
COMP2012/G52LAC

Languages and Computation
Lecture 9

The Language of a CFG

Henrik Nilsson

University of Nottingham

COMP2012/G52LACLanguages and ComputationLecture 9 – p.1/9

Recap: Definition of CFG

A CFG G = (N,T, P, S) where

• N is a finite set of nonterminals (or
variables or syntactic categories)

• T is a finite set of terminals

• N ∩ T = ∅ (disjoint)

• P is a finite set of productions of the form
A → α where A ∈ N and α ∈ (N ∪ T)∗

• S ∈ N is the start symbol

COMP2012/G52LACLanguages and ComputationLecture 9 – p.2/9

Simple Arithmetic Expressions

SAE = (N = {E, I,D}, T = {+, ∗, (,), 0, 1, . . . , 9}, P, E)
where P is given by:

E → E + E

| E ∗ E

| (E)

| I

I → DI | D

D → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Note: A → α | β shorthand for A → α, A → β.

COMP2012/G52LACLanguages and ComputationLecture 9 – p.3/9

Another Example: Java

The syntax of programming languages is
invariably specified by CFGs.

Example: The Java Language Specification,
Third Edition. Section 14.5, page 368 gives a
CFG for Java statements.

COMP2012/G52LACLanguages and ComputationLecture 9 – p.4/9

The Directly Derives Relation (1)

To formally define the language generated by

G = (N,T, P, S)

we first define a binary relation ⇒
G

on strings over

N ∪ T , read “directly derives in grammar G”,
being the least relation such that

αAγ ⇒
G

αβγ

whenever A → β is a production in G where
A ∈ N and α, β, γ ∈ (N ∪ T)∗.

COMP2012/G52LACLanguages and ComputationLecture 9 – p.5/9

The Directly Derives Relation (2)

When it is clear which grammar G is involved, we
use ⇒ instead of ⇒

G

.

Example: Given the grammar

S → ǫ | aA

A → bS

we have

S ⇒ ǫ

S ⇒ aA

aA ⇒ abS

SaAaa ⇒ SabSaa

COMP2012/G52LACLanguages and ComputationLecture 9 – p.6/9

The Derives Relation (1)

The relation
∗
⇒
G

, read “derives in grammar G”, is

the reflexive, transitive closure of ⇒
G

.

That is,
∗
⇒
G

is the least relation on strings over

N ∪ T such that:

COMP2012/G52LACLanguages and ComputationLecture 9 – p.7/9

The Derives Relation (1)

The relation
∗
⇒
G

, read “derives in grammar G”, is

the reflexive, transitive closure of ⇒
G

.

That is,
∗
⇒
G

is the least relation on strings over

N ∪ T such that:

• α
∗
⇒
G

β if α ⇒
G

β

COMP2012/G52LACLanguages and ComputationLecture 9 – p.7/9

The Derives Relation (1)

The relation
∗
⇒
G

, read “derives in grammar G”, is

the reflexive, transitive closure of ⇒
G

.

That is,
∗
⇒
G

is the least relation on strings over

N ∪ T such that:

• α
∗
⇒
G

β if α ⇒
G

β

• α
∗
⇒
G

α (reflexive)

COMP2012/G52LACLanguages and ComputationLecture 9 – p.7/9

The Derives Relation (1)

The relation
∗
⇒
G

, read “derives in grammar G”, is

the reflexive, transitive closure of ⇒
G

.

That is,
∗
⇒
G

is the least relation on strings over

N ∪ T such that:

• α
∗
⇒
G

β if α ⇒
G

β

• α
∗
⇒
G

α (reflexive)

• α
∗
⇒
G

β if α
∗
⇒
G

γ ∧ γ
∗
⇒
G

β (transitive)

COMP2012/G52LACLanguages and ComputationLecture 9 – p.7/9

The Derives Relation (2)

Again, we use
∗
⇒ instead of

∗
⇒
G

when G is obvious.

Example: Given the grammar

S → ǫ | aA

A → bS

we have

S
∗
⇒ ǫ

S
∗
⇒ aA

aA
∗
⇒ abS

S
∗
⇒ abS

S
∗
⇒ ababS

S
∗
⇒ abab

COMP2012/G52LACLanguages and ComputationLecture 9 – p.8/9

Lang. Generated by a Grammar

The language generated by a context-free
grammar

G = (N,T, P, S)

denoted L(G), is defined as follows:

L(G) = {w | w ∈ T ∗ ∧ S
∗
⇒
G

w}

A language L is a Context-Free Language
(CFL) iff L = L(G) for some CFG G.

A string α ∈ (N ∪ T)∗ is a sentential form iff

S
∗
⇒ α.

COMP2012/G52LACLanguages and ComputationLecture 9 – p.9/9

	Recap: Definition of CFG
	Simple Arithmetic Expressions
	Another Example: Java
	The Directly Derives Relation (1)
	The Directly Derives Relation (2)
	The Derives Relation (1)
	The Derives Relation (2)
	Lang. Generated by a Grammar

