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Finding People and Information

• Henrik Nilsson
Room A08

• Moodle

• Main module web page:
www.cs.nott.ac.uk/~nhn/G52MAL
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Aims of the Course

• To familiarize you with key Computer Science
concepts in central areas like

- Automata Theory

- Formal Languages

- Models of Computation

- Complexity Theory

• To equip you with tools with wide applicability
in the fields of CS and IT.
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Organization (1)

• Lectures:

- Two 1 h lectures per week.

- Detailed but somewhat tentative schedule
available on the module web page.

• Coursework:

- 4 Bi-weekly problem sets.

- Made available via the module web page.

- Best 3 counts.

- Deadlines: 5/2, 19/2, 4/3, 16/3 (Wed.!).
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Organization (2)

• Assessment:

- Coursework, 25 %

- 2 hour written examination, 75 %

• However, resits are by 100 % written
examination (standard School policy)
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Literature (1)

• Main reference: Hopcroft, Motwani, & Ullman.
Introduction to Automata Theory, Languages,
and Computation, 2nd edition, Addison
Wesley, 2001. (Or 3rd edition, 2006.)

• Alternative/complement: Linz. An Introduction
to Formal Languages and Automata, 4th
edition, Jones & Bartlett Publishers, 2006.

• Dr. Thorsten Altenkirch’s and my G52MAL
lecture notes.
(Available via the G52MAL module page.)
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Literature (2)

• Supplementary material; e.g., slides, sample
program code.
(Available via the G52MAL module page.)

• Your own notes from the lectures!
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Literature (3)
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Content

1. Mathematical models of computation, such as:

- Finite automata

- Pushdown automata

- Turing machines

2. How to specify formal languages?

- Regular expressions

- Context free grammars

- Context sensitive grammars

3. The relation between 1 and 2.

4. Applications: Scanning and Parsing
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Why Study All This? (1)

Formal languages and automata have lots of
applications in CS and IT. Some examples:

• Specification of programming languages

• Implementation of programming language
processors
(G52MAL feeds into G53CMP)

• XML and DTDs (Document Type Definition)

• Finding words and patterns in large bodies of
text, e.g. in web pages.

• Verification of systems with finite number of
states, e.g. communication protocols.
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Why Study All This? (2)

As a concrete example, a job opening from some
time ago:

The Strats team at Standard Chartered is
hiring a developer for a 1 year contracting
role in London.
The role is to develop and extend our
parsing and validation library for FpML,
using the FpML Haskell library to parse
and build financial product data into our
internal Haskell data types.

https://donsbot.wordpress.com/2015/01/28/
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Why Study All This? (3)

Automata are essential for the study of the limits
of computation. Deep theoretical questions
with big practical implications. Two key issues:

• What can a computer do at all ?
Decidability

• What can a computer do efficiently ?
Time and space Complexity
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Why Study All This? (4)

• Imagine you’re the lead developer for a new
web browser. It obviously needs the capability
to run JavaScript.

• To make your product stand out from the
competition, your boss proposes you
implement a termination check: any
non-terminating JavaScript programs can
then be rejected, without being run.

• If you succeed, your salary will be doubled.
But if you fail, you’d have to look for a new job.

• Should you accept?
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Example: The Halting Problem (1)

Consider the following program. Does it
terminate for all values of n ≥ 1?

while (n > 1) {

if even(n) {

n = n / 2;

} else {

n = n * 3 + 1;

}

}
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Example: The Halting Problem (2)

Not as easy to answer as it might first seem.

Say we start with n = 7, for example:

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5,
16, 8, 4, 2, 1

The sequence involved is known as the
hailstone sequence and Collatz conjecture
says that the number 1 will always be reached.

In fact, for all numbers that have been tried
(up to 260!), it does terminate . . .

. . . but so far, no proof! (See e.g. Wikipedia.)
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Example: The Halting Problem (3)

The following important decidability result should
then perhaps not come as a total surprise:

It is impossible to write a program that
decides if another, arbitrary, program
terminates (halts) or not.

What might be surprising is that it is possible to
prove such a result. This was first done by the
British mathematician Alan Turing using Turing
Machines.
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Alan Turing (1)

Alan Turing (1912–1954):

• Introduced an abstract model of computation,
Turing Machines, to give a precice definition
of what problems that can be solved by a
computer.

• Instrumental in the success of British code
breaking efforts during WWII.
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Alan Turing (2)
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Noam Chomsky (1)

Noam Chomsky (1928–):

• American linguist who introduced Context
Free Grammars in an attempt to describe
natural languages formally.

• Also introduced the Chomsky Hierarchy
which classifies grammars and languages
and their descriptive power.
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Noam Chomsky (2)
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The Chomsky Hierarchy

languages

finite automata

pushdown automata

Type 2 or context free

   
 

Type 3 or
regular languages

Type 1 or context sensitive 
languages

Decidable languages
Turing machines

Type 0 or recursively enumerable languages

All languages
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Languages

The terms language and word are used in a
strict technical sense in this course:

• A language is a (possibly infinite) set of
words.

• A word is a finite sequence (or string) of
symbols.

ǫ denotes the empty word, the sequence of zero
symbols.

The term string is often used interchangeably
with the term word.
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Symbols and Alphabets

What is a symbol, then?

Anything, but it has to come from an alphabet Σ
which is a finite set.

A common (and important) instance is
Σ = {0, 1}.

ǫ, the empty word, is never a symbol of an
alphabet.
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Languages: Examples

alphabet Σ = {a, b}

words ? ǫ, a, b, aa, ab, ba, bb,

aaa, aab, aba, abb, baa, bab, . . .

languages ? ∅, {ǫ}, {a}, {b}, {a, aa},

{ǫ, a, aa, aaa},

{an|n ≥ 0},

{anbn|n ≥ 0, n even}

Note the distinction between ǫ, ∅, and {ǫ}!
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Exercises

• Is the set of natural numbers, N, a possible
alphabet? Why/why not?

• What about the set of all natural numbers
smaller than some given number n?

• Suggest an alphabet of a handful of drink
ingredients. What are the symbols of your
alphabet, and how many are they?

• List some words over your alphabet?

• What might an interesting language over your
alphabet be? Does your language include all
possible words over your alphabet?
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All Words Over an Alphabet (1)

Given an alphabet Σ we define the set Σ∗ as set
of words (or sequences) over Σ:

• The empty word ǫ ∈ Σ∗.

• given a symbol x ∈ Σ and a word w ∈ Σ∗,
xw ∈ Σ∗.

• These are all elements in Σ∗.

This is called an inductive definition.

Is Σ∗ always infinite? Always non-empty?
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All Words over an Alphabet (2)

Example: Given Σ = {0, 1}, some elements of Σ∗

are

• ǫ (the empty word)

• 0, 1

• 00, 10, 01, 11

• 000, 100, 010, 110, 001, 101, 011, 111

• . . .

We are just applying the inductive definition.

Note: although there are infinitely many words in
Σ∗ (when Σ 6= ∅), each word has a finite length!
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Concatenation of Words (1)

An important operation on Σ∗ is concatenation:

given w, v ∈ Σ∗, their concatenation
wv ∈ Σ∗.

For example, concatenation of ab and ba yields
abba.

This operation can be defined by primitive
recursion:

ǫv = v

(xw)v = x(wv)
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Concatenation of Words (2)

Concatenation is associative and has unit ǫ:

u(vw) = (uv)w

ǫu = u = uǫ

where u, v, w are words.
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Languages Revisited

The notion of a language L of a set of words over
an alphabet Σ can now be made precise:

• L ⊆ Σ∗, or equivalently

• L ∈ P(Σ∗).
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Examples of Languages (1)

Some examples of languages:

• The set {0010, 00000000, ǫ} is a language over
Σ = {0, 1}.
This is an example of a finite language.

• The set of words with odd length over
Σ = {1}. (Finite or infinite?)

• The set of words that contain the same
number of 0s and 1s is a language over
Σ = {0, 1}. (Finite or infinite?)
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Examples of Languages (2)

• The set of palindromes (words that read the
same forwards and backwards, like abba) is a
language for any alphabet.

• The set of correct Java programs. This is a
language over the set of UNICODE
characters.

• The set of programs that, if executed
successfully on a Windows machine, prints
the text “Hello World!” in a window. This is a
language over Σ = {0, 1}.
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Concatenation of Languages (1)

Concatenation of words is extended to
languages by:

MN = {uv |u ∈ M ∧ v ∈ N}

Example:

M = {ǫ, a, aa}

N = {b, c}

MN = {uv |u ∈ {ǫ, a, aa} ∧ v ∈ {b, c}}

= {ǫb, ǫc, ab, ac, aab, aac}

= {b, c, ab, ac, aab, aac}
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Concatenation of Languages (2)

• Concatenation of languages is associative:

L(MN) = (LM)N

• Concatenation of languages has zero ∅:

L∅ = ∅ = ∅L

• Concatenation of languages has unit {ǫ}:

L{ǫ} = L = {ǫ}L
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Concatenation of Languages (3)

• Concatenation distributes through set union:

L(M ∪N) = LM ∪ LN

(L ∪M)N = LN ∪MN

But not through intersection! L(M ∩N) 6= LM ∩ LN

Counterexample: L = {ǫ, a}, M = {ǫ}, N = {a}:

L(M ∩N) = L∅ = ∅

LM ∩ LN = {ǫ, a} ∩ {a, aa} = {a}
G52MALMachines and Their LanguagesLecture 1 – p.35/37

Concatenation of Languages (4)

• Exponent notation is used to denote iterated
concatenation:

- L1 = L

- L2 = LL

- L3 = LLL

- . . .

• By definition: L0 = {ǫ} (for any language, incl. ∅)

•

L∗ =
∞⋃

n=0

Ln
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Language Membership

Fundamental question for a language L: w ∈ L?

• L finite: Easy! (Enumerate L and check)

• L infinite: ?

We need:

• A finite (and preferably concise) formal
description of L.

• An algorithmic method to decide if w ∈ L

given a suitable description.

Various approaches to achieve this will be key a
theme throughout the module.
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