0, 0#) ∈ δ(q0, 0,#)

⊢
P0

(q0, 10, 10#) 1. with (q0, 10) ∈ δ(q0, 1, 0)

⊢
P0

(q1, 10, 10#) 2. with (q1, 1) ∈ δ(q0, ǫ, 1)

⊢
P0

(q1, 0, 0#) 1. with (q1, ǫ) ∈ δ(q1, 1, 1)

⊢
P0

(q1, ǫ,#) 1. with (q1, ǫ) ∈ δ(q1, 0, 0)

⊢
P0

(q2, ǫ, ǫ) 2. with (q2, ǫ) ∈ δ(q1, ǫ,#)

We write (q, w, γ)
∗

⊢
P
(q′, w′, γ) if the PDA can move from (q, w, γ) to (q′, w′, γ′)

in a (possibly empty) sequence of moves. Above we have shown that

(q0, 0110,#)
∗

⊢
P0

(q2, ǫ, ǫ).

However, this is not the only possible sequence of IDs for this input. E.g.
the PDA may just guess the middle wrong:

(q0, 0110,#) ⊢
P0

(q0, 110, 0#) 1. with (q0, 0#) ∈ δ(q0, 0,#)

⊢
P0

(q1, 110, 0#) 2. with (q1, 0) ∈ δ(q0, ǫ, 0)

We have shown (q0, 0110,#)
∗

⊢
P0

(q1, 110, 0#). Here the PDA gets stuck as there

is no state after (q1, 110, 0#).
If we start with a word that is not in the language L (like 0011) then the

automaton will always get stuck before reaching a final state.

9.3 The language of a PDA

There are two ways to define the language of a PDA P = (Q,Σ,Γ, δ, q0, Z0, F )
(L(P ) ⊆ Σ∗) because there are two notions of acceptance:

Acceptance by final state

L(P ) = {w | (q0, w, Z0)
∗

⊢
P
(q, ǫ, γ) ∧ q ∈ F}

That is the PDA accepts the word w if there is any sequence of IDs starting
from (q0, w, Z0) and leading to (q, ǫ, γ), where q ∈ F is one of the final

77



states. Here it doesn’t play a role what the contents of the stack are at
the end.

In our example the PDA P0 would accept 0110 because (q0, 0110,#)
∗

⊢
P0

(q2, ǫ, ǫ) and q2 ∈ F . Hence we conclude 0110 ∈ L(P0).

On the other hand, because there is no successful sequence of IDs starting
with (q0, 0011,#), we know that 0011 /∈ L(P0).

Acceptance by empty stack

L(P ) = {w | (q0, w, Z0)
∗

⊢
P
(q, ǫ, ǫ)}

That is the PDA accepts the word w if there is any sequence of IDs starting
from (q0, w, Z0) and leading to (q, ǫ, ǫ), in this case the final state plays no
role.

If we specify a PDA for acceptance by empty stack we will leave out the
set of final states F and just use P = (Q,Σ,Γ, δ, q0, Z0).

Our example automaton P0 also works if we leave out F and use accep-
tance by empty stack.

We can always turn a PDA that uses one acceptance method into one that
uses the other. Hence, both acceptance criteria specify the same class of lan-
guages.

9.4 Deterministic PDAs

We have introduced PDAs as nondeterministic machines that may have several
alternatives how to continue. We now define Deterministic Pushdown Automata
(DPDA) as those that never have a choice.

To be precise we say that a PDA P = (Q,Σ,Γ, δ, q0, Z0, F ) is deterministic
(is a DPDA) iff

|δ(q, x, z)|+ |δ(q, ǫ, z)| ≤ 1

Remember, that |X | stands for the number of elements in a finite set X .
That is: a DPDA may get stuck but it has never any choice.
In our example the automaton P0 is not deterministic, e.g. we have δ(q0, 0,#) =

{(q0, 0#)} and δ(q0, ǫ,#) = {(q1,#)} and hence |δ(q0, 0,#)|+ |δ(q0, ǫ,#)| = 2.
Unlike the situation for finite automata, there is in general no way to trans-

late a nondeterministic PDA into a deterministic one. Indeed, there is no DPDA
that recognizes the language L! Nondeterministic PDAs are more power-
ful than deterministic PDAs.

However, we can define a similar language L′ over Σ = {0, 1, $} that can be
recognized by a deterministic PDA:

L′ = {w$wR | w ∈ {0, 1}∗}

That is L′ contains palindroms with a marker $ in the middle, e.g. 01$10 ∈ L′.
We define a DPDA P ′ for L′:

P ′ = ({q0, q1, q2}, {0, 1, $}, {0, 1,#}, δ′, q0,#, {q2})

78



where δ′ is given by:

δ′(q0, x, z) = {(q0, xz)} x ∈ {0, 1}, z ∈ {0, 1,#}
δ′(q0, $, z) = {(q1, z)} z ∈ {0, 1,#}
δ′(q1, x, x) = {(q1, ǫ)} x ∈ {0, 1}
δ′(q1, ǫ,#) = {(q2, ǫ)}
δ′(q, x, z) = ∅ everywhere else

The transition graph is:

q0 q1 q2

x, z, xz

$, z, z

x, x, ǫ

ǫ,#, ǫ

We can check that this automaton is deterministic. In particular the 3rd and
4th line cannot overlap because # is not an input symbol.

In contrast to PDAs in general, the two acceptance methods are not equiv-
alent for DPDAs: acceptance by final state makes it possible to define a bigger
class of langauges. We will consequently always use acceptance by final state for
DPDAs in the following.

9.5 Context-free grammars and push-down automata

Theorem 9.1 For a language L ⊆ Σ∗ the following two statements are equiv-
alent:

1. L is given by a CFG G, L = L(G).

2. L is the language of a PDA P , L = L(P ).

To summarize: Context-Free Languages (CFLs) can be described by a Context-
Free Grammar (CFG) and can be processed by a pushdown automaton.

We will he only show how to construct a PDA from a grammar - the other
direction is shown in [HMU01] (6.3.2, pp. 241).

Given a CFG G = (V,Σ, P, S), we define a PDA

P (G) = ({q0}, Σ, V ∪Σ, δ, q0, S)

where δ is defined as follows:

δ(q0, ǫ, A) = {(q0, α) | A → α ∈ P} for all A ∈ V
δ(q0, a, a) = {(q0, ǫ)} for all a ∈ Σ.

We haven’t given a set of final states because we use acceptance by empty stack.
Yes, we use only one state!

Take as an example

G = ({E, T, F}, {(, ), a, +, *}, E, P )

where the set of productions P are given by

E → T | E +T

T → F | T *F

F → a | (E )

79



we define

P (G) = ({q0}, {(, ), a, +, *}, {E, T, F, (, ), a, +, *}, δ, q0, E)

where

δ(q0, ǫ, E) = {(q0, T ), (q0, E+T )}

δ(q0, ǫ, T ) = {(q0, F ), (q0, T*F )}

δ(q0, ǫ, F ) = {(q0, a), (q0, (E))}

δ(q0, (, () = {(q0, ǫ)}

δ(q0, ), )) = {(q0, ǫ)}

δ(q0, a, a) = {(q0, ǫ)}

δ(q0, +, +) = {(q0, ǫ)}

δ(q0, *, *) = {(q0, ǫ)}

δ(q, x, z) = ∅ everywhere else

How does the P (G) accept a+(a*a)?

(q0, a+(a*a), E) ⊢ (q0, a+(a*a), E+T )

⊢ (q0, a+(a*a), T+T )

⊢ (q0, a+(a*a), F+T )

⊢ (q0, a+(a*a), a+T )

⊢ (q0, +(a*a), +T )

⊢ (q0, (a*a), T )

⊢ (q0, (a*a), F )

⊢ (q0, (a*a), (E))

⊢ (q0, a*a), E))

⊢ (q0, a*a), T))

⊢ (q0, a*a), T*F ))

⊢ (q0, a*a), F*F ))

⊢ (q0, a*a), a*F ))

⊢ (q0, *a), *F))

⊢ (q0, a), F))

⊢ (q0, a), a))

⊢ (q0, ), ))

⊢ (q0, ǫ, ǫ)

Hence a+(a*a) ∈ L(P (G)).
This above example illustrates the general idea:

w ∈ L(G) ⇐⇒ S
∗
⇒ w

⇐⇒ (q0, w, S)
∗

⊢ (q0, ǫ, ǫ)

⇐⇒ w ∈ L(P (G))

The automaton we have constructed is very nondeterministic: Whenever we
have a choice between different rules the automaton may silently choose one of
the alternatives.

80



10 Recursive-Descent Parsing

10.1 What is parsing?

According to Merriam-Webster OnLine20 parse means:

To resolve (as a sentence) into component parts of speech and de-
scribe them grammatically.

In a computer science context, we take this to mean answering whether or not

w ∈ L(G)

for a CFG G by analysing the structure of w according to G; i.e. to recognise
the language generated by a grammar G.

A parser is a program that carries out parsing. For a CFG, this amounts to
a realisation of a PDA. For most practical applications, a parser will also return
a structured representation of a word w ∈ L(G). This could be the derivation
(or parse) tree for the word, or, more commonly, a simplified version of this, a so
called Abstract Syntax Tree. Further, for a word not in the language, w /∈ L(G),
a practical parser would normally provide an error message explaining why. An
important application of parsers is in the front-end of compilers and interpreters
where they turn a text-based representation of a program into a structured
representation for further analysis and translation or execution.

In this section we study how to systematically construct a parser from a
given CFG using the recursive-decent parsing method. To make the discussion
concrete, we implement the parsers we develop in Haskell. Thus you can easily
try out the examples in this section yourself using a Haskell system such as
GHCi, and it is recommended that you do so! That said, we are essentially just
using a small fragment of Haskell as a notation for writing simple functions,
so it should not be difficult to follow the development even if you are not very
familiar with Haskell. There are plenty of Haskell resources on-line, both for
learning and for downloading and installing Haskell systems21.

10.2 Parsing strategies

There are two basic strategies for parsing: top-down and bottom up.

• A top-down parser attempts to carry out a derivation matching the input
starting from the start symbol; i.e., it constructs the parse tree for the
input from the root downwards in preorder.

• A bottom-up parser tries to construct the parse tree from the leaves up-
wards by using the productions “backwards”.

Top-down parsing is, in essence, what we have been doing so far whenever
we have derived some specific word in a language from the start symbol of a
grammar generating that language. For example, consider the grammar:

S → aSa | bSb | a | b

20 http://www.webster.com
21 http://www.haskell.org, http://learnyouahaskell.com

81



If given a string ababa, a top-down parser for this grammar would try to derive
this string from the start symbol S and thus proceed as:

S ⇒ aSa ⇒ abSba ⇒ ababa

If we draw the derivation tree after each derivation step, we see how the tree
gets constructed from the root downwards:

S S

aSa

S

aS

bSb

a

S

aS

bS

a

b

a

In contrast, a bottom-up parser would start from the leaves, and step by
step group them together by applying productions in reverse:

ababa ⇐ abSba ⇐ aSa ⇐ S

This is a rightmost derivation in reverse. The derivation tree thus gets con-
structed from the bottom upwards:

a

S

a

S

bS

a

b

S

aS

bS

a

b

a

The key difficulty of bottom-up parsing is to decide when to reduce. For example,
in this case, how does the parser know not to reduce neither the first input
symbol a nor the second input symbol b to S, but wait until it sees the middle
a and only then do the first reduction step? Such questions are answered by LR
parsing theory22 We will not consider LR parsing further here, except noting
that it is covered in more depth in the Compilers module [Nil16] that builds on
much of the material in this module. Instead we turn our attention to recursive-
decent parsing, which is a type of top-down parsing.

10.3 Basics of recursive-descent parsing

Recursive-descent parsing is a way to implement top-down parsing. We are just
going to focus on the language recognition problem: w ∈ L(G)? This suggests
the following type for the parser:

parser :: [Token] -> Bool

Token is “compiler speak” for (input) symbol; i.e., an element of the alphabet.
Consider a typical production in some CFG G:

S → AB

22 https://en.wikipedia.org/wiki/LR parser

82



Let L(X) be the language {w ∈ T ∗ | X
∗
⇒
G

w}, X ∈ N . Note that

w ∈ L(S) ⇐ ∃w1, w2 . w = w1w2

∧ w1 ∈ L(A)
∧ w2 ∈ L(B)

That is, given a parser for L(A) and a parser for L(B), we can construct a parser
for L(S) by asking the first parser if a prefix w1 of w belongs to L(A), and then
asking the other parser if the remaining suffix w2 of w belongs to L(B). If the
answer two both questions is yes, then w belongs to L(S).

However, we need to find the right way to divide the input word w! In
general, there are |w|+1 possibilities. We could, of course, blindly try them all.
But as the prefix and suffix recursively also have to be split in all possible ways,
and so on until we get down to individual akphabet symbols, it is clear that
this approach would lead to a combinatorial explosion that would render such
a parser useless for all but very short words.

Instead we need to let the input guide the search. To that end, we initially
adopt the following idea:

• Each parser tries to derive a prefix of the input according to the produc-
tions for the nonterminal

• Each parser returns the remaining suffix if successful, allowing this to be
passed to the next parser for analysis.

This gives us the following refined type for parsers:

parseX :: [Token] -> Maybe [Token]

Recall that Maybe is Haskell’s option type:

data Maybe a = Nothing | Just a

Of course, we should be a little suspicious: There could be more than one
prefix derivable from a non-terminal, and if so, how can we then know which
one to pick? Picking the wrong prefix might make it impossible to derive the
suffix from the non-terminal that follows. We will return to these points later.

Now we can construct a parser for L(S)

S → AB

in terms of parsers for L(A) and L(B):

parseS :: [Token] -> Maybe [Token]

parseS ts =

case parseA ts of

Nothing -> Nothing

Just ts’ ->

case parseB ts’ of

Nothing -> Nothing

Just ts’’ -> Just ts’’

Note that the case analysis on the result of parseB ts’ simply passes on the
result unchanged. Thus we can simplify the code to:

83



parseS :: [Token] -> Maybe [Token]

parseS ts =

case parseA ts of

Nothing -> Nothing

Just ts’ -> parseB ts’

This approach is called recursive-descent parsing because the parse func-
tions (usually) end up being (mutually) recursive. What does this have to do
with realising a PDA? Fundamental to the implementation of a recursive com-
putation is a that keeps track of the state of the computation and allows for
subcomputations (to any depth). In a language that supports recursive functions
and procedures, the stack is usually not explicitly visible, but internally, it is a
central datastructure. Thus, a recursive-descent parser is a kind of PDA.

Let us develop this example a little further into code that can be executed.
First, for simplicity, let us pick the type Char for token:

type Token = Char

Recall that (basic) strings are just lists of characters in Haskell; that is, String =
[Char] = [Token]. Thus, a string literal like "abcd" is just a shorthand notation
for the list of characters [’a’,’b’,’c’,’d’].

Now, suppose the productions for A and B are the following

A → a

B → b

Thus, in this case, it is clear that if the parsing function parseA for the non-
terminal A sees input starting with an a, then that a is the desired prefix, and
whatever remains of the input is the suffix that should be returned as part if
the indication of having been able to successfully derive a prefix of the input
from the nonterminal in question. Otherwise, if the input does not start with
an a, it is equally clear that it is not possible to derive any prefix of the input
from the nonterminal A, and the parsing function must thus indicate failure. In
essence, this is how the input is used to guide the search for the right prefix.

We can implement parseA in Haskell, using pattern matching, as follows:

parseA :: [Token] -> Maybe [Token]

parseA (’a’ : ts) = Just ts

parseA _ = Nothing

The case and code for the parsing function parseB for the nonterminal B is of
course analogous:

parseB :: [Token] -> Maybe [Token]

parseB (’b’ : ts) = Just ts

parseB _ = Nothing

Now we can evaluate parseA, parseB, and parseS on "abcd" with the fol-
lowing results:

parseA "abcd" ⇒ Just "bcd"

parseB "abcd" ⇒ Nothing

parseS "abcd" ⇒ Just "cd"

84



This tells us that a prefix of abcd can be derived from A, leaving a remaining
suffix bcd, that no prefix of abcd can be derived from B, but that a prefix of
abcd also can be derived from S, leaving a suffix cd, as we would expect.

10.4 Handling choice

Of course, there are usually more than one one production for a nonterminal.
Thus need a way to handle choice, as in

S → AB | CD

We are first going to consider the case when the choice is obvious, as in

S → aAB | cCD

That is, we assume it is manifest from the grammar that we can choose between
productions with a one-symbol lookahead.

As an example, let us construct a parser for the grammar:

S → aA | bBA

A → aA | ǫ

B → bB | ǫ

We are going to need one parsing function for each non-terminal:

• parseS :: [Token] -> Maybe [Token]

• parseA :: [Token] -> Maybe [Token]

• parseB :: [Token] -> Maybe [Token]

We again take type Token = Char for simplicity.
Code for parseS. Note how the pattern matching makes use of a one-symbol

lookahead to chose between the two productions for S:

parseS :: [Token] -> Maybe [Token]

parseS (’a’ : ts) =

parseA ts

parseS (’b’ : ts) =

case parseB ts of

Nothing -> Nothing

Just ts’ -> parseA ts’

parseS = Nothing

The code for parseA and parseB similarly make use of the one-symbol looka-
head to chose between productions, but this time, because A ⇒ ǫ and B ⇒ ǫ, it
is not a syntax error if the next token is not, respectively, a and b. Thus both
functions can succeed without consuming any input:

parseA :: [Token] -> Maybe [Token]

parseA (’a’ : ts) = parseA ts

parseA ts = Just ts

parseB :: [Token] -> Maybe [Token]

parseB (’b’ : ts) = parseB ts

parseB ts = Just ts

85



Now consider a more challenging scenario:

S → aA | aBA

A → aA | ǫ

B → bB | ǫ

In the parsing function parseS for nonterminal S, should parseA or parseB be
called once a has been read?

We could try the alternatives in order; i.e., a limited form of backtracking:

parseS (’a’ : ts) =

case parseA ts of

Just ts’ -> Just ts’

Nothing ->

case parseB ts of

Nothing -> Nothing

Just ts’ -> parseA ts’

Of course, the choice to try parseA first is arbitrary, a point we will revisit
shortly.

Similarly, there are two alternatives for the nonterminalA. In fact, we already
encountered this situation above, and as we did there, let us try to consume an
input prefix (here a) if possible, and only if that is not possible succeed without
consuming any input:

parseA :: [Token] -> Maybe [Token]

parseA (’a’ : ts) = parseA ts

parseA ts = Just ts

The code for B is of course similar. This may seem like an obvious ordering:
after all, if we opted to “try” without consuming any input first, then that would
always succeed, and no other alternatives would ever be tried. Nevertheless,
picking the order we did still amounts to an arbitrary choice, and in fact it is
not always the right one.

The problem here is that limited backtracking is not an exhaustive search.
For many grammars, there simply is no one order that always will work, meaning
that a parser that nevertheless commits to one particular order is liable to get
stuck in “blind alleys”.

Consider the following grammar

S → AB

A → aA | ǫ

B → ab

and corresponding parsing functions:

parseA (’a’ : ts) = parseA ts

parseA ts = Just ts

parseB (’a’ : ’b’ : ts) = Just ts

parseB ts = Nothing

86



parseS ts =

case parseA ts of

Nothing -> Nothing

Just ts’ -> parseB ts’

Will it work? Let us try it on ab. Clearly derivable from the grammar:

S ⇒ AB ⇒ B ⇒ ab

However, if we run our parser on "ab":

parseS "ab" ⇒ Nothing

Our parser thus says “no”. Why? Because

parseA "ab" ⇒ Just "b"

That is, the code for parseA committed to the choice A → a too early and will
never try A → ǫ. That was the wrong choice in this case and the parser got
stuck in a “blind alley”.

Would it have been better to try A → ǫ first? Then the parser would work
for the word ab, but it would still fail on other words that should be accepted,
such as aab. To successfully parse that word, parseA must somehow consume
the first a but not the second, and neither ordering of the productions for A will
achieve that.

One principled approach addressing this dilemma is to try all alternatives;
i.e., full backtracking (aka list of successes):

• Each parsing function returns a list of all possible suffixes. Type:

parseX :: [Token] -> [[Token]]

• Translate A → α | β into

parseA ts = parseAlpha ts ++ parseBeta ts

• An empty list indicates no possible parsing.

However:

• Full backtracking is computationally expensive.

• In error reporting, it becomes difficult to pinpoint the exact location of a
syntax error: where exactly lies the problem if it only after an exhaustive
search becomes apparent that there is no possible way to parse a word?

In section 10.6, we are going to look at another principled approach that
avoids backtracking: predictive parsing. The price we have to pay is that the
grammar must satisfy certain conditions. But at least we will know statically,
at construction time if the parser is going to work or not. And if not, we can try
to modify the grammar (without changing the language) until the prerequisite
conditions are met. First, however, we will consider the problem of left-recursion
and context-free grammars.

87



10.5 Recursive-descent parsing and left-recursion

Consider the grammar
A → Aa | ǫ

and the corresponding recursive-descent parsing function:

parseA :: [Token] -> Maybe [Token]

parseA ts =

case parseA ts of

Just (’a’ : ts’) -> Just ts’

_ -> Just ts

Any problem? Yes, because the function calls itself without consuming any
input, it will loop forever.

The problem here is that the grammar is left-recursive. Recall that a this

means that there is a derivation A
+
⇒ Aα for some nonterminal A. As each

derivation step corresponds to one parsing function calling another, it is clear
that recursive-descent parsing functions derived from a left-recursive grammar
will end up looping forever as soon as one of the parsing functions for a left-
recursive non-terminal is invoked because no input is consumed before the same
function is entered again, directly or indirectly.

Recursive-descent parsers thus cannot23 deal with left-recursive grammars.
The standard way of resolving this is to transform a left-recursive grammar into
an equivalent grammar that is not left recursive as described in section 8.6, and
then deriving the parser from the non-left-recursive version of the grammar.

10.6 Predictive parsing

In a recursive-decent parsing setting, we want a parsing function to be success-
ful exactly when a prefix of the input can be derived from the corresponding
nonterminal. This can be achieved by:

• Adopting a suitable parsing strategy, specifically regarding how to handle
choice between two or more productions for one nonterminal.

• Impose restrictions on the grammar to ensure success of the chosen parsing
strategy.

Predictive parsing is when all parsing decisions can be made based on a
lookahead of limited length, typically one symbol. We have already seen cases
where predictive parsing clearly is possible; for example, this is manifestly the
case when the right-hand side of each possible production starts with a distinct
terminal, as here:

S → aB | cD

But we also saw that the choice is not always this obvious, and that if we
then make arbitrary choices regarding which order in which to try productions,
the resulting parser is likely to be flawed. In the following, we are going to

23 At least not when implemented in the standard way described here. It is possible, by keep-
ing track of more contextual information, to detect when no progress is being made and limit
the recursion depth at that point. See https://en.wikipedia.org/wiki/Top-down parsing.

88



look into exactly when the next input symbol suffices to make all choices. As a
consequence, if we are faced with a grammar were a one-symbol lookahead is
not enough, we will know this, and we can take corrective action, such as trying
to transform the grammatr in a way that will reolve the problem.

Before we start, let us just give an example that illustrates that a one-symbol
lookahead can be enough even if the RHSs start with nonterminals:

S → AB | CD

A → a | b

C → c | d

Here, if the input starts with an a or b, we should clearly attempt to parse by
the production S → AB, and if it starts with a c or a d, we should attempt to
parse by A → CD. This suggests that the key is going to be an analysis of the
grammar: for each nonterminal, we need to know what symbols that may start
words derived from that nonterminal.

More generally, consider productions for a nonterminal X

X → α | β

and the corresponding parsing code:

parseX (t : ts) =

| t ?? -> parse α
| t ?? -> parse β
| otherwise -> Nothing

The questions is, what should the conditions be on the lookahead symbol t,
here indicated by ??, to decide whether or not to parse by the production cor-
responding to each case?

The idea of predictive parsing is this:

• Compute the set of terminal symbols that can start strings derived from
each alternative, the first set.

• If there is a choice between two or more alternatives, insist that the first
sets for those are disjoint (a grammar restriction).

• The right choice can now be made simply by determining to which alter-
native’s first set the next input symbol belongs.

We can now refine the code to:

parseX (t : ts) =

| t ∈ first(α) -> parse α
| t ∈ first(β) -> parse β
| otherwise -> Nothing

But the situation could be a bit more involved as it sometimes is possible
to derive the empty word from a nonterminal, and the empty word does of
course not begin with any symbol at all. For a concrete example, consider again
X → α | β, and suppose it can be the case that β

∗
⇒ ǫ.

Clearly, the next input symbol could in this case be a terminal that can
follow a string derivable form X , meaning we need to refine the parsing code
further:

89



parseX (t : ts) =

| t ∈ first(α) -> parse α
| t ∈ first(β) ∪ follow(X) -> parse β
| otherwise -> Nothing

Of course, the branches must be mutually exclusive! Otherwise a one-symbol
lookahead is not enough to decide which choice to make.

10.6.1 First and follow sets

We will now develop tease ideas in more detail. The presentation roughly follows
“The Dragon Book” [ASU86]. For a CFG G = (N, T, P, S):

first(α) = {a ∈ T | α
∗
⇒
G

aβ}

follow(A) = {a ∈ T | S
∗
⇒
G

αAaβ}

∪ {$ | S
∗
⇒
G

αA}

where α, β ∈ (N ∪T )∗, A ∈ N , and where $ is a special “end of input” marker.
To illustrate these definitions, consider the grammar:

S → ABC

A → aA | ǫ

B → b | ǫ

C → c | d

First sets:

first(C) = {c, d}

first(B) = {b}

first(A) = {a}

first(S) = first(ABC)

= [because A
∗
⇒ ǫ and B

∗
⇒ ǫ]

first(A) ∪ first(B) ∪ first(C)

= {a, b, c, d}

Follow sets:

follow(C) = {$}

follow(B) = first(C) = {c, d}

follow(A) = [because B
∗
⇒ ǫ]

first(B) ∪ first(C)

= {b, c, d}

10.6.2 LL(1) grammars

Now consider all productions for a nonterminal A in some grammar:

A → α1 | α2 | . . . | αn

In the parsing function for A, on input symbol t, we should parse according to
αi if

90



• t ∈ first(αi).

• t ∈ follow(A), if αi
∗
⇒ ǫ

Thus, if:

• first(αi) ∩ first(αj) = ∅ for 1 ≤ i < j ≤ n, and

• if αi
∗
⇒ ǫ for some i, then, for all 1 ≤ j ≤ n, j 6= i,

– αj 6
∗
⇒ ǫ, and

– follow(A) ∩ first(αj) = ∅

then it is always clear what do do! A grammar satisfying these conditions is said
to be an LL(1) grammar.

10.6.3 Nullable nonterminals

In order to compute the first and follow sets for a grammar G = (N, T, P, S),

we first need to know all nonterminals A ∈ N such that A
∗
⇒ ǫ; i.e. the set

Nǫ ⊆ N of nullable nonterminals.
Let syms(α) denote the set of symbols in a string α:

syms ∈ (N ∪ T )∗ → P(N ∪ T )

syms(ǫ) = ∅

syms(Xα) = {X} ∪ syms(α)

The set Nǫ is the smallest solution to the equation

Nǫ = {A | A → α ∈ P ∧ ∀X ∈ syms(α) . X ∈ Nǫ}

Note that A ∈ Nǫ if A → ǫ ∈ P because syms(ǫ) = ∅ and ∀X ∈ ∅ . . . . is
trivially true. Also note that we really need to look for the smallest solution.
For example, consider a grammar S → SS | a. Nǫ = {S} is clearly a solution
to the equation defining Nǫ for this grammar, but S is also clearly not nullable.
That is because Nǫ = {S} is not the smallest solution. The smallest solution in
this case is Nǫ = ∅; i.e. there are no nullable nonterminals.

We can now define a predicate nullable on strings of grammar symbols:

nullable ∈ (N ∪ T )∗ → Bool

nullable(ǫ) = true

nullable(Xα) = X ∈ Nǫ ∧ nullable(α)

The equation for Nǫ can be solved iteratively as follows:

1. Initialize Nǫ to {A | A → ǫ ∈ P}.

2. If there is a production A → α such that ∀X ∈ syms(α) . X ∈ Nǫ, then
add A to Nǫ.

3. Repeat step 2 until no further nullable nonterminals can be found.

Consider the following grammar:

91



S → ABC | AB

A → aA | BB

B → b | ǫ

C → c | d

• Because B → ǫ is a production, B ∈ Nǫ.

• Because A → BB is a production and B ∈ Nǫ, additionally A ∈ Nǫ.

• Because S → AB is a production, and A,B ∈ Nǫ, additionally S ∈ Nǫ.

• No more production with nullable RHSs. The set of nullable symbols Nǫ =
{S,A,B}.

10.6.4 Computing first sets

For a CFG G = (N, T, P, S), the sets first(A) for A ∈ N are the smallest sets
satisfying:

first(A) ⊆ T

first(A) =
⋃

A→α ∈ P

first(α)

For strings, first is defined as (note the overloaded notation):

first ∈ (N ∪ T )∗ → P(T )

first(ǫ) = ∅

first(aα) = {a}

first(Aα) = first(A) ∪

{

first(α), if A ∈ Nǫ

∅, if A /∈ Nǫ

where a ∈ T , A ∈ N , and α ∈ (N ∪ T )∗.
The solutions can often be obtained directly by expanding out all definitions.

If necessary, the equations can be solved by iteration in a similar way to how
Nǫ is computed. Note that the smallest solution to a set equation of the type
X = X ∪ Y when there are no other constraints on X is simply X = Y .

Consider (again):

S → ABC

A → aA | ǫ

B → b | ǫ

C → c | d

92



First compute the nullable nonterminals: Nǫ = {A,B}. Then the first sets:

first(A) = first(aA) ∪ first(ǫ)

= {a} ∪ ∅ = {a}

first(B) = first(b) ∪ first(ǫ)

= {b} ∪ ∅ = {b}

first(C) = first(c) ∪ first(d)

= {c} ∪ {d} = {c, d}

first(S) = first(ABC)

= [A ∈ Nǫ]

first(A) ∪ first(BC)

= [B ∈ Nǫ ∧ C /∈ Nǫ]

first(A) ∪ first(B) ∪ first(C) ∪ ∅

= {a} ∪ {b} ∪ {c, d} = {a, b, c, d}

10.6.5 Computing follow sets

For a CFG G = (N, T, P, S), the sets follow(A) are the smallest sets satisfying:

• {$} ⊆ follow(S)

• If A → αBβ ∈ P , then first(β) ⊆ follow(B)

• If A → αBβ ∈ P , and nullable(β) then follow(A) ⊆ follow(B)

A,B ∈ N , and α, β ∈ (N ∪ T )∗.
(It is assumed that there are no useless symbols; i.e., all symbols can appear in
the derivation of some sentence.)

Here is our example grammar again:

S → ABC

A → aA | ǫ

B → b | ǫ

C → c | d

Constraints for follow(S):

{$} ⊆ follow(S)

Constraints for follow(A) (note: ¬nullable(BC)):

first(BC) ⊆ follow(A)

first(ǫ) ⊆ follow(A)

follow(A) ⊆ follow(A)

Constraints for follow(B) (note: ¬nullable(C)):

first(C) ⊆ follow(B)

Constraints for follow(C) (note: nullable(ǫ)):

first(ǫ) ⊆ follow(C)

follow(S) ⊆ follow(C)

93



In general:

X ⊆ Z ∧ Y ⊆ Z ⇐⇒ X ∪ Y ⊆ Z

Also, constraints like ∅ ⊆ X and X ⊆ X are trivially satisfied and can be
omitted.

The constraints for our example can thus be written as:

{$} ⊆ follow(S)

first(BC) ∪ first(ǫ) ⊆ follow(A)

first(C) ⊆ follow(B)

first(ǫ) ∪ follow(S) ⊆ follow(C)

Using

first(ǫ) = ∅

first(C) = {c, d}

first(BC) = first(B) ∪ first(C) ∪ ∅

= {b} ∪ {c, d} = {b, c, d}

the constraints can be simplified further:

{$} ⊆ follow(S)

{b, c, d} ⊆ follow(A)

{c, d} ⊆ follow(B)

follow(S) ⊆ follow(C)

Finally, looking for the smallest sets satisfying these constraints, we get:

follow(S) = {$}

follow(A) = {b, c, d}

follow(B) = {c, d}

follow(C) = follow(S) = {$}

10.6.6 Implementing a predictive parser

Let us now implement a predictive parser for our sample grammar:

S → ABC

A → aA | ǫ

B → b | ǫ

C → c | d

For this grammar, as per the calculations above:

• Nullable symbols: Nǫ = {S,A,B}

• First sets:

first(S) = {a, b, c, d}

first(A) = {a}

first(B) = {b}

first(C) = {c, d}

94



• Follow sets:

follow(S) = {$}

follow(A) = {b, c, d}

follow(B) = {c, d}

follow(C) = {$}

Recall the “template code” for a parsing function for a pair of productions
like X → α | β. If no RHS is nullable:

parseX (t : ts) =

| t ∈ first(α) -> parse α
| t ∈ first(β) -> parse β
| otherwise -> Nothing

If one RHS is nullable, say nullable(β):

parseX (t : ts) =

| t ∈ first(α) -> parse α
| t ∈ first(β) ∪ follow(X) -> parse β
| otherwise -> Nothing

We can now implement predictive parsing functions for the nonterminals S,
A, B, and C as follows in pseudo Haskell. The function for S is straightforward
as there is only one production for S, thus no choice:

parseS ts =

case parseA ts of

Just ts’ ->

case parseB ts’ of

Just ts’’ ->

parseC ts’’

Nothing ->

Nothing

Noting ->

Nothing

For A, there are two productions: A → aA | ǫ. Note that aA is trivially
not nullable, while ǫ trivially is nullable. We thus compute first(aA) = {a} and
first(ǫ) ∪ follow(A) = ∅ ∪ {b, c, d} = {b, c, d}. The parsing function for A thus
becomes:

parseA (t : ts) =

| t ∈ {a} -> parseA ts

| t ∈ {b, c, d} -> Just (t : ts)

| otherwise -> Nothing

Note how the case for the ǫ-production only does checking on the next input
symbol, but does not consume it.

For B, there are also two productions: B → b | ǫ. Note that b is trivially
not nullable, while ǫ trivially is nullable. We thus compute first(b) = {b} and
first(ǫ) ∪ follow(B) = ∅ ∪ {c, d} = {c, d}. The resulting parsing function for B:

95



parseB (t : ts) =

| t ∈ {b} -> Just ts

| t ∈ {c, d} -> Just (t : ts)

| otherwise -> Nothing

Note how the case for b checks that the next input indeed is a b and if so
succeeds, consuming that one input symbol, while the ǫ-production again only
checks the next input symbol without consuming it.

Finally, the productions for C are C → c | d, where both RHSs are trivially
not nullable. We compute first(c) = {c} and first(d) = {d}. The parsing function
for C:

parseC (t : ts) =

| t ∈ {c} -> Just ts

| t ∈ {d} -> Just ts

| otherwise -> Nothing

This can of course be simplified a little, which is the case whenever there are
multiple productions with the RHSs being a single terminal:

parseC (t : ts) =

| t ∈ {c, d} -> Just ts

| otherwise -> Nothing

10.6.7 LL(1), left-recursion, and ambiguity

As we have seen, the LL(1) conditions impose a number of restrictions on a
grammar. In particular, no left-recursive or ambiguous grammar can be LL(1)!

Let us prove that a left-recursive grammar cannot be LL(1). Recall that a
grammar is left-recursive iff there exists A ∈ N and α ∈ (N ∪ T )∗ such that

A
+
⇒ Aα (section 8.6). We can assume without loss of generality that there are

no useless symbols and productions in the grammar as any useless productions
can be removed from a grammar without changing the language (section 8.2).

It thus follows that a derivation A
+
⇒ w, w ∈ T ∗, must also exist.

Let us assume that all derivations are leftmost. Clearly, Aα 6= w, and thus
there must have been a choice at some point differentiating these two derivations.
That is, there must exist some B ∈ N for which there are at least two distinct
productions B → β1 | β2 such that

A
∗
⇒ Bγ ⇒ β1γ

∗
⇒ Aα

and
A

∗
⇒ Bγ ⇒ β2γ

∗
⇒ w

Let us now observe that if there is a derivation α
∗
⇒ β, then first(α) ⊇

first(β). Let us also observe that if ¬nullable(α), then first(αβ) = first(α), and
if nullable(α), then first(αβ) = first(α)∪first(β). (These should really be proved
as auxiliary lemmas, but they are fairly obvious.)

Now let us consider β1 and β2. If both nullable(β1) and nullable(β2), then
that is an immediate violation of the LL(1) conditions, so we need not consider
that case further. Moreover, we can assume w 6= ǫ: if the only terminal string
derivable from A is ǫ, then, under the assumption of no useless productions, it

96



must be the case that both nullable(β1) and nullable(β2) which again violates

the LL(1) conditions. Thus, because A
+
⇒ w and w 6= ǫ, we have:

first(A) ⊇ first(w) 6= ∅

Suppose ¬nullable(β1) and ¬nullable(β2). Because ¬nullable(β1), β1γ
∗
⇒

Aα, and first(Aα) ⊇ first(A) by definition, we have:

first(β1) = first(β1γ) ⊇ first(Aα) ⊇ first(A) ⊇ first(w)

Because ¬nullable(β2) and β2γ
∗
⇒ w, we have:

first(β2) = first(β2γ) ⊇ first(w)

Thus
first(β1) ∩ first(β2) ⊇ first(w) 6= ∅

This proves that the intersection between the first sets of the RHSs of the two
productions B → β1 | β2 is nonempty, and we have a violation of the LL(1)
conditions.

Suppose nullable(β1) and ¬nullable(β2). The LL(1) conditions now require

first(β1)∪ follow(B) and first(β2) to be disjoint. Becasue A
∗
⇒ Bγ (assuming no

uselss symbols or productions), follow(B) ⊇ first(γ). It follows that

first(β1) ∪ follow(B) ⊇ first(β1) ∪ first(γ) = first(β1γ)

But then, because β1γ
∗
⇒ Aα we have

first(β1γ) ⊇ first(Aα) ⊇ first(A) ⊇ first(w)

Thus, first(β1) ∪ follow(B) ⊇ first(w). But as before, as ¬nullable(β2), we have
first(β2) ⊇ first(w). As first(w) 6= ∅, we can conclude that these two sets are not
disjoint, and therefore the LL(1) conditions are violated.

Suppose instead ¬nullable(β1) and nullable(β2). The LL(1) conditions now
require first(β1) and first(β2) ∪ follow(B) to be disjoint. Again, follow(B) ⊇
first(γ). It follows that

first(β2) ∪ follow(B) ⊇ first(β2) ∪ first(γ) = first(β2γ)

Then, because β2γ
∗
⇒ w we have

first(β1γ) ⊇ first(w)

Thus, first(β2)∪follow(B) ⊇ first(w). But given ¬nullable(β1), we have first(β1) ⊇
first(w). As first(w) 6= ∅, we can again conclude that these two sets are not dis-
joint, and therefore the LL(1) conditions are violated.

Thus, no left-recursive grammar can satisfy the LL(1) conditions, which
means that a left-recursive grammar first must be transformed into an equivalent
grammar that is not left-recursive if we wish to develop an LL(1) parser for the
language described by the grammar.

Let us now prove that no ambiguous grammar can be LL(1). Recall that a
grammar is ambiguous if a single word w can be derived in two (or more) essen-
tially different ways, for example there exist two different leftmost derivations
for w.

97



Assume that a given grammar is ambiguous and pick two different leftmost
derivations for some word w in the langauge of the grammar. Consider the first
place where these derivations differ:

S
∗
⇒ a1 . . . aiAα ⇒ a1 . . . aiβ1α

∗
⇒ a1 . . . aiai+1 . . . an = w

and
S

∗
⇒ a1 . . . aiAα ⇒ a1 . . . aiβ2α

∗
⇒ a1 . . . aiai+1 . . . an = w

Thus there are two productions A → β1 | β2 in the grammar. Assuming
ai+1 . . . an 6= ǫ, we have the following possibilities:

• ai+1 ∈ first(beta1) and ai+1 ∈ first(beta2), meaning the LL(1) conditions
are violated;

• One of β1 or β2 derives ǫ, implying ai+1 ∈ follow(A) and ai+1 ∈ first(beta1)
or ai+1 ∈ first(beta2), meaning the LL(1) conditions are violated either
way;

• Both β1 or β2 derive ǫ, a direct violation of the LL(1) conditions.

Assuming ai+1 . . . an = ǫ, then it must be the case that both β1 and β2 are
nullable, which violates the LL(1) conditions.

Thus, no ambiguous grammar can satisfy the LL(1) conditions, which means
that an ambiguous grammar first must be transformed into an equivalent un-
ambiguous grammar if we wish to develop an LL(1) parser for the described
language.

10.6.8 Satisfying the LL(1) conditions

Not all grammars satisfy the LL(1) conditions. If we have such a grammar, and
we wish to develop an LL(1) parser, the grammar first has to be transformed. In
particular, left-recursion and ambiguity must be eliminated because the LL(1)
conditions are necessarily violated otherwise (see section 10.6.7). There is no
point in computing first and follow sets (for the purpose of constructing a LL(1)
parser) before this is done. Of course, transforming a grammar in this way is
not always possible: the grammar may be inherently ambiguous, for example
(section 8.5). But often transformation into an equivalent grammar satisfying
the LL(1) conditions is possible.

Section 8 covered a number of transformations, including ones for eliminating
left recursion and disambiguating grammars. Sometimes other transformations
are needed. A common problem is the following. Note that the productions are
not left recursive, nor would these rules in isolation make a grammar ambiguous
as one of the rules derive a word with the terminal c, and the other one without
the terminal c:

S → aXbY | aXbY cZ

This grammar is clearly not suitable for predictive parsing as the first sets for
the RHSs of both productions are the same, {a}. But it is also clear that the
problem in this case is relatively simple: there is a common prefix of the RHSs
of the two productions. Thus, we can try to postpone the choice by factoring
out the common prefix. That could be enough to satisfy the LL(1) conditions.

98



Thus, what we need here is left factoring (section 8.4). After left factoring:

S → aXbY S′

S′ → ǫ | cZ

As it turns out, this is now suitable for LL(1) parsing!

10.7 Beyond hand-written parsers: use parser generators

The restriction to LL(1) has a number of disadvantages: In many case a natural
grammar like has to be changed to satisfy the LL(1) conditions. This may even
be impossible: some context-free languages cannot be generated by any LL(1)
grammar.

Luckily, there is a more powerful approach called LR(1). LR(1) is a bottom-
up method and was briefly discussed in section 10.2. In particular, in contrast
to LL(1), LR(1) can handle both left-recursive and right-recursive grammars
without modification.

The disadvantage with LR(1) and the related approach LALR(1) (which is
slightly less powerful but much more efficient) is that it is very hard to construct
LR-parsers by hand. Hence there are automated tools that get the grammar as
an input and produce a parser as the output. One of the first of those parser
generators was YACC for C. Nowadays one can find parser generators for many
languages such as JAVA CUP for Java [Hud99] and Happy for Haskell [Mar01].

However, there are also very serious tools based on LL(k) parsing technol-
ogy, such as ANTLR (ANother Tool for Language Recognition) [Par05], that
overcome some of the problems of basic LL parsing and that provides as much
automation as any other parser generator tool. It is true that a grammar still
may have to be changed a little bit to parseable, but that is true for LR parsing
too. In practice, once one become familiar with a tool, it is not that hard to
write a grammar in such a way so as to avoid the most common pitfalls from the
outset. Additionally, most tools provide mechanics such as declarative specifi-
cation of disambiguation rules that allows grammars to be written in a natural
way without worrying too much about the details of the underlying parsing
technology. Today, when it comes to choosing a tool, the underlying parsing
technology is probably less important than other factors such as tool quality,
supported development languages, feature set, etc.

99



10.8 Exercises

Exercise 10.1

Consider the following Context-Free Grammar (CFG):

S → ABB | BBC | CA

A → aA | ǫ

B → Bb | ǫ

C → cC | d

S, A, B, and C are nonterminals, a, b, c, and d are terminals, and S is the start
symbol.

1. What is the set Nǫ of nullable nonterminals? Provide a brief justification.

2. Systematically compute the first sets for all nonterminals, i.e. first(S),
first(A), first(B), and first(C), by setting up and solving the equations
according to the definitions of first sets for nonterminals and strings of
grammar symbols. Show your calculations.

3. Set up the subset constraint system that defines the follow sets for all
nonterminals, i.e. follow(S), follow(A), follow(B), and follow(C). Simplify
where possible using the law

X ⊆ Z ∧ Y ⊆ Z ⇐⇒ X ∪ Y ⊆ Z

and the fact that constraints like ∅ ⊆ X and X ⊆ X are trivially satisfied
and can be omitted.

4. Solve the subset constraint system for the follow sets from the previous
question by finding the smallest sets satisfying the constraints.

Exercise 10.2

Consider the following Context-Free Grammar (CFG):

S → AS | AB

A → aA | ǫ

B → BCDb | ǫ

C → cD | ǫ

D → dC | e

S, A, B, C, and D are nonterminals, a, b, c, d, and e are terminals, and S is
the start symbol.

1. What is the set Nǫ of nullable nonterminals? Provide a brief justification.

2. Systematically compute the first sets for all nonterminals, i.e., first(S),
first(A), first(B), first(C), and first(D), by setting up and solving the
equations according to the definitions of first sets for nonterminals and
strings of grammar symbols. Show your calculations.

100



3. Set up the subset constraint system that defines the follow sets for all
nonterminals; i.e., follow(S), follow(A), follow(B), follow(C), and follow(D).
Simplify where possible using the law

X ⊆ Z ∧ Y ⊆ Z ⇐⇒ X ∪ Y ⊆ Z

and by removing trivially satisfied constraints such as ∅ ⊆ X and X ⊆ X .

4. Solve the subset constraint system for the follow sets from the previous
question by finding the smallest sets satisfying the constraints.

101



11 Turing Machines

A Turing machine (TM) is a generalization of a PDA that uses a tape instead
of a stack. Turing machines are an abstract version of a computer: they have
been used to define formally what is computable. There are a number of alter-
native approaches to formalize the concept of computability (for example, the
λ-calculus (section 12), µ-recursive functions, the von Neumann architecture,
and so on) but they all turn out to be equivalent. That this is the case for any
reasonable notion of computation is called the Church-Turing Thesis.

On the other side there is a generalization of context-free grammars called
phrase structure grammars or just grammars. Here we allow several symbols on
the left hand side of a production, e.g. we may define the context in which a
rule is applicable. Languages definable by grammars correspond precisely to the
ones that may be accepted by a Turing machine and those are called Type-0-
languages or the recursively enumerable languages (or semidecidable languages)

Turing machines behave differently from the previous machine classes we
have seen: they may run forever, without stopping. To say that a language is
accepted by a Turing machine means that the TM will stop in an accepting
state for each word that is in the language. However, if the word is not in the
language the Turing machine may stop in a non-accepting state or loop forever.
In this case we can never be sure whether the given word is in the language;
i.e., the Turing machine doesn’t decide the word problem.

We say that a language is recursive (or decidable), if there is a TM that
accepts it and always stop on any word. There are type-0-languages that are
not recursive; the most famous one is the halting problem. This is the language
of encodings of Turing machines that will always stop.

There is no type of grammars that captures all recursive languages (and for
theoretical reasons there cannot be one). However there is a subset of recursive
languages, called the context-sensitive languages, that can be characterized by
context-sensitive grammars. These are grammars where the left-hand side of a
production is always shorter than the right-hand side. Context-sensitive lan-
guages on the other hand correspond to linear bounded TMs, that use only a
tape whose length can be given by a linear function over the length of the input.

11.1 What is a Turing machine?

A Turing machine M = (Q,Σ,Γ, δ, q0, B, F ) is:

• A finite set Q of states;

• A finite set Σ of symbols (the alphabet);

• A finite set Γ of tape symbols s.t. Σ ⊆ Γ. This is the case because we use
the tape also for the input;

• A transition function

δ ∈ Q× Γ → {stop} ∪Q× Γ× {L,R}

The transition function defines how the machine behaves if is in state q
and the symbol on the tape is x. If δ(q, x) = stop then the machine stops
otherwise if δ(q, x) = (q′, y, d) the machines gets into state q′, writes y on
the tape (replacing x) and moves left if d = L or right, if d = R;

102



• An initial state q0 ∈ Q;

• The blank symbol B ∈ Γ but B /∈ Σ. Initially, only a finite section of the
tape containing the input is non-blank;

• A set of final states F ⊆ Q.

In [HMU01] the transition function is defined without an explicit option to
stop with type δ ∈ Q × Γ → Q × Γ × {L,R}. However, they allow δ to be
undefined which corresponds to our function returning stop.

The above defines deterministic Turing machines; for nondeterministic TMs
the type of the transition function is changed to:

δ ∈ Q× Γ → P(Q× Γ× {L,R})

In this case, the transition function returning the empty set plays the role of
stop. As for finite automata (and unlike for PDAs) there is no difference in the
strength of deterministic or nondeterministic TMs.

As for PDAs, we define instantaneous descriptions for Turing machines: ID =
Γ∗ ×Q×Γ∗. An element (γL, q, γR) ∈ ID describes a situation where the TM is
in state Q, the non-blank portion of the tape on the left of the head is γL and
the non-blank portion of the tape on the right, including the square under the
head, is γR.

We define the next-state relation ⊢
M

similarly to PDAs:

1. (γL, q, xγR) ⊢
M

(γLy, q
′, γR) if δ(q, x) = (q′, y,R)

2. (γLz, q, xγR) ⊢
M

(γL, q
′, zyγR) if δ(q, x) = (q′, y,L)

3. (ǫ, q, xγR) ⊢
M

(ǫ, q′, ByγR) if δ(q, x) = (q′, y,L)

4. (γL, q, ǫ) ⊢
M

(γLy, q
′, ǫ) if δ(q, B) = (q′, y,R)

5. (γLz, q, ǫ) ⊢
M

(γL, q
′, zy) if δ(q, B) = (q′, y,L)

6. (ǫ, q, ǫ) ⊢
M

(ǫ, q′, By) if δ(q, B) = (q′, y,L)

The cases 3 to 6 are only needed to deal with the situation of having reached
the end of the non-blank part of the tape.

We say that a TM M accepts a word if it goes into an accepting state; i.e.,
the language of a TM is defined as

L(M) = {w ∈ Σ∗ | (ǫ, q0, w)
∗

⊢
M

(γL, q
′, γR) ∧ q′ ∈ F}

That is, the TM stops automatically if it goes into an accepting state. However,
it may also stop in a non-accepting state if δ returns stop. In this case the word
is rejected. A TM M decides a language if it accepts it and it never loops (in
the negative case).

To illustrate, we define a TM M that accepts the language

L = {anbncn | n ∈ N}

This is a language that cannot be recognized by a PDA or be defined by a CFG.
Let M = (Q,Σ,Γ, δ, q0, B, F ) where

103



Q = {q0, q1, q2, q3, q4, q5, q6}

Σ = {a, b, c}

Γ = Σ ∪ {X, Y, Z, }

q0 = q0

B =

F = {q6}

δ(q0, ) = (q6, ,R)

δ(q0, a) = (q1, X,R)

δ(q1, a) = (q1, a,R)

δ(q1, Y) = (q1, Y,R)

δ(q1, b) = (q2, Y,R)

δ(q2, b) = (q2, b,R)

δ(q2, Z) = (q2, Z,R)

δ(q2, c) = (q3, Z,R)

δ(q3, ) = (q5, ,L)

δ(q3, c) = (q4, c,L)

δ(q4, Z) = (q4, Z,L)

δ(q4, b) = (q4, b,L)

δ(q4, Y) = (q4, Y,L)

δ(q4, a) = (q4, a,L)

δ(q4, X) = (q0, X,R)

δ(q5, Z) = (q5, Z,L)

δ(q5, Y) = (q5, Y,L)

δ(q5, X) = (q6, X,R)

δ(q, x) = stop everywhere else

The machine replaces an a by X (q0) and then looks for the first b replaces
it by Y (q1) and looks for the first c and replaces it by a Z (q2). If there are
more c’s left it moves left to the next a (q4) and repeats the cycle. Otherwise it
checks whether there are no a’s and b’s left (q5) and if so goes into an accepting
state (q6).

Graphically the machine can be represented by the following transition
diagram, where the edges are labelled by (read-symbol, write-symbol, move-
direction):

q0 q1 q2

q3q4 q5 q6

a, X,R

a, a,R
Y, Y,R

b, Y,R

b, b,R
Z, Z,R

c, Z,R

c, c,L , ,L

Z, Z,L
b, b,L
Y, Y,L
a, a,L

X, X,R

Z, Z,L
Y, Y,L

X, X,R

104



E.g. consider the sequence of IDs on aabbcc:

(ǫ, q0, aabbcc) ⊢ (X, q1, abbcc)

⊢ (Xa, q1, bbcc)

⊢ (XaY, q2, bcc)

⊢ (XaYb, q2, cc)

⊢ (XaYbZ, q3, c)

⊢ (XaYb, q4, Zc)

⊢ (XaY, q4, bZc)

⊢ (Xa, q4, YbZc)

⊢ (X, q4, aYbZc)

⊢ (ǫ, q4, XaYbZc)

⊢ (X, q0, aYbZc)

⊢ (XX, q1, YbZc)

⊢ (XXY, q1, bZc)

⊢ (XXYY, q2, Zc)

⊢ (XXYYZ, q2, c)

⊢ (XXYYZZ, q3, ǫ)

⊢ (XXYYZ, q5, Z )

⊢ (XXYY, q5, ZZ )

⊢ (XXY, q5, YZZ )

⊢ (XX, q5, YYZZ )

⊢ (X, q5, XYYZZ )

⊢ (XX, q6, YYZZ )

We see that M accepts aabbcc. Because M never loops, it does actually decide
L.

11.2 Grammars and context-sensitivity

Let us define grammars G = (N, T, P, S) in the same way as context-free gram-
mars were defined before, with the only difference that there may now be several
symbols on the left-hand side of a production; i.e., P ⊆ (N ∪ T )+ × (N ∪ T )∗.
Here (N ∪ T )+ means that at least one symbol has to present. The relation

derives ⇒
G

(and
∗
⇒
G
) is defined as before:

⇒
G

⊆ (N ∪ T )∗ × (N ∪ T )∗

αβγ ⇒
G

αβ′γ ⇐⇒ β → β′ ∈ P

Also as before, the language of G is defined as:

L(G) = {w ∈ T ∗ | S
∗
⇒
G

w}

We say that a grammar is context-sensitive (or type 1) if the right-hand
side of a production is at least as long as the left-hand side. That is, for each
α → β ∈ P , we have |β| ≥ |α|.

105



Here is an example of a context-sensitive grammar G = (N, T, P, S) with
L(G) = {anbncn | n ∈ N ∧ n ≥ 1} where

• N = {S,B,C}

• T = {a, b, c}

• P is the set of productions:

S → aSBC
S → aBC
aB → ab
CB → BC
bB → bb
bC → bc
cC → cc

• S is the start symbol

We present without proof:

Theorem 11.1 For a language L ⊆ T ∗ the following is equivalent:

1. L is accepted by a Turing machine M ; i.e., L = L(M)

2. L is given by a grammar G; i.e., L = L(G)

Theorem 11.2 For a language L ⊆ T ∗ the following is equivalent:

1. L is accepted by a Turing machine M ; i.e., L = L(M) such that the length
of the tape is bounded by a linear function in the length of the input; i.e.,
|γL|+ |γR| ≤ f(x) where f(x) = ax+ b with a, b ∈ N.

2. L is given by a context-sensitive grammar G; i.e., L = L(G)

11.3 The halting problem

Turing showed that there are languages that are accepted by a TM (i.e., type 0
languages) but that are undecidable. The technical details of this construction
are involved but the basic idea is simple and is closely related to Russell’s
paradox, which we have seen in MCS.

Let’s fix a simple alphabet Σ = {0, 1}. As computer scientist we are well
aware that everything can be coded up in bits and hence we accept that there is
an encoding of TMs in binary. That is, we can agree on a way to express every
TM M as a string of bits ⌈M⌉ ∈ {0, 1}∗. We assume that the string contains
its own length at the beginning, so that we know when the encoding ends. This
allows us to put both the TM and an input for it, one after the other, on the
same tape. We can determine when the encoding of the machine ends and the
subsequent input on starts.

Now we define the following language

Lhalt = {⌈M⌉w | M halts on input w.}

106



It is easy (although the details are quite daunting) to define a TM that accepts
this language: we just simulate M and accept if M stops. However, Turing
showed that there is no TM that decides this language.

Let us prove this by assuming that the language is decidable and deriving a
contradiction from it. Suppose there is a TM H that decides L. That is, when
run on a word v, H always terminates and the final state is accepting if and
only if v has the form v = ⌈M⌉w for some machine M and input w and when M
is run on w it terminates. In all other cases, if v is in such form but M does not
terminate on w or if v is not in that form at all, H will terminate in a rejecting
state.

Now using H we construct a new TM F that is a bit obnoxious. When we
run F on input x, it computes H on the duplicated input xx. If H says yes (it
accepts xx), then F goes into an infinite loop; otherwise, if H says no (it rejects
xx), F stops.

What happens if we run F on its own code ⌈F ⌉? Will it terminate or loop
forever? If we consider each of the two possibilities, we get the contradictory
conclusion that the opposite should be true: if we assume that it terminates, we
can prove that it must loop; if we assume that it loops, we can prove that it
must terminate!

Let us assume F on ⌈F ⌉ terminates. By definition of F , this happens only
if H applied to ⌈F ⌉⌈F ⌉ says no. But by definition of H , this means that F on
⌈F ⌉ loops, contradicting the assumption.

Let us then assume that F on input ⌈F ⌉ loops. This happens only if H
applied to ⌈F ⌉⌈F ⌉ says yes. But this means that F on ⌈F ⌉ terminates, again
contradicting the assumption.

We reach a contradiction on both possible behaviours of F : the machine F
cannot exist. We must conclude that our assumption that there is a TM H that
decides Lhalt is false. We say Lhalt is undecidable.

We have shown that there is no Turing machine that can decide whether
other Turing machines halt. Is this a specific shortcoming of TMs or a univer-
sal limitation of all computing models? Maybe we could find a more powerful
programming language that overcomes this problem? It turns out that all com-
putational formalisms (i.e., programming languages) that have actually been
implemented are equal in power and can be simulated by each other. Beside
TMs, all modern programming languages, the λ-calculus, µ-recursive functions
and many others were proved to be equivalent.

The statement that all models of computability are equivalent is called the
Church-Turing thesis because it was first formulated by Alonzo Church and
Alan Turing in the 1930s. This is discussed further in section 12.6.

11.4 Recursive and recursively enumerable sets

When we work with Turing Machines, there is a distinction between a language
being accepted or decided.

A machine M accepts a language L if, whenever we run M on an input w,
the computation terminates in an accepting state if and only if w ∈ L. We say
that M decides L if it accepts it and always terminates.

The difference is that a machine that just accepts a language but doesn’t
decide it may run forever on some words that do not belong to the language.

107



If that happens, we have to wait forever to discover whether the word is in the
language or not.

Definition 11.3 A language L is recursively enumerable if it is accepted by a
Turing Machine.

The terminology comes from a different characterization of such languages.
We can define a recursively enumerable set as a collection of values that can
be produced by a total algorithm. Whenever we have a computable function
f : N → A from the natural numbers to some set A, we say that the range of
the function, U = {a ∈ A | ∃n : N, f(n) = a} is recursively enumerable. We can
also write U = {f(n) | n ∈ N}. The idea is that we can enumerate all elements
of U by computing f(0), f(1), f(2), etc. In the case of languages, the set A is
Σ∗. We can prove that being a recursively enumerable subset of Σ∗ is equivalent
to be accepted by a Turing Machine.

Definition 11.4 A language L is recursive if there is a Turing machine that
accepts it and always terminate.

In general, a recursive set is a subset of some setA for which we can effectively
determine membership. Whenever we have a computable function g : A → Bool

from some set A to Booleans, we say that the preimage of true, {a ∈ A | g(a) =
true} is recursive.

Theorem 11.5 A subset U ⊆ A is recursive if and only if both U and its
complement U are recursively enumerable.

Proof. We won’t see a formal proof using Turing Machines, but I’ll outline
the idea.

• In one direction, assume that U is recursive. So we have a function g :
A → Bool that decides it.

We can construct f : N → A by using some enumeration of all of A (we
assume it is computably countable, otherwise it won’t make sense to talk
about algorithms on it). When computing the values of f we keep an index
n; we go through all the elements of A one by one, whenever we find an
a such that g(a) = true, we set f(n) = a and we increase n by one, now
looking for the next element of A satisfying g. In this way we construct
an f that generates all elements of U , so we proved that U is recursively
enumerable.

In a similar way we can show that U is recursively enumerable by system-
atically searching for the elements a ∈ A for which g(a) = false.

• In the other direction, assume that both U and U are recursively enumer-
able. We must prove that U is recursive.

Saying that U is recursively enumerable means that there is a computable
function f1 : N → A such that U = {f1(a) | n : N}. Saying that U is
also recursively enumerable means that there is a computable function
f2 : N → A such that U = {f2(a) | n : N}.

From f1 and f2 we can construct a function g : A → Bool that decides
U . For a given element a ∈ A, we can search whether it belongs to U by
running the two functions f1 and f2 repeatedly in parallel:

108



– run f1 on 0, if f1(0) = a then we know that a ∈ U and we terminate
giving the answer g(a) = true;

– run f2 on 0, if f2(0) = a then we know that a ∈ U and we terminate
giving the answer g(a) = false;

– run f1 on 1, if f1(1) = a then we terminate with answer g(a) = true;

– run f2 on 1, if f2(1) = a then we terminate with answer g(a) = false;

– run f1 on 2, if f1(2) = a then we terminate with answer g(a) = true;

– run f2 on 2, if f2(2) = a then we terminate with answer g(a) = false;

– continue until you find an n such that either f1(n) = a or f2(n) = a.

Because every a belongs to either U or U , we know for sure that this
process will always terminate and produce the correct answer.

We have constructed a function g that decides U , so U is recursive.

�

In the previous section we proved that the Halting Problem is undecidable,
therefore the set Lhalt = {⌈M⌉w | M halts on input w} is not recursive.

It is easy to see that it is recursively enumerable: we just have to run M and
see if it terminates.

There are many other problems that are semi-decidable but not decidable,
that is, they can be expressed by a recursively enumerable language that is not
recursive. We can prove this by reducing the Halting Problem (or any other
already known undecidable problem) to them.

Definition 11.6 A language L1 is reducible to a language L2 if there is a Turing
Machine M such that:

• M terminates on every input;

• If we run M on an input w, the computation terminates with a word v on
the tape such that w ∈ L1 if and only if v ∈ L2.

So L1 is reducible to L2 if we can translate (by a computable function) every
question of membership of L1 to an equivalent membership question of L2.

Theorem 11.7 If Lhalt is reducible to some language L, then L is not decidable.

Proof. Suppose, towards a contradiction, that L is recursive. Then we have
a Turing Machine M that decides L. We also know that there is a Turing
Machine M ′ that translates instances of the Halting Problem to L. But then,
by composing M ′ and M , we would be able to construct a machine H that
decides the halting problem. But we know this is impossible. Therefore our
assumption that L is recursive must be false. �

In general, if we know that a set V is not recursive and have another set
U that we suspect is also not recursive, we can prove this fact by reducing V
to U . Be very careful in the direction of the reduction: We reduce the problem
that we already know to be undecidable to the one for which we want to prove
undecidability.

109



11.5 Back to Chomsky

At the end of the course we should have another look at the Chomsky hierarchy,
which classifies languages based on sublasses of grammars, or equivalently by
different types of automata that recognize them

languages

finite automata

pushdown automata

Type 2 or context free

   
 

Type 3 or
regular languages

Type 1 or context sensitive 
languages

Decidable languages
Turing machines

Type 0 or recursively enumerable languages

All languages

We have worked our way from the bottom to the top of the hierarchy: start-
ing with finite automata, computation with fixed amount of memory via push-
down automata (finite automata with a stack), to Turing machines (finite au-
tomata with a tape). Correspondigly we have introduced different grammatical
formalisms: regular expressions, context-free grammars and grammars.

Note that at each level there are languages that are on the next level but not
on the previous: {anbn | n ∈ N} is Type 2 but not Type 3, {anbncn} is Type 1
but not Type 2, and the Halting problem is Type 0 but not Type 1.

We could have gone the other way: starting with Turing machines and gram-
mars and then introducing restrictions: Turing machines that only use their
tapes as a stack describe Type 2 languages; Turing machines that never use the
tape apart for reading the input describe Type 3 languages. Similarly, we have
seen that context-free grammars restricted in specific ways describe precisely
the regular languages (section 7.3).

Chomsky introduced his herarchy as a classification of grammars; the rela-
tion to automata was only observed a bit later. This may be the reason why he
introduced the Type-1 level, which is not so interesting from an automata point
of view (unless you are into computational complexity; i.e., resource use, here
linear use of memory). It is also the reason why on the other hand the decid-
able languages do not constitute a level: there is no corresponding grammatical
formalism (we can even prove this).

110



11.6 Exercises

Exercise 11.1

Consider the Turing Machine defined formally by:

M = (Q,Σ,Γ, δ, q0, , F ) where Q = {q0, q1, q2, q3, q4, q5}
F = {q5}
Σ = {a, b}
Γ = {a, b,X, Y, }

with the transition function defined by:

δ(q0, a) = (q3, X, L)
δ(q0, x) = (q0, x, R) for x ∈ {b,X, Y }
δ(q0, ) = (q2, , L)
δ(q1, b) = (q4, Y, L)
δ(q1, x) = (q1, x, R) for x ∈ {a,X, Y }
δ(q2, ) = (q5, , R)
δ(q2, x) = (q2, x, L) for x ∈ {X,Y }
δ(q3, ) = (q1, , R)
δ(q3, x) = (q3, x, L) for x ∈ {a, b,X, Y }
δ(q4, ) = (q0, , R)
δ(q4, x) = (q4, x, L) for x ∈ {a, b,X, Y }

1. Draw M graphically as a transition diagram.

2. Write down the sequence of instantaneous descriptions when starting the
machine M with input baab. Is this word accepted or rejected?

3. Write down the sequence of instantaneous descriptions when starting the
machine M with input aba. Is this word accepted or rejected?

4. What is the language accepted by M?

Exercise 11.2

Construct a Turing Machine that, when run on any word in {a, b}∗, rear-
ranges the symbols so all the as come before all the bs. For example:

(ǫ, q0, aababba) ⊢
∗ (aaaabbb, qf , ǫ) (ǫ, q0, babbbaa) ⊢

∗ (aaabbbb, qf , ǫ)

[Hint: Your machine could look for pairs of symbols in the order ‘ba’ and swap
them to ‘ab’; keep repeating this until there are no such pairs left.]

1. Draw the machine as a transition diagram.

2. Give a formal definition of the machine, defining the transition function.

111



Exercise 11.3

Suppose that you have the following information about ten formal problems
(expressed as languages) P1, P2, . . . P10:

• The Halting Problem is reducible to P1;

• P2 is reducible to P1;

• P1 is reducible to P5;

• The complement of P3 is recursively enumerable;

• P4 is recursively enumerable;

• P4 is reducible to the normalization problem for λ-calculus;

• P4 is reducible to P5;

• P6 is not recursively enumerable;

• P7 is recursive;

• P7 is reducible to P6;

• P7 is reducible to P8;

• The complement of P8 is not recursively enumerable;

• The normalization problem for λ-calculus is reducible to P9;

• P10 is reducible to P3;

• P10 is reducible to P4.

Note that the normalization problem for λ-calculus (see section 12) is undecid-
able Given this information, which of the languages P1 to P10 are:

1. Undecidable?

2. Recursively enumerable?

3. Recursive?

Note that the same language may be in more than one of these three classes.
Some others may be in none. Justify your answers by explaining how your
conclusions follow from the given information.

112



12 λ-Calculus

In traditional imperative programming (like C, Java, Python), we have a clear
distinction between programs, that are sequences of instructions that are exe-
cuted sequentially, and data, that are values given in input, stored in memory,
manipulated during computation and returned as output. Programs and data
are distinct and are kept separated. Programs are not modified during compu-
tation. (It is in theory possible to do it, because programs are stored in memory
like any other data. However, it is difficult and dangerous.)

Functional Programming is a different paradigm of computation in which
there is no distinction between programs and data. Both are represented by
terms/expressions belonging to the same language. Computation consists in the
reduction of terms to normal form. That includes terms that represent functions,
that is, the programs themselves.

The pure realization of this idea is the λ-calculus. It is a pure theory of
functions with only one kind of objects: λ-terms. They represent both data
structures and programs.

The main idea is the definition of functions by abstraction. For example,
we may define a function f on numbers by saying that f(x) = x2 + 3. By
this we mean that any argument to the function, represented by the variable
x, is squared and added to 3. The use of variables is different from imperative
programming: x is just a place-holder to denote any possible value, while in
imperative programming variables represent memory locations containing values
that can be modified.

We can specify the function f alternatively with the mapping notation:

x
f

7−→ x2 + 3.

This is written in λ-notation as: f = λx.x2 +3. (In the functional programming
language Haskell, it is \x -> x^2+3.)

While abstraction is the operation to define a new function, computing it on
a specific argument is called application. We indicate it simply by juxtaposition:

f 5 = (λx.x2 + 3) 5 52 + 3 ∗ 28.

As the example shows, the application of a λ-abstraction to an argument is
computed by replacing the abstraction variable with the argument. This is called
β-reduction and it is the basic computation step of λ-calculus.

The λ-notation is convenient to define functions, but you may think that
the actual computation work is done by the operations used in the body of the
abstraction: squaring and adding 3. However, the λ-calculus is a theory of pure
functions: terms are constructed using only abstraction an application, there
are no other basic operations. At first, this looks like a rather useless system: no
numbers, no arithmetic operations, no data structures, no programming prim-
itives. The surprising fact is that we don’t really need them. We don’t need
numbers (5, 3) and we don’t need operations (−2, +). They all can be defined
as purely functional constructions, built using only abstraction and application!

12.1 Syntax of λ-calculus

The language of λ-calculus is extremely simple, we start with variables and
construct terms using only abstraction and computation. It’s BNF definition is

113



as follows (assume x, y, z range over a given infinite set of variable names).

t := x | y | z | · · · variable names
| λx.t abstraction
| t t application.

The β-reduction relation on term is defined, for every pair of terms t1 and t2 as:

(λx.t1) t2  β t1[x := t2].

The left-hand side means: in t1 substitute all occurrences of variable x with
the term t2. Substitution is actually quite tricky and its precise definition is a
bit more complex that replacing every occurrences of x with t2. One has to be
careful to manage variable occurrences properly.

We need some intermediate concept. The first is α-equivalence and it says
that, because the variable in an abstraction is just a place holder for an ar-
gument, the names of abstracted variables does not matter. For example, the
simplest function we can define is the identity id := λx.x which takes an argu-
ment x and returns it unchanged. Clearly, if we use a different variable name,
λy.y, we get exactly the same function. We say that the two terms (and any
using different variables) are α-equivalent:

λx.x =α λy.y =α λz.z =α · · · .

We are free to change the name of the abstracted variable any way we like.
However, we have to be careful to avoid variable capture. If the body of the
abstraction contains other variables than the abstracted one, we can’t change
the name to those:

λx.y (x z) =α λw.y (w z) 6=α λy.y (y z) 6=α λz.y (z z).

The reason for this restriction is that changing the name of the abstracted
variable from x to either y or z in this example would capture the occurrence of
that variable which was free in the original term (not bound by a λ-abstraction).

Formally, we define set FV(t) of the variables that occur free in the term t,
by recursion on the structure of t:

FV(x) = {x}
FV(λx.t) = FV(t) \ {x}
FV(t1 t2) = FV(t1) ∪ FV(t2).

Another way in which a variable can be incorrectly captured is when we
perform a substitution that puts a term under an abstraction that may bind
some of its variables:

(λx.λy.x y) (y z) β (λy.x y)[x := (y z)] 6= λy.(y z) y.

If we replace x with (y z) in this way, the occurrence of the variable y (which
was free before performing the β-reduction) become bound. This is incorrect.
We should rename the abstraction variable before performing the substitution:

(λy.x y)[x := (y z)] =α (λw.xw)[x := (y z)] = λw.(y z)w.

114



To avoid problems with variable capture, we adopt the Barendregt variable
convention: before performing substitution (or any other operation on terms),
change the names of the abstracted variables so they are different from the free
variables and from each other.

With this convention, we can give a precise definition of substitution by
recursion on the structure of terms:

x[x := t2] = t2
y[x := t2] = y if y 6= x

(λy.t1)[x := t2] = λy.t1[x := t2]
(t0 t1)[x := t2] = t0[x := t2] t1[x := t2].

In the third case, the variable convention ensures that the variable y and the
bound variables in t2 have already been renamed so they avoid captures. In
more traditional formulations, one would add the requirements: “provided that
y 6= x and y doesn’t occur free in t2”.

A part from some complication about substitution, the λ-calculus is ex-
tremely simple. It seems at first surprising that we can actually do any serious
computation with it at all. But it turns out that all computable functions can
be represented by λ-terms. We see some simple function in this section and we
will discover how to represent data structures in the next.

For convenience, we use some conventions that allow us to save on paren-
theses.

• λ-abstraction associates to the right, so we write λx.λy.x for λx.(λy.x);

• Application associates to the left, so we write (t1 t2 t3) for ((t1 t2) t3);

• We can use a single λ symbol followed by several variables to mean con-
secutive abstractions, so we write λx y.x for λx.λy.x.

Here are three very simple functions implemented as λ-terms:

• The identity function id := λx.x. When applied to an argument it simply
returns it unchanged:

id t = (λx.x) t  x[x := t] = t.

• The first projection function λx.λy.x. When applied to two arguments, it
returns the first:

(λx.λy.x) t1 t2  (λy.x)[x := t1] t2 = (λy.t1) t2  t1[y := t2] = t1.

Remember, in reading this reduction sequence, that we are adopting the
variable convention, so the variable y doesn’t occur free in t1.

• The second projection function λx.λy.x. When applied to two arguments,
it returns the second:

(λx.λy.y) t1 t2  (λy.y)[x := t1] t2 = (λy.y) t2  y[y := t2] = t2.

We can also say that the second projection is the function that, when
applied to an argument t1, returns the identity function λy.y.

115



12.2 Church numerals

So far we have seen only some very basic functions that only return some of
their arguments unchanged. How can we define more interesting computations?
And first of all, how can we represent values and data structures? It is in fact
possible to represent any kind of data buy some λ-term.

Let’s start by representing natural numbers. Their encodings in λ-calculus
are called Church Numerals:

0 := λf.λx.x
1 := λf.λx.f x
2 := λf.λx.f (f x)
3 := λf.λx.f (f (f x))
· · · .

A numeral n is a function that takes two arguments, denoted by the variables
f and x, and applies f sequentially n times to x.

What is important is that we assign to every number a distinct λ-term in a
uniform way. We must choose our representation so it is easy to represent arith-
metic operations. The idea of Church numerals is nicely conceptual: numbers
are objects that we use to count things, so we can define them as the counters
of repeated application of a function.

Let’s see if this representation is convenient from the programming point of
view: can we define basic operations on it?

Let’s start with the successor function, that increases a number by one:

succ := λn.λf.λx.f (n f x).

Let’s test if it works on an example: if we apply it to 2 we should get 3:

succ 2 = (λn.λf.λx.f (n f x)) 2
 λf.λx.f (2 f x) = λf.λx.f ((λf.λx.f (f x)) f x)
 λf.λx.f ((λx.f (f x))[f := f ]x) = λf.λx.f ((λx.f (f x))x)
 λf.λx.f ((f (f x))[x := x]) = λf.λx.f (f (f x)) = 3.

We have explicitly marked the substitutions in this reduction sequence: they are
both trivial, substituting f with itself and x with itself. From now on, we’ll do
the substitutions on the fly, without marking them.

Other arithmetic operations can be defined by simple terms:

plus := λm.λn.λf.λx.m f (n f x)
mult := λm.λn.λf.m (n f)
exp := λm.λn.nm.

Verify by yourself that these terms correctly implement the addition, multipli-
cation and exponentiation functions. For example:

plus 2 3 ∗ 5
mult 2 3 ∗ 6
exp 2 3 ∗ 8
exp 2 3 ∗ 9.

116



Exercise. Define a term isZero that tests if a Church numeral is 0 or a suc-
cessor. It should have the following reduction behaviour:

isZero 0 ∗ true; isZero (succ t) ∗ false for every term t.

Surprisingly, two other basic functions are much more difficult to define: the
predecessor and the (cut-off) subtraction functions. Try to define two terms pred
and minus such that:

pred (succn) ∗ n
pred 0 ∗ 0
minusnm ∗ n−m if n ≥ m
minusnm ∗ 0 if n < m.

12.3 Other data structures

Other data types can be encoded in the λ-calculus.

Booleans For truth values we may choose the first and second projects that
we defined earlier:

true := λx.λy.x
false := λx.λy.y.

We must show how to compute the logical operators. For example, conjunction
can be defined as follows:

and := λa.λb.a b false.

Let’s verify that it give the correct results when applied to Boolean values:

and true true = (λa.λb.a b false) true true
 

∗ true true false = (λx.λy.x) true false ∗ true

and true false = (λa.λb.a b false) true false
 

∗ true false false = (λx.λy.x) false false ∗ false

and false t = (λa.λb.a b false) false t
 

∗ false t false = (λx.λy.y) t false ∗ false

All the other logical operators could be defined if we had a conditional con-
struct if-then-else. In fact this can be defined very easily:

if := λb.λu.λv.b u v.

Let’s verify that it has the correct computational behaviour:

if true t1 t2 = (λb.λu.λv.b u v) true t1 t2
 

∗ true t1 t2 = (λx.λy.x) t1 t2  
∗ t1

if false t1 t2 = (λb.λu.λv.b u v) false t1 t2
 

∗ false t1 t2 = (λx.λy.y) t1 t2  
∗ t2.

Then we can define all logical connectives as conditionals, for example:

and := λa.λb.if a b false, or := λa.λb.if a true b, not := λa.if a false true.

117



As a curiosity (just a feature of the encoding, don’t read anything deeply
philosophical in it) notice that false is the true identity!

true id false

This is also a good example in the managing of variables: true = λx.λy.x and
id = λx.x. If we follow the variable convention, we shouldn’t use x twice, so let’s
rename it in the identity: id = λz.z. Then

true id = (λx.λy.x) (λz.z) λy.λz.z = λx.λy.y = false

where at the end we’re free to rename the bound variables according to α-
conversion.

Tuples Pairs of λ-terms can be encoded by a single term: If t1 and t2 are
terms, we define the encoding of the pair as

〈t1, t2〉 := λx.x t1 t2.

First and second projections are obtained by applying a pair to the familiar
projections (or truth values) that we have already seen:

fst p = p (λx.λy.x)
snd p = p (λx.λy.y)

We can verify that they have the correct reduction behaviour:

fst 〈t1, t2〉 = 〈t1, t2〉 (λx.λy.x) = (λx.x t1 t2) (λx.λy.x) (λx.λy.x) t1 t2  
∗ t1,

snd 〈t1, t2〉 = 〈t1, t2〉 (λx.λy.y) = (λx.x t1 t2) (λx.λy.y) (λx.λy.y) t1 t2  
∗ t2.

Triples and longer tuples may be encoded as repeated pairs, for exam-
ple 〈t1, t2, t3〉 := 〈t1, 〈t2, t3〉〉, or directly using the same idea as for pairs:
〈t1, t2, t3〉 := λx.x t1 t2 t3.

12.4 Confluence

A λ-term may contain several redexes. We have the choice of which one to reduce
first. When we make one step of β-reduction, some of the redexes that were there
in the beginning may disappear, some may be duplicated into many copies, some
new ones may be created. Although we say that β-reduction is a “simplification”
of the term, in the sense that we eliminate a pair of consecutive abstraction and
application by immediately performing the associated substitution, the resulting
reduced term is not always simpler. It may actually be much longer and more
complicated.

Therefore it is not obvious that, if we choose different redexes to simplify,
we will eventually get the same result. It is also not clear whether the reduction
of a term will eventually terminate.

The first property is anyway true. But there are indeed terms whose reduc-
tion does not terminate.

Theorem 12.1 (Confluence) Given any λ-term t, if t1 and t2 are two reducts
of it, that is t  ∗ t1 and t  ∗ t2; then there exists a common reduct t3 such
that t1  

∗ t3 and t2  
∗ t3.

118



Proof. TO BE COMPLETED �

Definition 12.2 A normal form is a λ-term that doesn’t contain any redexes.
A term weakly normalizes if there is a sequence of reduction steps that ends in
a normal form. A term strongly normalizes if any sequence of reduction steps
eventually ends in a normal form.

There exist terms that do not normalize. The most famous one is a very
short expression that reduces to itself:

ω := (λx.x x) (λx.x x)
 (xx)[x := λx.x x] = (λx.x x) (λx.x x) = ω
 ω  · · · .

There are also terms that grow without bound when we reduce them, for exam-
ple:

(λx.x xx) (λx.x xx)  (λx.x xx) (λx.x xx) (λx.x xx)
 (λx.x xx) (λx.x xx) (λx.x xx) (λx.x xx)
 · · · .

Here is an example of a term that weakly normalizes but doesn’t strongly
normalize:

(λx.λy.x) (λz.z)ω.

This terms applies the first projection function to to arguments. If we immedi-
ately reduce the application of the projection, the argument ω disappear and
we are left with the identity function, which is a normal form:

(λx.λy.x) (λz.z)ω  λz.z.

However, if we try to reduce the redex inside the second argument, we don’t
make any progress and we could continue reducing it forever.

12.5 Recursion

We have seen how to define some basic arithmetic functions as λ-terms: addition
plus, multiplication mult, exponentiation exp. With a little effort you may be able
to define the predecessor function and subtraction. what about (whole) division,
maybe using the Euclid algorithm?

If we want to use the λ-calculus as a complete programming language, there
should be a way to define any computable function. This is indeed possible.
In fact there is a single λ-term, called the Y combinator, that allows us to use
unrestricted recursion:

Y := λf.(λx.f (xx)) (λx.f (xx)).

This definition is inspired by the non-normalizing term ω. In fact we have that
Y id ∗ ω.

The most striking property of Y is that it computes a fixed point for every
term F :

YF  ∗ F (Y F ).

119



This is not exactly true: to be precise, YF  (λx.F (xx)) (λx.F (xx)) =: fixF
and fixF  

∗ F (fixF ). If we keep reducing, we get an infinite sequence of appli-
cations of F :

fixF  
∗ F fixF  

∗ F (F fixF ) 
∗ F (F (F fixF )) 

∗ · · ·

To define a recursive function, we just need to encode a single step of it as
a term F and then use Y to iterate that step as many times as it is necessary
to get a result.

Here is, for example, the definition of the factorial:

factstep := λf.λn.if (isZeron) 1 (multn (f (predn)))
fact := Y factstep.

12.6 The universality of λ-calculus

The λ-calculus was invented to answer the question: “What does it mean that a
problem is effectively solvable?” Up to that point the notion of a question being
answerable by an precise method was left to intuition. Throughout the history
of mathematics many difficult problems were posed. When someone claimed
to have a solution, expert mathematicians would analyze it and come to an
informed option about whether it was correct and precise.

But at the beginning of the 20th century, David Hilbert had formulated
the challenge of defining exactly what we mean by a precise method: can we
give a mathematically rigorous definition of what an effective procedure is?
Both Alonzo Church and Alan Turing worked towards a realization of Hilbert’s
challenge and they both came up with a fully satisfying solution.

But their two theories looked completely different. Which one would be the
“true” answer to Hilbert’s question? It turned out that, beyond their formal
difference, Turing machines and λ-terms are equally expressive. The same set
of computable functions can be implemented in both. Turing himself proved
this when he discovered Church’s work and added a sketch of the proof as an
Appendix to his article about computable numbers.

Around the same time, other models of computation were proposed. Kurt
Gödel formulated the notion of µ-recursive function: any function on the natural
numbers defined by certain forms of recursive definition. Stephen Kleene, a
student of Church, proved that these functions are exactly those definable in
the λ-calculus and went on the develop a rich theory of computation based on
them.

Another of Church’s students, J. Barkley Rosser, was the first to clearly
formulate the notion that these three definitions were equivalent realizations of
the informal notion of an effective computation method: “All three definitions
are equivalent, so it does not matter which one is used.”

Later, when the first digital computers were constructed, the Hungarian-
American mathematician John von Neumann proposed a model that is more
realistic and describes the actual architecture of real computers: the register
machine. This notion was also equivalent to the previous ones. Many other
different characterizations have been proposed since and they all turned out to
be equivalent.

The statement that every effective definition of computable processes is
equivalent to the λ-calculus (or to Turing machines or to µ-recursive functions

120



and so on) is known as the Church-Turing Thesis (Stephen Kleene was the one
who actually first formulated and named it).

The λ-calculus is not just a mathematical abstraction. All functional pro-
gramming languages are based on (a typed version of) it. Lisp, ML, Haskell,
OCaml are the most well-known. Functional programming has been so suc-
cessful that traditional imperative languages are starting to introduce function
abstraction as a basic feature in their definition. For example JavaScript and
Python contain first-class functions as part of their definition.

12.7 Exercises

Exercise 12.1

Consider the following λ-terms: nand-pair is a function on pairs of Booleans,
nand-fun a function from Church Numerals to pairs of Booleans:

nand-pair = λp.〈not (and (p true) (p false)), p true〉
nand-fun = λn.n nand-pair 〈false, false〉

1. What values do the following terms reduce to?

nand-pair 〈true, true〉 ∗ ?
nand-pair 〈true, false〉 ∗ ?

nand-pair 〈false, true〉 ∗ ?
nand-pair 〈false, false〉 ∗ ?

2. Show the steps of reduction in the computation of (nand-fun 4). [You can
use the previous reductions and those from the lecture notes as single
steps.]

3. Give an informal definition of what nand-fun does: for which numbers n
does (nand-funn) ∗ 〈true, true〉?

Exercise 12.2

Write a λ-term that implements the following function:

thrFib : N → N

thrFib 0 = 0
thrFib 1 = 0
thrFib 2 = 1
thrFib (n+ 3) = thrFibn+ thrFib (n+ 1) + thrFib (n+ 2)

[Use the same idea that was used in the lecture to define the Fibonacci numbers:
first write an auxiliary function that returns a triple of numbers and then extract
the first.]

121



13 Algorithmic Complexity

The undecidability of the Halting Problem shows that there are tasks that are
impossible to accomplish using any computing machine. This is an intrinsic
limitation of computation. But even for some problems for which algorithmic
solutions are known, it may be impossible to compute them effectively. In some
cases, the search for a solution is so complex that it would take a time longer
than the age of the universe to get the answer. We can always hope for dramatic
improvements in the power and speed of computers, but some tasks seem to have
an essentially intractable complexity.

In talking about the time complexity of algorithms, we want to abstract away
from implementation details. The exact number of steps needed to compute a
result may depend on the model of computation: the same algorithm, realized
as a Turing Machine or as a λ-term, will result in different number of head
operations of the machine and reduction steps of the λ-term. The exact time
of the computation will depend on the specific machine on which it runs: even
the exact same program in the exact same language will take different times on
different computers.

But beyond these differing details, the complexity classes of algorithms are
quite constant across different models of computation and different comput-
ing devices. A complexity class characterizes algorithms that have a relation
between size of the input and time of computation that can be expressed by
certain functions. Although they are traditionally formulated in terms of Tur-
ing Machines, we can show that realizations in different paradigms have similar
behaviour.

The most important complexity classes are P and NP . P stands for Poly-
nomial Complexity: A problem is in P if it can be solved by a Turing Machine
whose running time is at most a polynomial in the size of the input. NP stands
for Non-deterministic Polynomial Complexity: A problem is in NP if it can be
solved by a Non-deterministic Turing Machine (NTM) whose running time is at
most a polynomial in the size of the input. Remember that an NTM may have
overlapping transitions: in certain configurations, the machine may have several
allowed steps. In every run, it will randomly choose which transition to apply.
A word is accepted if there exists one possible computation (among all allowed
by the non-deterministic choices) that reaches an accepting state.

There are two alternative and equivalent ways of seeing the class NP . A
problem is in NP if it is solvable in polynomial time by a parallel computer
which is allowed to spawn several parallel computations. Each computation is
independent and must terminate in polynomial time; it is sufficient that the
solution is found by one of the computations. Although the running time is
polynomial, there may be an exponential blow-up of the number of parallel
computations that need to run simultaneously.

The second alternative explanation of the class NP is that a problem is in it
if we can verify solutions in polynomial time. There is an algorithm that, when
given as input an instance of the problem and a potential solution, terminates
in polynomial time and gives a positive answer if and only if the solution is
correct.

Intuitively, it seems obvious that a problem that belongs to NP doesn’t
necessarily belong to P : being able to find a solution in polynomial time by using
non-deterministic or parallel computations, or being able to verify a solution in

122



polynomial time, doesn’t mean that we can generate a solution deterministically
in polynomial time. There may be an exponential number of non-deterministic
or parallel computations and an exponential number of potential solutions to
verify.

However, until now nobody managed to prove that P 6= NP . It is the
most famous open problem in theoretical computer science. There are strong
reasons to believe that the two classes are distinct. There is a subclass of NP ,
called NP-complete, that contains problems that are in a sense universal with
respect to this issue. A problem is in NP-complete if it is in NP and every
other problem inNP can be reduced to it in polynomial time. This means that if
somebody finds a polynomial-time algorithm to solve one of these problems, then
automatically all NP problems will be solvable in polynomial time. To date,
thousands of different problems from disparate branches of computer science and
mathematics have been proved to be NP-complete. It seems highly unlikely that
we could solve them all at once with the same algorithm.

13.1 The Satisfiability Problem

The first problem to be provedNP-complete was Boolean Satisfiability (in short
SAT). An instance of the problem is a propositional formula, that is, an ex-
pression that uses variables, the propositional connectives for conjunction (∧),
disjunction (∨) and negation (¬), and parentheses. An example is the formula
(x1 ∨ ¬x2) ∧ ¬x1.

Solving an instance of SAT means determining if there is an assignment of
truth values to the variables that makes the formula true. In the example above
the assignment [x1 7→ false, x2 7→ false] is such a solution. Now consider the
following more complicated formula in three variables:

f = (¬x1 ∨ x2) ∧ (x3 ∨ ¬x2) ∧ ¬(x3 ∧ ¬x1) ∧ (x1 ∧ ¬x2 ∨ x2 ∧ ¬x3).

There is no assignment of truth values to x1, x2, x3 that makes f true. To check
this, we must try all potential solutions:

[x1 7→ true, x2 7→ true, x3 7→ true] =⇒ f 7→ false

[x1 7→ true, x2 7→ true, x3 7→ false] =⇒ f 7→ false

[x1 7→ true, x2 7→ false, x3 7→ true] =⇒ f 7→ false

[x1 7→ true, x2 7→ false, x3 7→ false] =⇒ f 7→ false

[x1 7→ false, x2 7→ true, x3 7→ true] =⇒ f 7→ false

[x1 7→ false, x2 7→ true, x3 7→ false] =⇒ f 7→ false

[x1 7→ false, x2 7→ false, x3 7→ true] =⇒ f 7→ false

[x1 7→ false, x2 7→ false, x3 7→ false] =⇒ f 7→ false

In general, to look for a solution or to verify that there is no solution, we need
to check all the possible assignments of truth values to the variables. If there
are n variables in the formulas, then we must check 2n assignments. Therefore
checking them all takes a time that is exponential in the number of variables,
so exponential in the side of the input. On the other hand, it is straightforward
to verify whether an assignment gives a solution or not.

13.2 Time Complexity

Let’s define time complexity exactly using Turing Machines.

123



Definition 13.1 A Turing Machine M is said to have time complexity f , a
function N → N, if, whenever we run M on an input of size n, it will take at
most f(n) steps to terminate.

The number of steps is measured by counting the movement of the read-
ing/writing head of M , as given by the next-state relation ⊢

M
.

This is a worst case measure of the running time of the machine: It is possible
that M will terminate in less than n steps on some (or all) inputs. So f provides
just an upper bound. We are interested in getting the answer within a certain
time constraint.

As we know, any “problem” can be expressed precisely as a language recog-
nition task. Each instance of the problem is specified by giving a description in
the form of a word/list of symbols. So defining complexity classes for problems
is the same as defining them for languages.

Definition 13.2 A language L is in the class P if there is a Turing Machine M
that decides L and has a time complexity expressible by a polynomial function.

In the previous two definitions, we were talking about deterministic Turing
machines. In any given instantaneous description of M , the transition function
determines uniquely the step to be performed.

We are also going to consider non-deterministic Turing machines. These
may have several possible transitions in the same instantaneous description.
The transition function has the type:

δ ∈ Q× Γ → P(Q× Γ× {L,R})

So, if M is in state q and the head is reading a symbol x, the transition δ(q, x) is
a set of triples, each one specifying a different action. For example, if δ(q, x) =
{(q1, y,L), (q2, z,R)}, then the machine may either write a y, move left and go
into state q1 or write a z, move right and go into state q2. When we run the
machine, in these situation it will randomly choose which of the several possible
steps to perform. We say that such a machine accepts a word if there is one run
(among the many possible) that leads to an accepting state.

Definition 13.3 A language L is in the class NP if there is a non-deterministic
Turing Machine M that decides L and has a time complexity expressible by a
polynomial function. In this case the polynomial bound must apply to all possible
runs of M on a given input word.

Equivalently, we can express membership in the classNP using deterministic
Turing machines that take as input both a word and a certificate that proves
that the word belongs to L. A certificate can be any string of symbols that the
machine may interpret as evidence.

Theorem 13.4 A language L is in the class NP if there is a deterministic
Turing Machine M and a polynomial function f with the following properties:

• When we run M on a tape containing two inputs w and v (separated by a
blank), it always terminates in a number of steps smaller than f(|w|);

• If w ∈ L, then there exists some v such that M gives a positive answer
when run on w and v;

124



• If w /∈ L, then for every v, M always gives a negative answer when run
on w and v.

A string v such that M gives a positive answer when run on w and v is a
certificate or proof that w is in L. If you think of L as representing some problem
and w as an instance of it, then v can be thought of as a solution for w.

For example, given an instance of SAT, a certificate is an assignment of
truth values to the variables that makes the formula true. We can define a
Turing Machine with polynomial time complexity that, when run on a formula
and an assignment of values to the variables, determines whether the formula
computes to true under that assignment.

Theorem 13.5 SAT is in NP.

13.3 NP-completeness

Among the NP problems there are some that are universal in the sense that all
NP problems can be reduced to them in polynomial time.

Definition 13.6 A language L0 is in NP-complete if it is NP and, for every
language L1 in NP there exists a Turing Machine M that runs in polynomial
time, with the following property:

When we run M on a word w1, it will terminate with the tape containing a
world w0 such that w1 ∈ L1 if and only if w0 ∈ L0.

We say that L1 is reduced to L0 in polynomial time.

Seeing L0 and L1 as encodings of problems P0 and P1, the definition says
that we can turn every problem of P1 into a problem of P0 with the same
solution.

The great turning point in the study of the time complexity of algorithms
came with the discovery that there exist some NP-complete problems.

Theorem 13.7 (Stephen Cook, 1971) SAT is NP-complete.

Because Cook’s Theorem, many other problems have been shown to be NP-
complete. They now run in the thousands. Here’s a brief description of some
famous ones.

The Travelling Salesman A salesman must visit n different towns. He has
a table giving the distances between any pair of towns. He has a budget
that he can use to buy petrol, which will allow him to travel a maximum
length. Is there a route around all the towns with length shorter or equal
to that allowed by the budget?

Subset Sum Given a set of (positive and negative) integers, is there a non-
empty subset of it that sums up to zero? This is a special case of the
knapsack problem that consists in maximizing the value of a set of objects
that can fit into a knapsack with a limited capacity.

Graph Colouring Given a graph and a fixed number of colours, is it possible
to colour all the nodes of the graph so that two nodes of the same colour
are not linked by an edge?

125



To this day, it is still unknown whether there are NP problems that are not
in P . All attempts to find a polynomial algorithm that solves any NP-complete

problem have failed. Also all attempts to prove that such an algorithm doesn’t
exist have failed.

If we were to discover such an algorithm, it would automatically give us a
way to solve all NP-complete problems in polynomial time: we can just reduce
them all to the one we can solve. For this reason, most mathematicians and
computer scientists think that it is impossible, but the question is still open and
may be the greatest mystery in computer science:

P = NP ?

13.4 Exercises

Exercise 13.1

This and the next exercise concerns programing a SAT solver in Haskell. The
first exercise is to write a program that checks whether a proposed solution to
an instance of SAT is correct. Use the following type definitions:

data SAT = Var Int | Not SAT | And SAT SAT | Or SAT SAT

type Assignment = [Bool]

SAT represents Boolean formulas with variables Var 0, Var 1, Var 2, Var 3

and so on. An assignment is a list of Booleans, giving the values to some
of the variables. For example [True,False,False,True] assigns the values:
Var 0 = True, Var 1 = False, Var 2 = False, Var 3 = True. The other vari-
ables are left without value.

Write an evaluation function:

evaluate :: SAT -> Assignment -> Bool

It uses an assignment of values to variables to evaluate a formula. (If the formula
contains variables with indices larger or equal to the length of the assignment,
you can leave it undefined.)

Exercise 13.2

This exercise concerns writing a program that decides the solvability of an
instance of SAT. We will break the task down into several steps.

1. Write a function that gives the highest index of a variable occurring in a
formula:

varNum :: SAT -> Int

2. Write a function that generates all the assignments for all variables up
to a given index:

allAssign :: Int -> [Assignment]

For example allAssign 2 should give all the possible assignments for
variables Var 0, Var 1 and Var 2:

126



allAssign 2 = [[True,True,True], [True,True,False],

[True,False,True], [True,False,False],

[False,True,True], [False,True,False],

[False,False,True], [False,False,False]]

3. Write a function that, for a given formula, verifies if there is one assign-
ment on which the formula evaluates to True:

satisfiable :: SAT -> Bool

4. Define a function that actually returns the solution, if it exists:

solution :: SAT -> Maybe Assignment

Exercise 13.3

Discuss informally the complexity properties of the programs that you wrote.

1. Give an informal description of the steps of computation of evaluate
and explain why it runs in polynomial time on the length of the input.
Use this to argue that SAT is in the class NP .

2. Give an informal description of the steps of computation of satisfiable
and explain why it runs in exponential time on the length of the input.
(If you managed to write a polynomial-time program, congratulations:
you solved P =NP!)

3. Explain what it means that SAT is NP-complete and what relevance this
has for the P =NP question.

127



A Model Answers to Exercises

Answer to Exercise 2.1

1. The language of all words over the alphabet {3, 5, 7, 9} of length at least
one and at most two.

2. L = {3, 5, 7, 9, 33, 35, 37, 39, 53, 55, 57, 59, 73, 75, 77, 79, 93, 95, 97, 99}

3. |L1| =
∑n

i=m |Σ1|
i

(Note that the “big sigma” here is the standard arithmetic sum operator.)
While the answer above is fine, note that this is just a geometric se-
ries, for which the sum easily can be stated in closed form. See e.g.
http://en.wikipedia.org/wiki/Geometric series, or note the fol-
lowing. Assuming r 6= 1:

(

n
∑

i=m

ri) + rn+1 = rm +

n+1
∑

i=m+1

ri = rm + r

n
∑

i=m

ri

Thus:

(

n
∑

i=m

ri)(1 − r) = rm − rn+1

giving
n
∑

i=m

ri =
rm − rn+1

1− r

Finally, substituting |Σ1| for r, we conclude

|L1| =
|Σ1|m − |Σ1|n+1

1− |Σ1|

when |Σ1| 6= 1. If |Σ1| = 1, we have |L1| = n−m+ 1.
Strictly speaking, we should also note that neither of the above formu-
lations cover the case when Σ1 = ∅ and m = 0. This is because 00 is
undefined. However, ∅0 = {ǫ}, which means |L1| = 1 (for any n ≥ 0).
But this is a subtle technical point, and it is often the case that authors
insist that an alphabet be a non-empty finite set (e.g. [HMU3]), making it
kind of a moot point as well. Again, the simple answer |L1| =

∑n

i=m |Σ1|i

or something equivalent is fine.

4. |L1| =
∑7

i=3 |Σ|
i =

∑7
i=3 4

i = 64 + 256 + 1024 + 4096 + 16384 = 21824
or
|L1| =

43−47+1

1−4 = 64−65536
−3 = 21824

Answer to Exercise 2.2

1. L3 = {ǫ, b, ac} ∪ {a, b, ca} = {ǫ, a, b, ac, ca}

2. L4 = {ǫ, b, ac}{ǫ}({a, b, ca}∩{ǫ, b, ac}) = {ǫ, b, ac}{ǫ}{b}= {ǫ, b, ac}{b} =
{b, bb, acb}

3. L5 = L3∅L4 = ∅L4 = ∅

128



Answer to Exercise 2.3

1.

L3 = {ǫ, b, bb} ∩ {a, ab, abc}

= ∅

2.

L4 = ({a, ab, abc}{ǫ}{ǫ, b, bb})∩ Σ∗

= [ {ǫ} is the unit of concatenation of languages ]

({a, ab, abc}{ǫ, b, bb})∩Σ∗

= {a, ab, abc, ab, abb, abcb, abb, abbb, abcbb}∩ Σ∗

= {a, ab, abc, abb, abcb, abbb, abcbb}∩ Σ∗

= [ Σ∗ is all possible words over Σ and thus the unit for intersection ]

{a, ab, abc, abb, abcb, abbb, abcbb}

3.

L5 = L3∅ ∩ L4

= [ ∅ is the zero of concatenation of languages ]

∅ ∩ L4

= ∅

Answer to Exercise 2.4

L = {ǫ, a, b, aa, ab, ba, bb, bc, aaa, aab, aba, abb, abc, baa, bab, bba, bbb, bbc, bca, bcb}

Answer to Exercise 3.1

1. DFA A

0 1

2 3

a

b

a

b

a

b

a

b

2.
w w ∈ L(A)

ǫ no
b yes

abaab yes
bababbba no

129



3. δ̂A(0, abba) = δ̂A(δA(0, a), bba) def. δ̂A
= δ̂A(1, bba) because δA(0, a) = 1

= δ̂A(δA(1, b), ba) def. δ̂A
= δ̂A(3, ba) because δA(1, b) = 3

= δ̂A(δA(3, b), a) def. δ̂A
= δ̂A(1, a) because δA(3, b) = 1

= δ̂A(δA(1, a), ǫ) def. δ̂A
= δ̂A(0, ǫ) because δA(1, a) = 0

= 0 def. δ̂A

4. L(A) contains all words over {a, b} in which the number of a’s is even
and the number of b’s is odd, or vice versa. But that’s the same as saying
all the words over {a, b} containing an odd number of symbols. Which
in turn suggests there is a DFA with fewer states that accepts the same
language. (Can you find it?)

Answer to Exercise 3.2

We need to count the number of a’s modulo 3, i.e. we need to keep track of
whether the remainder when we divide the total number of a’s seen so far by
3 is 0, 1, or 2. Thus we need 3 states. They are named 0, 1, and 2 below, to
indicate said remainder. When any symbol other than a is read, the machine
does not change state as the number of a’s seen remain unchanged. 0 should be
the accepting state because a remainder of 0 indicates that the number of a’s
seen is a multiple of 3. Note that 0 is a multiple of 3. Thus the empty string is
accepted, and the accepting state is thus also the initial state.

0

1

2

a

b, c, d

a

b, c, da

b, c, d

Answer to Exercise 3.3

We need to count the number of a’s modulo 2 and the number of b’s modulo
3, i.e. we need to keep track of whether the remainder when we divide the total
number of a’s seen so far by 2 is 0 or 1, and whether the remainder when we
divide the total number of b’s seen so far by 3 is 0, 1, or 2. Thus we need 6
states. We name the states 00, 01, 02, 10, 11, and 12 to indicate the number

130



of a’s modulo 2 and the number of b’s modulo 3, respectively. (Of course, the
names do not really matter, but it is helpful to be systematic and pick names
that reflect the meaning of each state.) State 00 is the initial state, and state
10 the one and only accepting state.

00

01

02

10

11

12

a

a

a

a

a

a

b

b

b

b

b

bc

c

c

c

c

c

Answer to Exercise 3.4

We need one state for each possible remainder when dividing by 5, i.e. 5
states. Let us label each state with the remainder in question. State 0 is thus
both the initial and the only final state. We then just note that if the remainder
when dividing the sum n of the symbols seen so far by 5 is r, and the next
symbol is i, then the remainder of n + i divided by 5 is just the remainder of
r + i divided by 5.

131



0

1

23

4

0

0

00

0

1

1

1

1

1
2

2

2

2

2
3

3

33

3

As the question does not specifically ask for a transition diagram, any com-
plete representation of a DFA equivalent to the one above is OK:

• Transition diagram (like above)

• Transition table with initial and accepting states clearly indicated

• As a tuple (Q,Σ, δ, q0, F ) with all five components completely defined

However, an overly complicated solution, like too many states, is not acceptable.
For the sake of completeness, here is the transition table, with → indicating

the start state and ∗ indicating the (in this case only) accepting state:

δD 0 1 2 3

→ ∗ 0 0 1 2 3
1 1 2 3 4
2 2 3 4 0
3 3 4 0 1
4 4 0 1 2

And finally, mathematically as a tuple:

D = (QD,ΣD, δD, 0, FD)

where

QD = {0, 1, 2, 3, 4}

ΣD = {0, 1, 2, 3}

FD = {0}

132



and the transition function δD, grouping by state, defined by:

δD(0, 0) = 0

δD(0, 1) = 1

δD(0, 2) = 2

δD(0, 3) = 3

δD(1, 0) = 1

δD(1, 1) = 2

δD(1, 2) = 3

δD(1, 3) = 4

δD(2, 0) = 2

δD(2, 1) = 3

δD(2, 2) = 4

δD(2, 3) = 0

δD(3, 0) = 3

δD(3, 1) = 4

δD(3, 2) = 0

δD(3, 3) = 1

δD(4, 0) = 4

δD(4, 1) = 0

δD(4, 2) = 1

δD(4, 3) = 2

133



or, if you prefer to group by input symbols instead:

δD(0, 0) = 0

δD(1, 0) = 1

δD(2, 0) = 2

δD(3, 0) = 3

δD(4, 0) = 4

δD(0, 1) = 1

δD(1, 1) = 2

δD(2, 1) = 3

δD(3, 1) = 4

δD(4, 1) = 0

δD(0, 2) = 2

δD(1, 2) = 3

δD(2, 2) = 4

δD(3, 2) = 0

δD(4, 2) = 1

δD(0, 3) = 3

δD(1, 3) = 4

δD(2, 3) = 0

δD(3, 3) = 1

δD(4, 3) = 2

Answer to Exercise 3.5

1. (a) ǫ ∈ L(A)
(b) aaa ∈ L(A)
(c) bbc ∈ L(A)
(d) cbc /∈ L(A)
(e) abcacb ∈ L(A)

2. Starting from SA = {q0, q1, q3}, the start state of D(A), we compute

δ̂A(SA, x) for each x ∈ ΣA. Whenever we encounter a state P ⊆ QA of
D(A) that has not been considered before, we add P to the table and

proceed to tabulate δ̂A(P, x) for each x ∈ ΣA. We repeat the process until
no new states are encountered. Finally, we identify the initial state (→ to
the left of the state) and all accepting states (∗ to the left of the state).
Note that a DFA state is accepting iff it contains at least one accepting
NFA state (as this means it is possible to reach at least one accepting
state on a given word, which means that word is considered to be in the
language of the NFA).

134



δD(A) a b c

→ ∗ {q0, q1, q3} {q0, q1, q3} ∪ ∅ ∪ ∅
= {q0, q1, q3}

{q0} ∪ {q1} ∪ {q4}
= {q0, q1, q4}

{q0} ∪ {q2} ∪ {q3}
= {q0, q2, q3}

∗ {q0, q1, q4} {q0, q1, q3} ∪ ∅ ∪ ∅
= {q0, q1, q3}

{q0} ∪ {q1} ∪ ∅
= {q0, q1}

{q0} ∪ {q2} ∪ ∅
= {q0, q2}

∗ {q0, q2, q3} {q0, q1, q3} ∪ ∅ ∪ ∅
= {q0, q1, q3}

{q0} ∪ ∅ ∪ {q4}
= {q0, q4}

{q0} ∪ ∅ ∪ {q3}
= {q0, q3}

∗ {q0, q1} {q0, q1, q3} ∪ ∅
= {q0, q1, q3}

{q0} ∪ {q1}
= {q0, q1}

{q0} ∪ {q2}
= {q0, q2}

∗ {q0, q2} {q0, q1, q3} ∪ ∅
= {q0, q1, q3}

{q0} ∪ ∅ = {q0} {q0} ∪ ∅ = {q0}

∗ {q0, q4} {q0, q1, q3} ∪ ∅
= {q0, q1, q3}

{q0} ∪ ∅ = {q0} {q0} ∪ ∅ = {q0}

∗ {q0, q3} {q0, q1, q3} ∪ ∅
= {q0, q1, q3}

{q0} ∪ {q4}
= {q0, q4}

{q0} ∪ {q3}
= {q0, q3}

{q0} {q0, q1, q3} {q0} {q0}

(Note that we only needed to consider 8 states, a lot fewer than the
25 = 32 possible states in this case. 32 − 8 = 24 states are thus not
reachable from the initial state.)
Giving simple names to the states resulting from the subset construction
can facilitate drawing the transition diagram:

δD(A) a b c

→ ∗ {q0, q1, q3} = A {q0, q1, q3} = A {q0, q1, q4} = B {q0, q2, q3} = C
∗ {q0, q1, q4} = B {q0, q1, q3} = A {q0, q1} = D {q0, q2} = E
∗ {q0, q2, q3} = C {q0, q1, q3} = A {q0, q4} = F {q0, q3} = G
∗ {q0, q1} = D {q0, q1, q3} = A {q0, q1} = D {q0, q2} = E
∗ {q0, q2} = E {q0, q1, q3} = A {q0} = H {q0} = H
∗ {q0, q4} = F {q0, q1, q3} = A {q0} = H {q0} = H
∗ {q0, q3} = G {q0, q1, q3} = A {q0, q4} = F {q0, q3} = G

{q0} = H {q0, q1, q3} = A {q0} = H {q0} = H

3. We can now draw the transition diagram for D(A):

135



A

B

C

D

E

F

G

Ha

b a

ca

b

c

b

c

a

b

c

a

b, c

a
b, c

a
b

c

a
b, c

Answer to Exercise 3.6

1. Starting from SB = {q0}, the start state of D(B), we compute δ̂B(SB , x)
for each x ∈ ΣB. Whenever we encounter a state P ⊆ QB of D(B) that
has not been considered before, we add P to the table and proceed to
tabulate δ̂B(P, x) for each x ∈ ΣB. We repeat the process until no new
states are encountered. Finally, we identify the initial state (→ to the
left of the state) and all accepting states (∗ to the left of the state). Note
that a DFA state is accepting if it contains at least one accepting NFA
state (as this means it is possible to reach at least one accepting state on
a given word, which means that word is considered to be in the language
of the NFA).

δD(B) 0 1

→ {q0} {q2} {q1, q3}
{q2} {q0} ∅

{q1, q3} ∅ ∪ {q4} = {q4} {q0} ∪ ∅ = {q0}
∅ ∅ ∅

∗ {q4} ∅ ∅

(In this case we only needed to consider 5 out of the 25 = 32 possible
states. 32 − 5 = 27 states are thus not reachable from the initial state,
and we do not need to worry about those.)
We can now draw the transition diagram for D(B):

136



{q0}

{q2}

{q1, q3}

∅

{q4}

0

0

1

1

1

0, 1

0

0, 1

Accepting states have been marked by outgoing arrows in this case. That
is an alternative to the double circle.
It is often convenient to give simple names to the states resulting from the
subset construction as referring to the states by writing out the subsets
in full can be a bit long-winded. These names can then be used when
drawing the transition diagram:

δD(A) 0 1

→ {q0} = A {q2} {q1, q3}
{q2} = B {q0} ∅

{q1, q3} = C ∅ ∪ {q4} = {q4} {q0} ∪ ∅ = {q0}
∅ = D ∅ ∅

∗ {q4} = E ∅ ∅

A

B

C

D

E

0

0

1

1

1

0, 1

0

0, 1

Here the states were named using capital letters. But the choice is arbi-
trary, of course.

2. General hint: It is very easy to make simple mistakes when applying the
subset construction. Thus, doing a sanity check on the result along the
lines described here is always a good idea, even if you are not explicitly
asked to, and even if you only do the check in your head!
(a) The words 10 and 110010 are both accepted by the NFA B.

The words ǫ and 1101 are both rejected by the NFA B.

137



(b)

word state sequence last state
10 A, C, E accepting
110010 A, C, A, B, A, C, E accepting
ǫ A not accepting
1101 A, C, A, B, D not accepting

Thus the DFA D(B) behaves like the NFA B at least for these four
words, which should give us some reassurance as to the correctness
of the answer.

Answer to Exercise 3.7

1. (a) ǫ ∈ L(C)

(b) aa ∈ L(C)

(c) bb /∈ L(C)

(d) abcabc /∈ L(C)

(e) abcabca ∈ L(C)

2. All words over ΣC where the number of a’s is odd or the number of b’s is
divisible by three (or both).

3. Starting from SC = {0, 2}, the start state of D(C), we tabulate δD(C) by
computing the union of δC(q, x) over all q in a state of D(C) for each
symbol x in ΣC , exploring new states as they emerge.

δD(C) a b c

→ ∗ {0, 2} {1} ∪ {2} = {1, 2} {0} ∪ {3} = {0, 3} {0} ∪ {2} = {0, 2}
∗ {1, 2} {0} ∪ {2} = {0, 2} {1} ∪ {3} = {1, 3} {1} ∪ {2} = {1, 2}

{0, 3} {1} ∪ {3} = {1, 3} {0} ∪ {4} = {0, 4} {0} ∪ {3} = {0, 3}
∗ {1, 3} {0} ∪ {3} = {0, 3} {1} ∪ {4} = {1, 4} {1} ∪ {3} = {1, 3}

{0, 4} {1} ∪ {4} = {1, 4} {0} ∪ {2} = {0, 2} {0} ∪ {4} = {0, 4}
∗ {1, 4} {0} ∪ {4} = {0, 4} {1} ∪ {2} = {1, 2} {1} ∪ {4} = {1, 4}

(Note that we only needed to consider 6 states. That is a lot fewer than
the 25 = 32 possible states in this case. 32 − 6 = 26 states are thus not
reachable from the initial state, and we do not need to worry about those.)

4. We can now draw the transition diagram for D(C):

138



{0,2}

{0,3}

{0,4}

{1,2}

{1,3}

{1,4}

a

a

a

a

a

a

b

b

b

b

b

bc

c

c

c

c

c

Note that D(C) has the same structure as the DFA C above, except that
this time each state corresponding to an odd number of a’s or the number
of b’s being divisible by 3 is an accepting state.

Answer to Exercise 4.1

Note: these are not necessarily the only possibilities, nor necessarily the
“simplest”. But they are all fairly simple, and your answers should not be much
more complicated.

1. (b+ c)∗a(b+ c)∗

2. (a+ c)∗b(a+ c)∗b(a+ b+ c)∗

3. (a+ b)∗(ǫ+ c)(a+ b)∗(ǫ+ c)(a + b)∗

4. (a+ b)∗(a+ c)∗

5. a∗(ba∗c+ ca∗b)a∗

6. c∗(a+ b)((a + b)c∗(a+ b) + c)∗

7. (a+ b+ c)∗abba(a+ b+ c)∗

Answer to Exercise 4.2

139



L((aa+ ǫb∗∅)(b+ c))
= {L(EF ) = L(E)L(F )}

L(aa+ ǫb∗∅)L(b+ c)
= {L(E + F ) = L(E) ∪ L(F )} (twice)

(L(aa) ∪ L(ǫb∗∅))(L(b) ∪ L(c))
= {L(EF ) = L(E)L(F )} (three times)

(L(a)L(a) ∪ L(ǫ)L(b∗)L(∅))(L(b) ∪ L(c))
= {L(E∗) = (L(E))∗}

(L(a)L(a) ∪ L(ǫ)L(b)∗L(∅))(L(b) ∪ L(c))
= {L(x) = {x}, L(∅) = ∅, L(ǫ) = {ǫ}}

({a}{a} ∪ {ǫ}{b}∗∅)({b} ∪ {c})
= {L∅ = ∅ (twice)}

({a}{a} ∪ ∅)({b} ∪ {c})
= {Set union}

{a}{a}{b, c}
= {Concatenation of languages}

{aab, aac}

Answer to Exercise 4.3

Construct an NFA A for (a(b + c))∗ according to the lecture notes. Start
with the innermost subexpressions and then join the NFAs together step by
step. (I have named the states according to how they will be named in the final
NFA to make it easier to follow the derivation. It is OK to leave states unnamed
to the end.) NFA for a:

0 6
a

NFA for b+ c

1 2

3 4

b

c

Join the above two NFAs to obtain an NFA for a(b+ c):

0 6

1 2

3 4

a

a

a

b

c

140



The last step is to carry out the construction corresponding to the ∗-operator.
States 1 and 3 both immediately precede a final state, and we should thus add
corresponding transition edges from those back to all start states. But there is
only one start state, 0, so only one edge from each. Additionally, we must not
forget to add an extra start state which is also final (here state 5) to ensure the
NFA accepts ǫ. Finally, state 6 is manifestly now a “dead end” and can thus be
eliminated:

0

1 2

3 4

5

a

a
b

c

b

c

Note that the isolated state 5 also is part of the same automaton.

Answer to Exercise 4.4

States are named as they are introduced to make it easier to follow the
construction, but it is OK to leave states unnamed to the end.

First construct an NFA for the subexpression ∅:

0

Then construct an NFA for the Kleene closure ∅∗. As there are no accepting
states and thus no states immediately preceding any accepting state, there are
no “loop edges” to add. But we do have to add an initial and accepting state
to account for the fact that the automaton must accept the empty word, ǫ:

0

1

It is now clear that state 0 is a dead end, so we can eliminate it already now
giving us the NFA

1

141



for the subexpression ∅∗. (This is exactly what we should expect as the expres-
sion is equivalent to ǫ.)

We can now consider the subexpression (a(∅∗+b))∗. In addition to the NFA
for ∅∗ constructed above, we first need NFAs for the atomic regular expressions
a (to the left) and b. We form an NFA for ∅∗ + b by placing the NFAs for ∅∗

and b in parallel (to the right):

2 3
a

1

4 5
b

Join the above two NFAs to obtain an NFA for a(∅∗ + b), keeping in mind
that the left DFA does not accept ǫ (“sub-case 1” in the lecture notes):

2 3
a

1

4 5
b

a

a

It is now clear state 3 is a dead end, so it can be removed prior to carrying
out the construction for the Kleene closure (not forgetting one extra state for
accepting ǫ) leaving us with the following NFA A for (a(∅∗ + b))∗:

2

1

4 5

6

a

a

a

b

b

The NFA B for (c+ ǫ + ∅) is simply:

142



7 8

9

10

c

It’s clear that state 10 will become a dead end, so it can be removed.

Now, joining A with B (less state 10), while keeping in mind that A can
accept ǫ which means states 7 and 9 will remain initial states, gives:

2

1

4 5

6

a

a

a

b

b

7 8

9

ca

a

b

b

It’s now clear that states 1, 5, and 6 are all dead ends, so we can simplify
by removing them and obtain the final NFA for (a(∅∗ + b))∗(c+ ǫ+ ∅):

2

4

7 8

9

a
a

a

a

b

b

b

c

Note that there are three initial states: 2, 7, and 9. Finally, it is worth spending
some time to ensure the final NFA makes sense by comparing the words it
accepts with the words generated by the original regular expression.

Answer to Exercise 6.1

143



1. Straightforward, only the key steps are given. See below for an example
of a complete proof. If n is the constant of the pumping lemma, consider
a specific word anbmcn+m, where m ≥ 0. This word clearly belongs to L1,
and it is sufficiently long to satisfy the requirements of the lemma. Once
split into three parts according to the lemma, the middle part is going
to be non-empty and it is going to consist of a’s only. If the middle part
is repeated, the resulting string is not going to have the right balance of
a’s, b’s, and c’s, and thus it is not going to belong to L1.

2. Assume that L2 is a regular language. Then, according to the pumping
lemma for regular languages, there exists a constant n such that any
word w ∈ L2 that has length at least n (|w| ≥ n) can be split into three
parts, w = xyz, as follows:

1. y 6= ǫ

2. |xy| ≤ n

3. ∀k ∈ N . xykz ∈ L2

Consider the word11w = a4nb2ncn. Clearly w ∈ L2. Moreover |w| = 7n ≥
n. The prerequisites of the lemma are thus fulfilled, and we know it is
possible to split w into three parts x, y, and z satisfying the conditions of
the lemma. Because our chosen word w starts with 4n a’s, and because
the combined length of the two first parts, x and y, is at most n, we
know that x and y consists solely of a’s. Thus x = ai and y = aj for
some i, j ∈ N such that i + j ≤ n. Furthermore, because y is not empty
according to the lemma, we know that j > 0. z is whatever remains of
w; i.e., z = a(4n−i−j)b2ncn.
Now consider words of the form xykz. According to the pumping lemma,
these words belong to L2 for any value of k. Let us consider a specific
value for k, for example k = 0. The word xy0z should belong to L. But
xy0z = xz = aia(4n−i−j)b2ncn = a(4n−j)b2ncn. Because j > 0, it is now
clear that there are fewer than twice as many a’s as b’s in this word,
which thus cannot belong to L2. We have reached a contradiction, and
our assumption that L2 is a regular language must be wrong. Thus L2 is
not a regular language, QED.

Answer to Exercise 7.1

1. (a)
S ⇒

G
X by S → X

⇒
G

ǫ by X → ǫ

11 Note how w is chosen: it is one specific word that obviously is a word in L2, but that
depends on the constant n in such a way that the length of w is at least n whatever n is. It
is completely wrong to assume that n is some particular value! All we know is that n exists.
Also, note that the structure of w was chosen to facilitate the proof. For example, a word
(aaaabbc)n is also a word in L2 with length at least n. But in this case, it is not going to be
possible to show that all ways to divide the word into three parts that satisfy the constraints
of the lemma are going to lead to a contradiction. By first establishing that n must be at
least 7 (which can be done), we will see that a division of v into x = ǫ, y = aaaabbc, and
z = (aaaabbc)n−1 always is a possibility, which in turn means that all words of the form xykz

do belong to L, and we do not get any contradiction.

144



or
S ⇒

G
Y by S → Y

⇒
G

ǫ by Y → ǫ

When giving derivation sequences in a context-free grammar, it is
normally not necessary to justify every single step as it is fairly obvi-
ous which production is being used. The justified derivation sequence
above were just given for explanatory purposes. Thus, an answer like
the following is perfectly OK too:

S ⇒
G

X ⇒
G

ǫ

or even
S ⇒ X ⇒ ǫ

as it is clear which grammar we are referring to from the context.
However, to make it very clear how derivations work, we will give
explicit justifications here.

(b)
S ⇒

G
X by S → X

⇒
G

aXb by X → aXb

⇒
G

aaXbb by X → aXb

⇒
G

aabb by X → ǫ

(c)
S ⇒

G
Y by S → Y

⇒
G

cY d by Y → cY d

⇒
G

ccY dd by Y → cY d

⇒
G

cccY ddd by Y → cY d

⇒
G

cccddd by Y → ǫ

2. No, aaaddd /∈ L(G). From the start symbol S, we can either derive X or
Y . However, from X it is only possible to derive strings anbn, while from
Y it is only possible to derive strings cndn, neither of which are words
starting with a’s and ending with d’s.

3. L(G) = {anbn | n ∈ N} ∪ {cndn | n ∈ N}

Answer to Exercise 7.2

The following is one possible grammar generating L:

S → XY | Z
X → abXba | abX1ba
X1 → bcX1cb | bccb
Y → dY | ǫ
Z → ddY

S, X , X1, Y , and Z are nonterminal symbols, S is the start symbol, and a, b,
c, and d are terminal symbols.

145



(The following explanation is very detailed to make it easy to follow what
is going on. An explanation of the key ideas is sufficient for full marks as long
this explanation reflects a clear understanding of the construction.)

The grammar was constructed as follows. There are three constituent sets
in the definition of the language L. Call them

LX = {(ab)m(bc)n(cb)n(ba)m | m,n ≥ 1}

LY = {dn | n ≥ 0}

LZ = {dn | n ≥ 2}

Introduce a non-terminal for each, such that the set is generated by using that
non-terminal as a start symbol; i.e. the nonterminal X corresponds to the set
LX etc. Then observe that L is the concatenation of the sets LX and LY in
union with LZ ; i.e. L = LXLY ∪ LZ . This is captured by the two productions:

S → XY | Z

The set LY , i.e. zero, one, or more d’s, is described by the following recursive
productions:

Y → dY | ǫ

The set LZ is similar, except there has to be at least two d’d. We can obtain
such a set by simply prefixing all words in the set LY by two d’s. as follows:

Z → ddY

(Obviously, there is nothing wrong by doing it from scratch, not “reusing” the
productions for Y .)

Finally, as the words in LX are strings with a balanced nesting of one pair
of substrings (bc and cb) inside another (ab and ba), we need to introduce a
“helper” non-terminal to deal with the inner nesting. Keeping in mind that
each substring pair should occur at least once, we obtain:

X → abXba | abX1ba
X1 → bcX1cb | bccb

Answer to Exercise 7.3

For φ = X , the only possibility is A = X and α = γ = ǫ. There are two
possible production for X , meaning β = aXb in one case and β = ab in the
other. For φ = XY , we can either take α = ǫ, A = X , and γ = Y , or α = X ,
A = Y , and γ = ǫ. For the case where A = X there are two possible productions:
X → aXb and X → ab, meaning that β = aXb in one case and β = ab in the
other. For the case A = Y there are also two possible productions, Y → bY c
and Y → ǫ. A similar analysis can be made for φ = aXbY c. For φ = cc we don’t
get any possibilities, because there is no nonterminal symbol in the word, and
thus no way to chose a production in P . For θ = a, finally, we note there is no
production that yields a single a, and only one production that yields ǫ, Y → ǫ.
Thus the only ways to directly derive a single a is from strings Y a and aY . We

146



summarize in the following table:

φ = αAγ α A γ A → β θ = αβγ
X ǫ X ǫ X → aXb aXb
X ǫ X ǫ X → ab ab
XY ǫ X Y X → aXb aXbY
XY ǫ X Y X → ab abY
XY X Y ǫ Y → bY c XbY c
XY X Y ǫ Y → ǫ X

aXbY c a X bY c X → aXb aaXbbY c
aXbY c a X bY c X → ab aabbY c
aXbY c aXb Y c Y → bY c aXbbY cc
aXbY c aXb Y c Y → ǫ aXbc
Y a ǫ Y a Y → ǫ a
aY a Y ǫ Y → ǫ a

The pairs in question are thus

(X, aXb), (X, ab), (XY, aXbY ), (XY, abY ), (XY,XbY c), (XY,X),
(aXbY c, aaXbbY c), (aXbY c, aabbY c), (aXbY c, aXbbY cc), (aXbY c, aXbc),
(Y a, a), (aY, a)

147



Answer to Exercise 7.4

1. (a) Left-most derivation:

T ⇒ F ⇒ P ⇒ (T ) ⇒ (F ) ⇒ (P ) ⇒ (I) ⇒ (DI) ⇒ (7I) ⇒ (7DI)

⇒ (78I) ⇒ (78D) ⇒ (789)

Sometimes left-most derivation steps are explicitly indicated by an
lm subscript as follows:

T ⇒
lm

F ⇒
lm

P ⇒
lm

(T ) ⇒
lm

. . . ⇒
lm

(789)

Note that if the goal is just to derive a word, any derivation will
do, not just a left-most one (unless you’ve been explicitly asked to
provide a left-most derivation as here, of course). However, being
systematic and sticking to e.g. left-most derivations where possible
can help in avoiding mistakes. Anyway, to illustrate that there are
other possibilities, here is a right-most derivation of the same word:

T ⇒
rm

F ⇒
rm

P ⇒
rm

(T ) ⇒
rm

(F ) ⇒
rm

(P ) ⇒
rm

(I) ⇒
rm

(DI)

⇒
rm

(DDI) ⇒
rm

(DDD) ⇒
rm

(DD9) ⇒
rm

(D89) ⇒
rm

(789)

(b) Left-most derivation:

T ⇒ T + T ⇒ F + T ⇒ P + T ⇒ I + T

⇒ D + T ⇒ 7 + T ⇒ 7 + F ⇒ 7 + F ∗ F

⇒ 7 + P ∗ F ⇒ 7 +N(A) ∗ F ⇒ 7 + g(A) ∗ F ⇒ 7 + g(T ) ∗ F

⇒ 7 + g(F ) ∗ F ⇒ 7 + g(F ∗ F ) ∗ F ⇒ 7 + g(P ∗ F ) ∗ F

⇒ 7 + g(I ∗ F ) ∗ F ⇒ 7 + g(D ∗ F ) ∗ F ⇒ 7 + g(3 ∗ F ) ∗ F

⇒ 7 + g(3 ∗ P ) ∗ F ⇒ 7 + g(3 ∗ I) ∗ F ⇒ 7 + g(3 ∗D) ∗ F

⇒ 7 + g(3 ∗ 5) ∗ F ⇒ 7 + g(3 ∗ 5) ∗ P

⇒ 7 + g(3 ∗ 5) ∗ (T ) ⇒ 7 + g(3 ∗ 5) ∗ (F ) ⇒ 7 + g(3 ∗ 5) ∗ (P )

⇒ 7 + g(3 ∗ 5) ∗ (N(A)) ⇒ 7 + g(3 ∗ 5) ∗ (f(A)) ⇒ 7 + g(3 ∗ 5) ∗ (f())

(c) It is not possible to derive 1+2 ∗ 3). There are only two productions
that introduce parentheses, and they always introduce them as bal-
anced pairs. Thus it is not possible to derive a string with a single
unmatched parenthesis as in this case.

(d) It is not possible to derive 1 + 7(9) because a number cannot be
followed directly by a left (opening) parenthesis. The substring 7(9)
must have been derived from T . There are only two productions that
introduce parentheses. The production P → N(A) cannot have been
used to derive 7(9) because, although P can be derived from T , 7
cannot be derived from N . The other possibility is the production
P → (T ). But, as numbers are only derivable via I, this would only
be possible if a word IP can be derived form T . This in turn is
not possible as the I ultimately has to be derived from a T , and
inspection then shows that the only terminals that can follow an I
are +, ∗, and ).

148



2. Derivation tree:
T

T

F

P

I

D

9

+T

T

F

P

)T

F

F

P

)A

T

F

P

I

D

1

(N

h

∗F

P

I

D

8

(

+T

F

P

I

D

7

3. Another derivation tree:
T

T

T

F

P

I

D

9

+T

F

P

)T

F

F

P

)A

T

F

P

I

D

1

(N

h

∗F

P

I

D

8

(

+T

F

P

I

D

7

The fact that there are two different derivation trees for one word implies
that the grammar is ambiguous.

149



4. Delete all old productions for A and add the following productions:

A → TL | ǫ
L → , TL | ǫ

Here, L is a new nonterminal symbol, and “,” is a new terminal symbol.
The productions for L generate argument lists of zero, one or more ar-
guments (any expression derivable from T ), each preceded by a comma.
The production A → TL thus generates argument lists of one or more
arguments separated by commas, while the production A → ǫ takes care
of the case of zero arguments.

Answer to Exercise 8.1

The problem is that the grammar does not impart any associativity on the
operators + and ∗. Let us make them left-associative to address this. (Mak-
ing them right-associative would also work, but we cannot make them non-
associative as that would change the language; e.g. the example word 7 + (8 ∗
h(1)) + 9 would no longer belong to the language as non-associativity means
we have to use explicit bracketing.) We make those operators left-associative by
making the corresponding productions left-recursive:

T → T + F | F
F → F ∗ P | P

Answer to Exercise 8.2

1. The following CFG GE is an unambiguous grammar satisfying the re-
quirements. GE = (N, T, P, S) where:

• N = {E1, E2, E3, E4, EP , I, IT , D,D1}

• T = {(, ), <,⊕,⊗, ↑,−, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

• P is given by:

E1 → E2 < E2 | E2

E2 → E2 ⊕ E3 | E3

E3 → E3 ⊗ E4 | E4

E4 → EP ↑ E4 | EP

EP → I | (E1)

I → 0 | D1IT | −D1IT

IT → DIT | ǫ

D → 0 | D1

D1 → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

• S = E1

2. Derivation tree for 42 < 0⊗−10⊗ (1 ⊕ 7) ↑ 2:

150



E1

E2

E3

E4

E4

EP

I

IT

ǫ

D1

2

↑EP

)E1

E2

E3

E4

EP

I

IT

ǫ

D1

7

⊕E2

E3

E4

EP

I

IT

ǫ

D1

1

(

⊗E3

E4

EP

I

IT

IT

ǫ

D

0

D1

1

−

⊗E3

E4

EP

I

0

<E2

E3

E4

EP

I

IT

IT

ǫ

D

D1

2

D1

4

Answer to Exercise 8.3

First identify the nonterminals for which there are immediately left-recursive
productions. Then group the productions for each such non-terminal into two
groups: one where each RHS starts with the nonterminal in question (the im-
mediately left-recursive terminals), and one where they don’t:

A → Aα1 | . . . | Aαm

A → β1 | . . . | βn

In our case, there are immediately left-recursive productions for S and X in
the given grammar. Grouping the productions as required yields:

• Grouping of productions for S:

S → Sa

S → XbS | a

• Grouping of productions for X :

X → XXX | XY Y

X → Y Y Y | Y Y X

151



• Remaining productions:

Y → cY | dY | e

Then, continuing with the general example, the productions for a nonter-
minal A for which there are immediately left-recursive productions need to be
replaced with new productions for A and productions for A′, where A′ is a new
name, as follows:

A → β1A
′ | . . . | βnA

′

A′ → α1A
′ | . . . | αmA′|ǫ

In our case, this transformation needs to be applied to the productions for
the nonterminals S and X

S → XbSS′ | aS′

S′ → aS′ | ǫ

X → Y Y Y X ′ | Y Y XX ′

X ′ → XXX ′ | Y Y X ′ | ǫ

Y → cY | dY | e

Note in particular how the production X → XXX was transformed. The
transformation rule specifies that the right-hand side should be split after the
first X , meaning that the “α-part” is XX in this case. It might be confusing
that this still starts with an X , but that is what the transformation rule says,
and it is fairly easy to see why with a bit of thought. Then the XX is used to
construct one of the right-recursive productions for the new nonterminal X ′.

Answer to Exercise 10.1

1. Nǫ = {S,A,B}. A is nullable because A → ǫ is a production. B is
nullable because B → ǫ is a production. S is nullable because S → ABB
is a production and both A and B are nullable. C is not nullable because
the RHSs of all productions for C include a terminal (c or d), meaning
it is clear ǫ cannot be derived from C.

2. Keeping in mind which non-terminals are nullable, we obtain the follow-
ing equations:

first(A) = first(aA) ∪ first(ǫ)

= {a} ∪ ∅

= {a}

first(B) = first(Bb) ∪ first(ǫ)

= (first(B) ∪ first(b)) ∪ ∅

= first(B) ∪ first(b)

first(C) = first(cA) ∪ first(d)

= first(c) ∪ first(d)

= {c} ∪ {d}

= {c, d}

152



The solutions of the equations for first(A) and first(C) are manifest. As
to the equation for first(B), we need only observe that it has the form
X = X ∪ Y and that there are no further constraints on first(B). The
smallest solution to such an equation is simply X = Y , so first(B) = {b}.
Now we can turn to setting up and solving the equation for first(S), again
keeping in mind which non-termainals are nullable:

first(S) = first(ABB) ∪ first(BBC) ∪ first(CA)

= (first(A) ∪ first(B) ∪ first(B) ∪ first(ǫ))

∪ (first(B) ∪ first(B) ∪ first(C))

∪first(C)

= (first(A) ∪ first(B) ∪ ∅)

∪ (first(B) ∪ first(C))

∪first(C)

= ({a} ∪ {b}) ∪ ({b} ∪ {c, d}) ∪ ({c, d})

= {a, b, c, d}

Thus, we obtained a solution directly.

3. Note: very detailed account below for clarity. It is sufficient to just state
the constraints according to the definitions and then simplify.
Constraints for follow(S):

{$} ⊆ follow(S)

Constraints for follow(A) from the productions where A occurs in the
RHS, i.e.

S → ABB

S → CA

A → aA

(note: nullable(BB) and nullable(ǫ)):

first(BB) ⊆ follow(A)

follow(S) ⊆ follow(A)

first(ǫ) ⊆ follow(A)

follow(S) ⊆ follow(A)

first(ǫ) ⊆ follow(A)

follow(A) ⊆ follow(A)

Constraints for follow(B) from the productions where B occurs in the
RHS, i.e.

S → ABB

S → BBC

B → Bb

153



(note: nullable(B) and nullable(ǫ)):

first(B) ⊆ follow(B)

follow(S) ⊆ follow(B)

first(ǫ) ⊆ follow(B)

follow(S) ⊆ follow(B)

first(BC) ⊆ follow(B)

first(C) ⊆ follow(B)

first(b) ⊆ follow(B)

Constraints for follow(C) from the productions where C occurs in the
RHS, i.e.

S → BBC

S → CA

C → cC

(note: nullable(A) and nullable(ǫ)):

first(ǫ) ⊆ follow(C)

follow(S) ⊆ follow(C)

first(A) ⊆ follow(C)

follow(S) ⊆ follow(C)

first(ǫ) ⊆ follow(C)

follow(C) ⊆ follow(C)

Using

first(ǫ) = ∅

first(A) = {a}

first(B) = {b}

first(C) = {c, d}

first(BB) = first(B) ∪ first(B) ∪ first(ǫ)

= {b} ∪ {b} ∪ ∅ = {b}

first(BC) = first(B) ∪ first(C) ∪ ∅

= {b} ∪ {c, d} = {b, c, d}

and eliminating trivial constraints yields:

154



{$} ⊆ follow(S)

{b} ⊆ follow(A)

follow(S) ⊆ follow(A)

{b} ⊆ follow(B)

follow(S) ⊆ follow(B)

{b, c, d} ⊆ follow(B)

follow(S) ⊆ follow(C)

{a} ⊆ follow(C)

This is equivalent to

{$} ⊆ follow(S)

{b} ∪ follow(S) ⊆ follow(A)

{b} ∪ follow(S) ∪ {b, c, d} ⊆ follow(B)

follow(S) ∪ {a} ⊆ follow(C)

which can be further simplified to the final constraints:

{$} ⊆ follow(S)

{b} ∪ follow(S) ⊆ follow(A)

{b, c, d} ∪ follow(S) ⊆ follow(B)

{a} ∪ follow(S) ⊆ follow(C)

4. The smallest set satisfying the constraint for follow(S) is obviously just
{$}. Substituting this into the remaining constraints makes the smallest
sets satisfying those obvious too. Thus:

follow(S) = {$}

follow(A) = {b} ∪ {$} = {b, $}

follow(B) = {b, c, d} ∪ {$} = {b, c, d, $}

follow(C) = {a} ∪ {$} = {a, $}

Answer to Exercise 10.2

1. Nǫ = {S,A,B,C}. A is nullable because A → ǫ is a production. B is
nullable because B → ǫ is a production. C is nullable because C → ǫ is
a production. S is nullable because S → AB is a production and both
A and B are nullable. D is not nullable because the right-hand sides of
all productions for D include a terminal (d or e), meaning it is clear ǫ
cannot be derived from D.

155



2. Keeping in mind which non-terminals are nullable, we obtain the follow-
ing equations:

first(A) = first(aA) ∪ first(ǫ)

= {a} ∪ ∅

= {a}

first(B) = first(BCDb) ∪ first(ǫ)

= (first(B) ∪ first(CDb)) ∪ ∅

= first(B) ∪ (first(C) ∪ first(Db))

= first(B) ∪ first(C) ∪ (first(D) ∪ ∅)

= first(B) ∪ first(C) ∪ first(D)

first(C) = first(cD) ∪ first(ǫ)

= {c} ∪ ∅

= {c}

first(D) = first(dC) ∪ first(e)

= {d} ∪ {e}

= {d, e}

The solutions of the equations for first(A), first(C), and first(D) are
manifest. Recall that an equation of the form X = X ∪Y , in the absence
of other constraints on X , simplifies to X = Y when we are looking for
the smallest solution. The equation for first(B) has the form X = X ∪ Y
and there are no other constraints on first(B). The smallest solution is
thus given by first(B) = first(C) ∪ first(D) = {c} ∪ {d, e} = {c, d, e}.
Now we can turn to setting up and solving the equation for first(S), again
keeping in mind which non-termainals are nullable:

first(S) = first(AS) ∪ first(AB)

= (first(A) ∪ first(S)) ∪ (first(A) ∪ first(B))

= first(S) ∪ first(A) ∪ first(B)

= first(S) ∪ {a} ∪ {c, d, e}

= first(S) ∪ {a, c, d, e}

Again, an equatiom of the formX = X∪Y , with no further constraints on
first(S), meaning that the smallest solution is simply first(S) = {a, c, d, e}.

3. Note: very detailed account below for clarity. It is sufficient to just state
the constraints according to the definitions and then simplify.
Constraints for follow(S). Note that S only appear in one RHS, of the
production S → AS, where it appears last; i.e. the string following S is
just ǫ, and by definition we have nullable(ǫ). The constraints for S are

156



thus:

{$} ⊆ follow(S)

first(ǫ) ⊆ follow(S)

follow(S) ⊆ follow(S)

Constraints for follow(A) follow from the productions where A occurs in
the RHS, i.e.

S → AS

S → AB

A → aA

(note: nullable(S), nullable(B), and nullable(ǫ)):

first(S) ⊆ follow(A)

follow(S) ⊆ follow(A)

first(B) ⊆ follow(A)

follow(S) ⊆ follow(A)

first(ǫ) ⊆ follow(A)

follow(A) ⊆ follow(A)

Constraints for follow(B) follow from the productions where B occurs in
the RHS, i.e.

S → AB

B → BCDb

(note: nullable(ǫ), ¬nullable(CDb)):

first(ǫ) ⊆ follow(B)

follow(S) ⊆ follow(B)

first(CDb) ⊆ follow(B)

Constraints for follow(C) follow from the productions where C occurs in
the RHS, i.e.

B → BCDb

D → dC

(note: ¬nullable(Db) and nullable(ǫ)):

first(Db) ⊆ follow(C)

first(ǫ) ⊆ follow(C)

follow(D) ⊆ follow(C)

Constraints for follow(D) follow from the productions where D occurs in
the RHS, i.e.

B → BCDb

C → cD

157



(note: ¬nullable(b) and nullable(ǫ)):

first(b) ⊆ follow(D)

first(ǫ) ⊆ follow(D)

follow(C) ⊆ follow(D)

Using

first(ǫ) = ∅

first(S) = {a, c, d, e}

first(B) = {c, d, e}

first(CDb) = first(C) ∪ first(D)

= {c} ∪ {d, e} = {c, d, e}

first(Db) = first(D) = {d, e}

first(b) = {b}

and eliminating trivial constraints (of the types ∅ ⊆ X and X ⊆ X)
yields:

{$} ⊆ follow(S)

{a, c, d, e} ⊆ follow(A)

follow(S) ⊆ follow(A)

{c, d, e} ⊆ follow(A)

follow(S) ⊆ follow(B)

{c, d, e} ⊆ follow(B)

{d, e} ⊆ follow(C)

follow(D) ⊆ follow(C)

{b} ⊆ follow(D)

follow(C) ⊆ follow(D)

Noting that follow(C) ⊆ follow(D) ∧ follow(D) ⊆ follow(C) implies
follow(C) = follow(D), this is equivalent to:

{$} ⊆ follow(S)

{a, c, d, e} ∪ follow(S) ∪ {c, d, e} ⊆ follow(A)

follow(S) ∪ {c, d, e} ⊆ follow(B)

{d, e} ∪ {b} ⊆ follow(C) = follow(D)

which can be further simplified to the final constraints:

{$} ⊆ follow(S)

{a, c, d, e} ∪ follow(S) ⊆ follow(A)

{c, d, e} ∪ follow(S) ⊆ follow(B)

{b, d, e} ⊆ follow(C) = follow(D)

158



4. The smallest set satisfying the constraint for follow(S) is obviously just
{$}. Substituting this into the remaining constraints makes the smallest
sets satisfying those obvious too. Thus:

follow(S) = {$}

follow(A) = {a, c, d, e} ∪ {$} = {a, c, d, e, $}

follow(B) = {c, d, e} ∪ {$} = {c, d, e, $}

follow(C) = {b, d, e}

follow(D) = {b, d, e}

Answer to Exercise 11.1

1. Diagram of Turing Machine M. The loops have a single set of symbols,
representing several transitions. For example the loop around q0 has the
transition x, x,R with x being b, X , or Y . This stands for the three
transitions b, b, R; X,X,R; and Y, Y,R.

q0

q3 q1

q4

q2 q5

a,X,L
x, x,R
x = b,X, Y

, , L

b, Y, L

x, x,R
x = a,X, Y

, , R

x, x, L
x = X,Y

, , R

x, x, L
x = a, b,X, Y

, , R x, x, L
x = a, b,X, Y

159



2. Initially, the tape contains the word baab, is in state q0 and the head
points to the first b in the work. So the initial instantaneous description is
(ǫ, q0, baab). The computation then proceeds, according to the transition
function, as follows:

(ǫ, q0, baab) ⊢ (b, q0, aab) ⊢ (ǫ, q3, bXab) ⊢ (ǫ, q3, bXab) ⊢ (ǫ, q1, bXab)
⊢ (ǫ, q4, Y Xab) ⊢ (ǫ, q0, Y Xab) ⊢ (Y, q0, Xab) ⊢ (Y X, q0, ab)
⊢ (Y, q3, XXb) ⊢ (ǫ, q3, Y XXb) ⊢ (ǫ, q3, Y XXb) ⊢ (ǫ, q1, Y XXb)
⊢ (Y, q1, XXb) ⊢ (Y X, q1, Xb) ⊢ (Y XX, q1, b) ⊢ (Y X, q4, XY )
⊢ (Y, q4, XXY ) ⊢ (ǫ, q4, Y XXY ) ⊢ (ǫ, q4, Y XXY ) ⊢ (ǫ, q0, Y XXY )
⊢ (Y, q0, XXY ) ⊢ (Y X, q0, XY ) ⊢ (Y XX, q0, Y ) ⊢ (Y XXY, q0, ǫ)
⊢ (Y XX, q2, Y ) ⊢ (Y X, q2, XY ) ⊢ (Y, q2, XXY ) ⊢ (ǫ, q2, Y XXY )
⊢ (ǫ, q2, Y XXY ) ⊢ (ǫ, q5, Y XXY )

We ended in the accepting state q5, so the input word baab is accepted.

3. Starting the machine in input aba, we obtain the following sequence of
instantaneous descriptions.

(ǫ, q0, aba) ⊢ (ǫ, q3, Xba) ⊢ (ǫ, q1, Xba) ⊢ (X, q1, ba) ⊢ (ǫ, q4, XY a)
⊢ (ǫ, q4, XY a) ⊢ (ǫ, q0, XY a) ⊢ (X, q0, Y a) ⊢ (XY, q0, a)
⊢ (X, q3, Y X) ⊢ (ǫ, q3, XY X) ⊢ (ǫ, q3, XY X) ⊢ (ǫ, q1, XY X)
⊢ (X, q1, Y X) ⊢ (XY, q1, X) ⊢ (XYX, q1, ǫ)

The machine is in state q1 and is reading a blank. There are no transitions
for blank from q1, so the machine stops. Because q1 is not an accepting
state, the input word aba is rejected.

4. This machine accepts the words in {a, b} that contain the same number
of as and bs. The language accepted by this Turing Machine is

L(M) = {w ∈ {a, b}∗ | #a(w) = #b(w)}

where I used the notation #x(w) for the number of occurrences of the
symbol x in the word w.
To see this, think about what happens in each of the states. You can
characterize each state by performing some action:

q0: Look for the next a, replace it with X and change to q3. If you don’t
find any more as, change to q2.

q3: Go back to the beginning of the word and change to q1.

q1: Look for the next b, replace it with Y and change to q4. If you don’t
find any more bs, stop and reject.

q4: Go back to the beginning of the word and change to q0 (start again).

q2: Go through the word from right to left, checking that it contains
only Xs and Y s (if it contains some a or b, stop and reject), then
move to q5.

q5: Accept.

So the machine repeatedly searches for an a (state q0) and replaces it
with X , then searches for a b (state q1) and replaces it with Y . It pairs
them repeatedly; if it fails to pair an a with a b, it stops and reject.
When it has finished all the as, it goes through the word again (state q2)

160



checking that there are no bs left. In that case it knows that each a has
been paired with a b with nothing left over; only in that case it moves to
q5 and accepts.

Answer to Exercise 11.2

There are several ways of implementing a Turing Machine that performs the
computation required. The following is very simple, but does what is necessary.

1. This is the diagram illustrating the machine:

q0

q1

q2

a, a,R
b, b, R

b, b, R

a, b, L

b, a, L

The machine starts at the beginning of the tape, skipping over the as in
state q0. As soon as it finds a b, it changes to q1 and starts skipping over
the bs. If it gets to the end of the word, it means that the symbols are in
the correct order and it stops. But if it finds an a while in q1, it knows
that this a came after at least one b: we found a pair of symbols in the
wrong order. We replace this a with a b and we replace the b that came
before it with an a (state q2). We are now in the position before this pair
and we can return to q0 and start looking for another wrong pair.

161



2. The machine is formally defined as follows:

M = (Q,Σ,Γ, δ, q0, , ∅) where Q = {q0, q1, q2, }
Σ = {a, b}
Γ = {a, b, }

(The set of accepting states is empty, because the problem does not
require that we accept words in a certain language.)
The transition function is defined by:

δ(q0, a) = (q0, a, R)
δ(q0, b) = (q1, b, R)
δ(q1, a) = (q2, b, L)
δ(q1, b) = (q1, b, R)
δ(q2, b) = (q0, a, L)

(There is no transition from q2 when reading an a. This never happens:
every time we are in q2 we are sure that we’re reading a b.)

Answer to Exercise 11.3

Here is a diagram showing the reducibility relations between the languages
(HP is the halting problem, Nλ is the normalization problem for λ-terms).

HP

P1 P5

P2 Nλ P9

P3 P10 P4

P6 P7 P8

First of all, we already know some information directly: HP and Nλ are unde-
cidable and the hypotheses tell us that P7 is recursive, P4 and the complement
of P3 is recursively enumerable, and P6 and the complement of P8 are not re-
cursively enumerable.

A language is decidable (or recursive) if both it and its complement are
recursively enumerable, so we can immediately conclude that P6 and P8 are
undecidable.

162



Remember how we can use the knowledge that a problem A is reducible to
another problem B to determine its reducibility properties. If B is decidable,
we can use the reduction to decide A as well. Conversely, if A is undecidable,
then B must be undecidable as well.

Similarly, if B is recursively enumerable, so is A. Conversely, if A is not
recursively enumerable, neither is B.

These derivations also hold for complements: if the complement of B is
recursively enumerable, that so is the complement of A.

As we know that HP and Nλ are undecidable, and they reduce to P1 and
P9, respectively, we deduce that P1 and P9 are also undecidable. Now that we
determined that P1 is undecidable, because it reduces to P5 we can deduce that
P5 is also undecidable.

Because P4 is recursively enumerable and P10 is reducible to it, also P10 is
recursively enumerable. In addition, P10 reduces to P3, whose complement is
recursively enumerable. This tells us that the complement of P10 is also recur-
sively enumerable. We derived that both P10 and its complement are recursively
enumerable, therefore P10 is recursive.

The rest of the given information does not add anything to our knowledge.
For example, knowing that P2 is reducible to the undecidable problem P1 doesn’t
reveal anything about P2.

1. Undecidable: P1, P5, P6, P8, P9

2. Recursively enumerable: P4, P7, P10

3. Recursive: P7, P10

Answer to Exercise 12.1

1. The function nand-pair takes a pair of Booleans p and returns a pair
of Booleans whose first element is the negation of the conjunction of
the elements of p, and whose second element is simply the first of p.
(Remember that p true is the first projection of p and p false is the second
projection.) So we have:

nand-pair 〈true, true〉 ∗ 〈false, true〉
nand-pair 〈true, false〉 ∗ 〈true, true〉

nand-pair 〈false, true〉 ∗ 〈true, false〉
nand-pair 〈false, false〉 ∗ 〈true, false〉

2. Remember that Church numerals are just iterators, so the definition of
nand-fun tells us to iterate n times the function nand-pair starting with the
initial value 〈false, false〉. Applied to the numeral 4 = λf.λx.f (f (f (f x)))
it produces the following reduction steps:

nand-fun 4 = (λn.n nand-pair 〈false, false〉) 4
 4 nand-pair 〈false, false〉 = (λf.λx.f (f (f (f x)))) nand-pair 〈false, false〉
 

∗ nand-pair (nand-pair (nand-pair (nand-pair 〈false, false〉)))
 

∗ nand-pair (nand-pair (nand-pair 〈true, false〉))
 

∗ nand-pair (nand-pair 〈true, true〉)
 

∗ nand-pair 〈false, true〉
 

∗ 〈true, false〉

163



3. As the previous calculation shows, nand-funn iterates n times nand-pair,
starting with the initial value 〈false, false〉. So nand-fun 0 will do zero
iterations and just return this initial value. The sequence of values that
the iteration goes through is obtained by repeating the steps of part (a).
Here are the values obtained (with the iteration number written on top
of the arrows):

〈false, false〉
1

−→ 〈true, false〉
2

−→ 〈true, true〉
3

−→ 〈false, true〉
4

−→ 〈true, false〉
5

−→ 〈true, true〉
6

−→ 〈false, true〉
7

−→ 〈true, false〉
8

−→ 〈true, true〉
9

−→ · · ·

We obtain 〈true, true〉 for 2, 5 and 8. It is clear that there is a cycle that
repeats every three steps, so we have nand-funn ∗ 〈true, true〉 for those
numbers n of the form n = 2 + 3 ∗m for some m.

Answer to Exercise 12.2

To implement thrFib in the λ-calculus, we need to see it as the iteration of
a function a number of times starting with a given value. As in the case of the
Fibonacci function described in the lecture, we need to use an auxiliary function
that returns three values at the same time (it was just two for Fibonacci). Then
at each step we shift two of the values and add the sum of the three:

〈n,m, k〉 7−→ 〈m, k, n+m+ k〉.

Informally, our auxiliary function is defined by

thrFibaux : N → N× N× N

thrFibaux 0 = 〈0, 0, 1〉
thrFibaux (n+ 1) = 〈m, k, n+m+ k〉 where 〈n,m, k〉 = thrFibaux n

In the λ-calculus we use the encoding of triples as

〈a, b, c〉 = λx.x a b c

With the projections defined by

fst = λt.t (λx.λy.λz.x), snd = λt.t (λx.λy.λz.y), trd = λt.t (λx.λy.λz.z).

(You can also encode triples as repeated pairs. It is not important how you do
it, as long as you can define projections.)

Using triples and their projections, we can define the auxiliary function in
λ-calculus:

thrFibaux = λn.n step 〈0, 0, 1〉
where step = λt.〈snd t, trd t, plus (fst t) (plus (snd t) (trd t))〉

Finally, the function we want will just take the first component of the result of
the auxiliary function:

thrFib = λn.fst (thrFibaux n).

164



Answer to Exercise 13.1

The function evaluate can be defined by recursion on the structure of the
SAT formula, using just the projection from the assignment to determine the
value on the variables.

evaluate :: SAT -> Assignment -> Bool

evaluate (Var i) a = a!!i

evaluate (Not x) a = not (evaluate x a)

evaluate (And x y) a = (evaluate x a) && (evaluate y a)

evaluate (Or x y) a = (evaluate x a) || (evaluate y a)

Note that in the variable case, if the index i is larger or equal to the length
of the assignment list, we would get an error. But we are assuming that we
evaluate expressions with assignments that guarantee values for all variables
occurring in the expression.

Answer to Exercise 13.2

1. The function varNum is also defined by recursion on the structure of the
expression, returning just the index for variables and the maximum of
the recursive calls for conjunctions and disjunctions.

varNum :: SAT -> Int

varNum (Var n) = n

varNum (Not x) = varNum x

varNum (And x y) = max (varNum x) (varNum y)

varNum (Or x y) = max (varNum x) (varNum y)

2. Notice that the length of the assignment returned by allAssign n is
n + 1 (it must contain all the possible values for variables Var 0, . . . ,
Var n, that is the first n + 1 variables). So allAssign 0 should return
[[True],[False]]. We may use this as a base case. For the recursive
case, we can just add either a True or a False in front of each of the list
computed by the recursive call.

allAssign :: Int -> [Assignment]

allAssign 0 = [[True],[False]]

allAssign n = [b:bs | b <- [True,False],

bs <- allAssign (n-1)]

(An alternative solution for the base case is allAssign (-1) = [[]].)

3. Evaluate the formula using all the possible assignments for its variables.
If at least one of them returns True, then the formula is satisfiable.

satisfiable :: SAT -> Bool

satisfiable x = or (map (evaluate x)

(allAssign (varNum x)))

4. From the list of all assignments, filter out those that return True. If this
list is empty, then the formula is not satisfiable. If it is not empty, any
of its elements (for example the head) is a solution.

solution :: SAT -> Maybe Assignment

solution x = if null bs then Nothing else Just (head bs)

165



where bs = filter (evaluate x)

(allAssign (varNum x))

Answer to Exercise 13.3

1. The program evaluate traverses the whole structure of the input for-
mula. For the Not, And and Or operators it simply calls itself on the
subformulas and then does a simple operation. In the variable case it
just looks up the value in the assignment, which is linear in the length of
the assignment.
So the number of operations executed at each step is at most linear in
the length of the assignment. The number of steps is bound by the size
of the formula. So the overall complexity is at most quadratic on the size
of the input.

2. The function satisfiable applies evaluate to all the possible assign-
ments of values to the variables. Each application of evaluate takes poly-
nomial time, but there are exponentially many assignments that need to
be tested; to be precise, for n variables there are 2n assignments. Be-
cause we are performing the evaluation for each of these assignments,
the overall complexity is also exponential.

3. The fact that SAT is NP-complete means that every NP problem can
be reduced to it in polynomial time. This means that if we ever find a
polynomial time algorithm for SAT, we would automatically be able to
solve all NP problems in polynomial time. This would prove that NP
= P .

166



References

[ASU86] Alfred V. Aho, Ravi Sethi, and Ullman Jeffrey D. Ullman. Compilers
- Principles, Techniques, and Tools. Addison-Wesley, 1986. 90

[Cox07] Russ Cox. Regular expression matching can be simple and
fast (but is slow in java, perl, php, python, ruby, ...).
http://swtch.com/ rsc/regexp/regexp1.html, January 2007. 29

[GJS+15] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley.
The Java Language Specification. Oracle, Inc., Java SE 8 edition
edition, 2015. 62

[HMU01] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Intro-
duction to Automata Theory, Languages, and Computation. Addison
Wesley, 2nd edition edition, 2001. 17, 44, 79, 103

[Hud99] Scott E. Hudson. Cup parser generator for java.
http://www.cs.princeton.edu/∼appel/modern/java/CUP/, 1999. 99

[Mar01] Simon Marlow. Happy: The parser generator for haskell.
http://www.haskell.org/happy/, 2001. 99

[Nil16] Henrik Nilsson. Compilers (G53CMP) — lecture notes.
http://www.cs.nott.ac.uk/∼nhn/G53CMP, 2016. 62, 82

[Par05] Terence Parr. ANTLR: Another tool for language recognition.
http://www.antlr.org/, 2005. 99

167

http://www.cs.princeton.edu/~appel/modern/java/CUP/
http://www.haskell.org/happy/
http://www.cs.nott.ac.uk/~nhn/G53CMP
http://www.antlr.org/

	Introduction
	Example: Valid Java programs
	Example: The halting problem
	Example: The -calculus
	P versus NP

	Formal Languages
	Exercises

	Finite Automata
	Deterministic finite automata
	What is a DFA?
	The language of a DFA

	Nondeterministic finite automata
	What is an NFA?
	The language accepted by an NFA
	The subset construction
	Correctness of the subset construction

	Exercises

	Regular Expressions
	What are regular expressions?
	The meaning of regular expressions
	Algebraic laws
	Translating regular expressions into NFAs
	Summing up
	Exercises

	Minimization of Finite Automata
	The table-filling algorithm
	Example of DFA minimization using the table-filling algorithm

	Disproving Regularity
	The pumping lemma
	Applying the pumping lemma
	Exercises

	Context-Free Grammars
	What are context-free grammars?
	The meaning of context-free grammars
	The relation between regular and context-free languages
	Derivation trees
	Ambiguity
	Applications of context-free grammars
	Exercises

	Transformations of context-free grammars
	Equivalence of context-free grammars
	Elimination of uselsss productions
	Substitution
	Left factoring
	Disambiguating context-free grammars
	Elimination of left recursion
	Exercises

	Pushdown Automata
	What is a pushdown automaton?
	How does a PDA work?
	The language of a PDA
	Deterministic PDAs
	Context-free grammars and push-down automata

	Recursive-Descent Parsing
	What is parsing?
	Parsing strategies
	Basics of recursive-descent parsing
	Handling choice
	Recursive-descent parsing and left-recursion
	Predictive parsing
	First and follow sets
	LL(1) grammars
	Nullable nonterminals
	Computing first sets
	Computing follow sets
	Implementing a predictive parser
	LL(1), left-recursion, and ambiguity
	Satisfying the LL(1) conditions

	Beyond hand-written parsers: use parser generators
	Exercises

	Turing Machines
	What is a Turing machine?
	Grammars and context-sensitivity
	The halting problem
	Recursive and recursively enumerable sets
	Back to Chomsky
	Exercises

	-Calculus
	Syntax of -calculus
	Church numerals
	Other data structures
	Confluence
	Recursion
	The universality of -calculus
	Exercises

	Algorithmic Complexity
	The Satisfiability Problem
	Time Complexity
	NP-completeness
	Exercises

	Model Answers to Exercises

