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History of λ-calculus



Hilbert’s Program

David Hilbert (1928) asked the questions

• Is there a complete consistent formalization of

all Mathematics?

• Is there an effective procedure to determine if

a formula is provable? (Entscheidungsproblem,

the Decision Problem)

Kurt Gödel (1931) answered the first question

negatively

Incompleteness Theorems

• There is no complete axiomatization of

Arithmetic

• Consistency of a formal system is not provable

inside the system itself
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Computability

Decision Problem

is there an effective procedure to decide if a formula is provable?

What is an effective procedure?

• An algorithm that takes a logical formula as input,

• performs a finite number of computation steps,

• returns Yes if the formula is provable, No otherwise.

There was no precise notion of algorithm or computation yet at the time

• There were no electronic computers

• Computers where human beings performing routine calculations

(like the Harvard computers or the NACA computer pool)

• The notion of computability had to be defined in a purely

mathematical way
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The Harvard Computers
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Origin of the λ-calculus

Alonzo Church (1936) invents the λ-calculus

• A theory of pure functions

• The first complete model of computation

• A negative solution to the Decision Problem:

there is no algorithm to decide every

mathematical formula

Alan Turing (1936, few months after Church)

solves the same problem using machines

• Undecidability of the Halting Problem

• The Decision Problem is undecidable

• Equivalence of λ-calculus and Turing machines

5



Definition of λ-calculus



Definitions

In high-school we learn to define functions with a mapping notation.

A function on natural numbers can be defined as:

x
f7−→ x2 + 3

meaning: f is the function that takes an input, which we call x, and

returns as output its square plus three.

Notation for functional abstraction: f = λx . x2 + 3.

Once defined, a function can be applied to any argument: f (5) in

high-school notation.

Notation for function application: (f 5).

We compute the result by replacing the variable x with 5 and performing

the operations:

(f 5) = ((λx . x2 + 3) 5) 52 + 3 ∗ 28
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Formal Definition

In the language of λ-calculus we use only variables, abstraction and

application.

No need for numbers, 3 and 5, or operations, squaring and addition.

Everything can be realized by pure functions.

Formal definition of λ-terms:

term ::= x | y | z | · · · variable names

| (λx . term) abstraction

| (term term) application

(We omit unnecessary parentheses: abstraction associates to the right,

application associates to the left.)

The only computation rule is β-reduction:

((λx . t) u) t[x := u]

(in term t, substitute every free occurrence of x with u)
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Examples of λ-terms

• identity: id = λx . x

The function that returns its input unchanged

id a = (λx . x) a x [x := a] = a

• first projection: proj1 = λx . λy . x = (λx . (λy . x))

The function that, when applied to two arguments, returns the first

proj1 a b = ((proj1 a) b) = (((λx . (λy . x)) a) b)

 ((λy . a) b) a

• second projection: proj2 = λx . λy . y

The function that returns the second argument

proj2 a b  ∗ b

• composition: comp = λu. λv . λx . u (v x)

The function computes the composition of two functions

(comp g f ) a ∗ g (f a)
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Data Structures



Booleans

So far we only defined simple functions that perform projections and

applications of their arguments

How can we represent mathematical objects and data structures?

idea:

To represent a set of objects, choose a separate λ-term for each object.

Make uniform choices that make it easy to define basic operations.

For the Booleans, we just need to pick two different terms.

Let’s reuse the terms for first and second projection.

Booleans:
true = λx . λy . x

false = λx . λy . y

Underlying idea: a Boolean is a way of choosing between two arguments.

This makes it easy to define conditional choice if − then− else−.
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Conditionals and Connectives

Since the Booleans are just first and second projection,

the if − then− else− operation is just the application of the Boolean test

to the two branches:

if = λb. λu. λv . b u v

When the variable b is instantiated with the Boolean value, the term

reduces to the correct branch:

if true t1 t2 = (λb. λu. λv . b u v) true t1 t2
 ∗ true t1 t2 = (λx . λy . x) t1 t2
 ∗ t1

if false t1 t2  ∗ t2

The Boolean connectives can be realized either as applications of the

conditional or directly:

and = λa. λb. if a b false or

and = λa. λb. a b false
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Church Numerals

To represent the Natural Numbers,

we must choose infinitely many distinct terms

One way to do it is with Church Numerals:

0 = λf . λx . x

1 = λf . λx . f x

2 = λf . λx . f (f x)

3 = λf . λx . f (f (f x))
...

n = λf . λx . f (· · · (f︸ ︷︷ ︸
n times

x) · · · )

The numeral n is an iterator:

It takes a function f and an argument x and iterates f n times on x .

This makes it easy to define functions by recursion.
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Arithmetic Operations

The first simple operation is the successor: just add one extra iteration:

succ = λn. λf . λx . f (n f x)

Other operations can be defined directly or iterating the previous one:

plus = λn. λm. λf . λx . n f (m f x)

or plus = λn. n succ

mult = λn. λm. λf . n (m f )

or mult = λn. λm. n (plus m) 0

exp = λn. λm.m n (isn’t this amazing?!)

or exp = λn. λm.m (mult n) 1

Exercise:

Try to define predecessor, (cut-off) subtraction, factorial.
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Pairs

A pair is an operator that offers two arguments to any function:

〈a, b〉 = λx . x a b

Projecting from a pair is done by application to a Boolean:

fst = λp. p true snd = λp. p false

These definition satisfy:

fst 〈a, b〉 ∗ a snd 〈a, b〉 ∗ b

But the surjective pairing property is not always true:

〈fst p, snd p〉 6 ∗ p

(Exercise: find a term p for which 〈fst p, snd p〉 does not reduce to p)

There is no encoding of pairs that satisfies surjective pairing.
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Tuples and Lists

Tuples can be defined similarly with several arguments

or by iterated pairing

〈a, b, c〉 = λx . x a b c or 〈a, b, c〉 = 〈a, 〈b, c〉〉
〈a0, . . . , an〉 = λx . x a0 · · · an or 〈a0, . . . , an〉 = 〈a0, 〈a1, . . . , an〉〉

Lists: we can also use iterated pairs, but we need the empty list.

One implementation is this:

nil = false

cons h t = 〈h, t〉
[a0, a1, . . . , an] = 〈a0, 〈a1, · · · 〈an, false〉〉〉

The basic operations on lists are:

head = fst tail = snd isNil = λl . l (λh. λt. λx . false) true

Exercise: Define a representation of lists as iterators, in the same style as

Church Numerals.
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