COMP2012/G52LAC Languages and Computation Lecture 8 Introduction to Context-free Grammars

Henrik Nilsson

University of Nottingham

We have established that the following language is not regular:

 $L = \{0^i 1^i \mid i \in \mathbb{N}\}\$

We have established that the following language is not regular:

 $L = \{0^i 1^i \mid i \in \mathbb{N}\}\$

Others? What about *B*: the language of "balanced parentheses"? E.g.

 $()() \in B$ $((())())()) \in B$ $)(\notin B$ $(() \notin B$

Is *B* regular?

• •

۲

How many states to recognize B? Is B regular?

Is *B* regular? NFA for up to three levels of parentheses: ((((

How many states to recognize B? Is B regular? Use Pumping Lemma for regular languages to formally prove B not regular. *Exercise!*

But of course, "balanced parentheses" is a key feature of many important classes of languages; e.g.:

- Arithmetic expressions: (,)
- Matching keywords in programming languages: begin, end, repeat, until
- Markup languages; e.g. HTML: , , ,

But of course, "balanced parentheses" is a key feature of many important classes of languages; e.g.:

- Arithmetic expressions: (,)
- Matching keywords in programming languages: begin, end, repeat, until
- Markup languages; e.g. HTML: , ,

Q: Can such languages be described formally? How?

But of course, "balanced parentheses" is a key feature of many important classes of languages; e.g.:

- Arithmetic expressions: (,)
- Matching keywords in programming languages: begin, end, repeat, until
- Markup languages; e.g. HTML: , ,

Q: Can such languages be described formally? How?*A:* Through *Context-free Grammars* (CFG).

CFGs originated as an attempt to describe grammars for natural languages like English.

CFGs originated as an attempt to describe grammars for natural languages like English.

Key idea: Rules, called *productions*, that describe how symbols called *nonterminals* (or *variables* or *syntactic categories*) can be replaced by nonterminals and *terminals* until only terminals left.

CFGs originated as an attempt to describe grammars for natural languages like English.

Key idea: Rules, called *productions*, that describe how symbols called *nonterminals* (or *variables* or *syntactic categories*) can be replaced by nonterminals and *terminals* until only terminals left.

 $nonterminal \rightarrow terminals$ and nonterminals

CFGs originated as an attempt to describe grammars for natural languages like English.

Key idea: Rules, called *productions*, that describe how symbols called *nonterminals* (or *variables* or *syntactic categories*) can be replaced by nonterminals and *terminals* until only terminals left.

 $nonterminal \rightarrow terminals$ and nonterminals

Let us consider the language *Grammatically Correct Sentences of Extremely Simplified English* (GCSESE)

GCSESE (1)

Nonterminals		Terminals
S:	Sentence	boy
NP:	Noun Phrase	girl
VP:	Verb Phrase	little
N:	Noun	big
V:	Verb	walks
		runs
		slowly
		fast

۲

۲

GCSESE (2)

Productions for GCSESE:

 $\begin{array}{rcl} VP & \rightarrow & V \; Adv \\ VP & \rightarrow & V \\ V & \rightarrow & \text{walks} \\ V & \rightarrow & \text{runs} \\ Adv & \rightarrow & \text{slowly} \\ Adv & \rightarrow & \text{fast} \end{array}$

GCSESE (2)

Productions for GCSESE:

Note: The terminals constitute the *alphabet* of the language being defined.

Definition of CFG

A CFG G = (N, T, P, S) where

- N is a finite set of *nonterminals* (or variables or syntactic categories)
- T is a finite set of terminals
- $N \cap T = \emptyset$ (disjoint)
- *P* is a finite set of *productions* of the form $A \to \alpha$ where $A \in N$ and $\alpha \in (N \cup T)^*$
- $S \in N$ is the start symbol