COMP2012/G52LAC Languages and Computation Lecture 2

Deterministic Finite Automata (DFA)

Henrik Nilsson

University of Nottingham

Recap: Formal Languages

The terms language and word are used in a strict technical sense in this course:

Recap: Formal Languages

The terms language and word are used in a strict technical sense in this course:

- A language is a (possibly infinite) set of words.

Recap: Formal Languages

The terms language and word are used in a strict technical sense in this course:

- A language is a (possibly infinite) set of words.
- A word is a finite sequence (or string) of symbols.

Recap: Formal Languages

The terms language and word are used in a strict technical sense in this course:

- A language is a (possibly infinite) set of words.
- A word is a finite sequence (or string) of symbols.
ϵ denotes the empty word, the sequence of zero symbols.

Recap: Formal Languages

The terms language and word are used in a strict technical sense in this course:

- A language is a (possibly infinite) set of words.
- A word is a finite sequence (or string) of symbols.
ϵ denotes the empty word, the sequence of zero symbols.

The term string is often used interchangeably with the term word.

Recap: Symbols and Alphabets

Recap: Symbols and Alphabets

A symbol can be anything, but has to come from an alphabet Σ which is a finite set.

Recap: Symbols and Alphabets

A symbol can be anything, but has to come from an alphabet Σ which is a finite set.

A common (and important) instance is $\Sigma=\{0,1\}$.

Recap: Symbols and Alphabets

A symbol can be anything, but has to come from an alphabet Σ which is a finite set.

A common (and important) instance is $\Sigma=\{0,1\}$.
ϵ, the empty word, is never a symbol of an alphabet.

Recap: Examples of Languages

Some examples of languages:

Recap: Examples of Languages

Some examples of languages:

- The set $\{0010,00000000, \epsilon\}$ is a language over $\Sigma=\{0,1\}$.

Recap: Examples of Languages

Some examples of languages:

- The set $\{0010,00000000, \epsilon\}$ is a language over $\Sigma=\{0,1\}$.
This is an example of a finite language.

Recap: Examples of Languages

Some examples of languages:

- The set $\{0010,00000000, \epsilon\}$ is a language over $\Sigma=\{0,1\}$.
This is an example of a finite language.
- The set of words with odd length over $\Sigma=\{1\}$. (Finite or infinite?)

Recap: Examples of Languages

Some examples of languages:

- The set $\{0010,00000000, \epsilon\}$ is a language over $\Sigma=\{0,1\}$.
This is an example of a finite language.
- The set of words with odd length over $\Sigma=\{1\}$. (Finite or infinite?)
- The set of words that contain the same number of 0 s and 1 s is a language over $\Sigma=\{0,1\}$. (Finite or infinite?)

All Words Over an Alphabet (1)

Given an alphabet Σ we define the set Σ^{*} as set of words (or sequences) over Σ :

- The empty word $\epsilon \in \Sigma^{*}$.
- given a symbol $x \in \Sigma$ and a word $w \in \Sigma^{*}$, $x w \in \Sigma^{*}$.
- These are all elements in Σ^{*}.

This is called an inductive definition.

All Words Over an Alphabet (1)

Given an alphabet Σ we define the set Σ^{*} as set of words (or sequences) over Σ :

- The empty word $\epsilon \in \Sigma^{*}$.
- given a symbol $x \in \Sigma$ and a word $w \in \Sigma^{*}$, $x w \in \Sigma^{*}$.
- These are all elements in Σ^{*}.

This is called an inductive definition.
Is Σ^{*} always non-empty?

All Words Over an Alphabet (1)

Given an alphabet Σ we define the set Σ^{*} as set of words (or sequences) over Σ :

- The empty word $\epsilon \in \Sigma^{*}$.
- given a symbol $x \in \Sigma$ and a word $w \in \Sigma^{*}$, $x w \in \Sigma^{*}$.
- These are all elements in Σ^{*}.

This is called an inductive definition.
Is Σ^{*} always non-empty? Always infinite?

Recap: Language Membership

Fundamental question for a language $L: w \in L$?

Recap: Language Membership

Fundamental question for a language $L: w \in L$?

- L finite:

Recap: Language Membership

Fundamental question for a language $L: w \in L$?

- L finite: ?

Recap: Language Membership

Fundamental question for a language $L: w \in L$?

- L finite: Easy! (Enumerate L and check)

Recap: Language Membership

Fundamental question for a language $L: w \in L$?

- L finite: Easy! (Enumerate L and check)
- L infinite:

Recap: Language Membership

Fundamental question for a language $L: w \in L$?

- L finite: Easy! (Enumerate L and check)
- L infinite: ?

Recap: Language Membership

Fundamental question for a language $L: w \in L$?

- L finite: Easy! (Enumerate L and check)
- L infinite: ?

We need:

- A finite (and preferably concise) formal description of L.

Recap: Language Membership

Fundamental question for a language $L: w \in L$?

- L finite: Easy! (Enumerate L and check)
- L infinite: ?

We need:

- A finite (and preferably concise) formal description of L.
- An algorithmic method to decide if $w \in L$ given a suitable description.

Recap: Language Membership

Fundamental question for a language $L: w \in L$?

- L finite: Easy! (Enumerate L and check)
- L infinite: ?

We need:

- A finite (and preferably concise) formal description of L.
- An algorithmic method to decide if $w \in L$ given a suitable description.
Various approaches to achieve this will be key a theme throughout the module.

Formal Definition of DFA

Formally, a Deterministic Finite Automaton or DFA is defined by a 5 -tuple
$\left(Q, \Sigma, \delta, q_{0}, F\right)$
where

Q
Σ
$\delta \in Q \times \Sigma \rightarrow Q \quad: \quad$ Transition Function
$q_{0} \in Q$
$F \subseteq Q$
: Finite set of States
: Alphabet (finite set of symbols)
: Initial or Start State
: Accepting (or Final) States

Extended Transition Function

The Extended Transition Function is defined on a state and a word (string of symbols) instead of on a single symbol.

For a DFA $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$, the extended transition function is defined by:

$$
\begin{aligned}
\hat{\delta} & \in Q \times \Sigma^{*} \rightarrow Q \\
\hat{\delta}(q, \epsilon) & =q \\
\hat{\delta}(q, x w) & =\hat{\delta}(\delta(q, x), w)
\end{aligned}
$$

where $q \in Q, x \in \Sigma, w \in \Sigma^{*}$.

Language of a DFA

The language $L(A)$ defined by a DFA A is the set or words accepted by the DFA. For a DFA

$$
A=\left(Q, \Sigma, \delta, q_{0}, F\right)
$$

the language is defined by

$$
L(A)=\left\{w \in \Sigma^{*} \mid \hat{\delta}\left(q_{0}, w\right) \in F\right\}
$$

