
COMP2012/G52LAC

Languages and Computation
Lecture 11

Disambiguating Context-Free Grammars

Henrik Nilsson

University of Nottingham

COMP2012/G52LACLanguages and ComputationLecture 11 – p.1/8

Recap: Derivation Trees (1)

A tree is a derivation tree for a CFG
G = (N,T, P, S) iff

1. Every node has a label from N ∪ T ∪ {ǫ}.

2. The label of the root node is S.

3. Labels of interior nodes belong to N .

4. If a node n has label A and nodes n1, n2, . . . , nk

are children of n, from left to right, with labels
X1, X2, . . .Xk, respectively, then A → X1X2 . . . Xk

is a production in P .

5. If a node n has label ǫ, then n is a leaf and
the only child of its parent.

COMP2012/G52LACLanguages and ComputationLecture 11 – p.2/8

Recap: Derivation Trees (2)

• The string of leaf labels read from left to right,
eliding any ǫ, constitute the yield of the tree.

• For a CFG G = (N,T, P, S), a string
α ∈ (N ∪ T)∗ is the yield of some derivation

tree iff S
∗
⇒
G

α.

COMP2012/G52LACLanguages and ComputationLecture 11 – p.3/8

Recap: Ambiguity (1)

A CFG G = (N,T, P, S) is ambiguous is there is
at least one word w ∈ L(G) such that there are

• two different derivation trees, or

• two different left-most derivations, or

• two different right-most derivations

for w.

COMP2012/G52LACLanguages and ComputationLecture 11 – p.4/8

Recap: Ambiguity (2)

Ambiguity can be problematic for a number of
reasons, including that the structure of a
derivation tree often is used to suggest a
meaning for the word.

Example: Arithmetic Expressions

Another reason is that many (especially efficient)
parsing methods are not applicable if the
grammar is ambiguous.

COMP2012/G52LACLanguages and ComputationLecture 11 – p.5/8

Recap: Ambiguity (3)

SAE = (N = {E, I,D}, T = {+, ∗, (,), 0, 1, . . . 9}, P, E)
where P is given by:

E → E + E

| E ∗ E

| (E)

| I

I → DI | D

D → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

COMP2012/G52LACLanguages and ComputationLecture 11 – p.6/8

Recap: Ambiguity (4)

Consider: 1 + 2 ∗ 3. Two derivation trees:

E

E

E

I

D

3

*E

I

D

2

+E

I

D

1

E

E

I

D

3

*E

E

I

D

2

+E

I

D

1

COMP2012/G52LACLanguages and ComputationLecture 11 – p.7/8

Disambiguating Grammars

Given an ambiguous grammar G, it is often
possible to construct an equivalent grammar G′

(i.e., L(G) = L(G′)), such that G′ is not ambiguous.

COMP2012/G52LACLanguages and ComputationLecture 11 – p.8/8

Disambiguating Grammars

Given an ambiguous grammar G, it is often
possible to construct an equivalent grammar G′

(i.e., L(G) = L(G′)), such that G′ is not ambiguous.

Some languages are inherently ambiguous
CFLs, meaning that every CFG generating the
language necessarily is ambiguous.

COMP2012/G52LACLanguages and ComputationLecture 11 – p.8/8

Disambiguating Grammars

Given an ambiguous grammar G, it is often
possible to construct an equivalent grammar G′

(i.e., L(G) = L(G′)), such that G′ is not ambiguous.

Some languages are inherently ambiguous
CFLs, meaning that every CFG generating the
language necessarily is ambiguous.

We will consider exploiting

• Operator Precedence

• Associativity

to disambiguate expression grammars as an example.
COMP2012/G52LACLanguages and ComputationLecture 11 – p.8/8

	Recap: Derivation Trees (1)
	Recap: Derivation Trees (2)
	Recap: Ambiguity (1)
	Recap: Ambiguity (2)
	Recap: Ambiguity (3)
	Recap: Ambiguity (4)
	Disambiguating Grammars

