
G52MAL

Machines and Their Languages
Lecture 1

Administrative Details and Introduction

Henrik Nilsson

University of Nottingham

G52MALMachines and Their LanguagesLecture 1 – p.1/37

Finding People and Information

• Henrik Nilsson
Room A08

• Moodle

• Main module web page:
www.cs.nott.ac.uk/~nhn/G52MAL

G52MALMachines and Their LanguagesLecture 1 – p.2/37

Aims of the Course

• To familiarize you with key Computer Science
concepts in central areas like

- Automata Theory

- Formal Languages

- Models of Computation

- Complexity Theory

• To equip you with tools with wide applicability
in the fields of CS and IT.

G52MALMachines and Their LanguagesLecture 1 – p.3/37

Organization (1)

• Lectures:

- Two 1 h lectures per week.

- Detailed but somewhat tentative schedule
available on the module web page.

• Coursework:

- 4 Bi-weekly problem sets.

- Made available via the module web page.

- Best 3 counts.

- Deadlines: 5/2, 19/2, 4/3, 16/3 (Wed.!).

G52MALMachines and Their LanguagesLecture 1 – p.4/37

Organization (2)

• Assessment:

- Coursework, 25 %

- 2 hour written examination, 75 %

• However, resits are by 100 % written
examination (standard School policy)

G52MALMachines and Their LanguagesLecture 1 – p.5/37

Literature (1)

• Main reference: Hopcroft, Motwani, & Ullman.
Introduction to Automata Theory, Languages,
and Computation, 2nd edition, Addison
Wesley, 2001. (Or 3rd edition, 2006.)

• Alternative/complement: Linz. An Introduction
to Formal Languages and Automata, 4th
edition, Jones & Bartlett Publishers, 2006.

• Dr. Thorsten Altenkirch’s and my G52MAL
lecture notes.
(Available via the G52MAL module page.)

G52MALMachines and Their LanguagesLecture 1 – p.6/37

Literature (2)

• Supplementary material; e.g., slides, sample
program code.
(Available via the G52MAL module page.)

• Your own notes from the lectures!

G52MALMachines and Their LanguagesLecture 1 – p.7/37

Literature (3)

G52MALMachines and Their LanguagesLecture 1 – p.8/37

Content

1. Mathematical models of computation, such as:

- Finite automata

- Pushdown automata

- Turing machines

2. How to specify formal languages?

- Regular expressions

- Context free grammars

- Context sensitive grammars

3. The relation between 1 and 2.

4. Applications: Scanning and Parsing

G52MALMachines and Their LanguagesLecture 1 – p.9/37

Why Study All This? (1)

Formal languages and automata have lots of
applications in CS and IT. Some examples:

• Specification of programming languages

• Implementation of programming language
processors
(G52MAL feeds into G53CMP)

• XML and DTDs (Document Type Definition)

• Finding words and patterns in large bodies of
text, e.g. in web pages.

• Verification of systems with finite number of
states, e.g. communication protocols.

G52MALMachines and Their LanguagesLecture 1 – p.10/37

Why Study All This? (2)

As a concrete example, a job opening from some
time ago:

The Strats team at Standard Chartered is
hiring a developer for a 1 year contracting
role in London.
The role is to develop and extend our
parsing and validation library for FpML,
using the FpML Haskell library to parse
and build financial product data into our
internal Haskell data types.

https://donsbot.wordpress.com/2015/01/28/
G52MALMachines and Their LanguagesLecture 1 – p.11/37

Why Study All This? (3)

Automata are essential for the study of the limits
of computation. Deep theoretical questions
with big practical implications. Two key issues:

• What can a computer do at all ?
Decidability

• What can a computer do efficiently ?
Time and space Complexity

G52MALMachines and Their LanguagesLecture 1 – p.12/37

Why Study All This? (4)

• Imagine you’re the lead developer for a new
web browser. It obviously needs the capability
to run JavaScript.

• To make your product stand out from the
competition, your boss proposes you
implement a termination check: any
non-terminating JavaScript programs can
then be rejected, without being run.

• If you succeed, your salary will be doubled.
But if you fail, you’d have to look for a new job.

• Should you accept?
G52MALMachines and Their LanguagesLecture 1 – p.13/37

Example: The Halting Problem (1)

Consider the following program. Does it
terminate for all values of n ≥ 1?

while (n > 1) {

if even(n) {

n = n / 2;

} else {

n = n * 3 + 1;

}

}

G52MALMachines and Their LanguagesLecture 1 – p.14/37

Example: The Halting Problem (2)

Not as easy to answer as it might first seem.

Say we start with n = 7, for example:

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5,
16, 8, 4, 2, 1

The sequence involved is known as the
hailstone sequence and Collatz conjecture
says that the number 1 will always be reached.

In fact, for all numbers that have been tried
(up to 260!), it does terminate . . .

. . . but so far, no proof! (See e.g. Wikipedia.)
G52MALMachines and Their LanguagesLecture 1 – p.15/37

Example: The Halting Problem (3)

The following important decidability result should
then perhaps not come as a total surprise:

It is impossible to write a program that
decides if another, arbitrary, program
terminates (halts) or not.

What might be surprising is that it is possible to
prove such a result. This was first done by the
British mathematician Alan Turing using Turing
Machines.

G52MALMachines and Their LanguagesLecture 1 – p.16/37

Alan Turing (1)

Alan Turing (1912–1954):

• Introduced an abstract model of computation,
Turing Machines, to give a precice definition
of what problems that can be solved by a
computer.

• Instrumental in the success of British code
breaking efforts during WWII.

G52MALMachines and Their LanguagesLecture 1 – p.17/37

Alan Turing (2)

G52MALMachines and Their LanguagesLecture 1 – p.18/37

Noam Chomsky (1)

Noam Chomsky (1928–):

• American linguist who introduced Context
Free Grammars in an attempt to describe
natural languages formally.

• Also introduced the Chomsky Hierarchy
which classifies grammars and languages
and their descriptive power.

G52MALMachines and Their LanguagesLecture 1 – p.19/37

Noam Chomsky (2)

G52MALMachines and Their LanguagesLecture 1 – p.20/37

The Chomsky Hierarchy

languages

finite automata

pushdown automata

Type 2 or context free

Type 3 or
regular languages

Type 1 or context sensitive
languages

Decidable languages
Turing machines

Type 0 or recursively enumerable languages

All languages

G52MALMachines and Their LanguagesLecture 1 – p.21/37

Languages

The terms language and word are used in a
strict technical sense in this course:

• A language is a (possibly infinite) set of
words.

• A word is a finite sequence (or string) of
symbols.

ǫ denotes the empty word, the sequence of zero
symbols.

The term string is often used interchangeably
with the term word.

G52MALMachines and Their LanguagesLecture 1 – p.22/37

Symbols and Alphabets

What is a symbol, then?

Anything, but it has to come from an alphabet Σ
which is a finite set.

A common (and important) instance is
Σ = {0, 1}.

ǫ, the empty word, is never a symbol of an
alphabet.

G52MALMachines and Their LanguagesLecture 1 – p.23/37

Languages: Examples

alphabet Σ = {a, b}

words ? ǫ, a, b, aa, ab, ba, bb,

aaa, aab, aba, abb, baa, bab, . . .

languages ? ∅, {ǫ}, {a}, {b}, {a, aa},

{ǫ, a, aa, aaa},

{an|n ≥ 0},

{anbn|n ≥ 0, n even}

Note the distinction between ǫ, ∅, and {ǫ}!

G52MALMachines and Their LanguagesLecture 1 – p.24/37

Exercises

• Is the set of natural numbers, N, a possible
alphabet? Why/why not?

• What about the set of all natural numbers
smaller than some given number n?

• Suggest an alphabet of a handful of drink
ingredients. What are the symbols of your
alphabet, and how many are they?

• List some words over your alphabet?

• What might an interesting language over your
alphabet be? Does your language include all
possible words over your alphabet?

G52MALMachines and Their LanguagesLecture 1 – p.25/37

All Words Over an Alphabet (1)

Given an alphabet Σ we define the set Σ∗ as set
of words (or sequences) over Σ:

• The empty word ǫ ∈ Σ∗.

• given a symbol x ∈ Σ and a word w ∈ Σ∗,
xw ∈ Σ∗.

• These are all elements in Σ∗.

This is called an inductive definition.

Is Σ∗ always infinite? Always non-empty?

G52MALMachines and Their LanguagesLecture 1 – p.26/37

All Words over an Alphabet (2)

Example: Given Σ = {0, 1}, some elements of Σ∗

are

• ǫ (the empty word)

• 0, 1

• 00, 10, 01, 11

• 000, 100, 010, 110, 001, 101, 011, 111

• . . .

We are just applying the inductive definition.

Note: although there are infinitely many words in
Σ∗ (when Σ 6= ∅), each word has a finite length!

G52MALMachines and Their LanguagesLecture 1 – p.27/37

Concatenation of Words (1)

An important operation on Σ∗ is concatenation:

given w, v ∈ Σ∗, their concatenation
wv ∈ Σ∗.

For example, concatenation of ab and ba yields
abba.

This operation can be defined by primitive
recursion:

ǫv = v

(xw)v = x(wv)

G52MALMachines and Their LanguagesLecture 1 – p.28/37

Concatenation of Words (2)

Concatenation is associative and has unit ǫ:

u(vw) = (uv)w

ǫu = u = uǫ

where u, v, w are words.

G52MALMachines and Their LanguagesLecture 1 – p.29/37

Languages Revisited

The notion of a language L of a set of words over
an alphabet Σ can now be made precise:

• L ⊆ Σ∗, or equivalently

• L ∈ P(Σ∗).

G52MALMachines and Their LanguagesLecture 1 – p.30/37

Examples of Languages (1)

Some examples of languages:

• The set {0010, 00000000, ǫ} is a language over
Σ = {0, 1}.
This is an example of a finite language.

• The set of words with odd length over
Σ = {1}. (Finite or infinite?)

• The set of words that contain the same
number of 0s and 1s is a language over
Σ = {0, 1}. (Finite or infinite?)

G52MALMachines and Their LanguagesLecture 1 – p.31/37

Examples of Languages (2)

• The set of palindromes (words that read the
same forwards and backwards, like abba) is a
language for any alphabet.

• The set of correct Java programs. This is a
language over the set of UNICODE
characters.

• The set of programs that, if executed
successfully on a Windows machine, prints
the text “Hello World!” in a window. This is a
language over Σ = {0, 1}.

G52MALMachines and Their LanguagesLecture 1 – p.32/37

Concatenation of Languages (1)

Concatenation of words is extended to
languages by:

MN = {uv |u ∈ M ∧ v ∈ N}

Example:

M = {ǫ, a, aa}

N = {b, c}

MN = {uv |u ∈ {ǫ, a, aa} ∧ v ∈ {b, c}}

= {ǫb, ǫc, ab, ac, aab, aac}

= {b, c, ab, ac, aab, aac}

G52MALMachines and Their LanguagesLecture 1 – p.33/37

Concatenation of Languages (2)

• Concatenation of languages is associative:

L(MN) = (LM)N

• Concatenation of languages has zero ∅:

L∅ = ∅ = ∅L

• Concatenation of languages has unit {ǫ}:

L{ǫ} = L = {ǫ}L

G52MALMachines and Their LanguagesLecture 1 – p.34/37

Concatenation of Languages (3)

• Concatenation distributes through set union:

L(M ∪N) = LM ∪ LN

(L ∪M)N = LN ∪MN

But not through intersection! L(M ∩N) 6= LM ∩ LN

Counterexample: L = {ǫ, a}, M = {ǫ}, N = {a}:

L(M ∩N) = L∅ = ∅

LM ∩ LN = {ǫ, a} ∩ {a, aa} = {a}
G52MALMachines and Their LanguagesLecture 1 – p.35/37

Concatenation of Languages (4)

• Exponent notation is used to denote iterated
concatenation:

- L1 = L

- L2 = LL

- L3 = LLL

- . . .

• By definition: L0 = {ǫ} (for any language, incl. ∅)

•

L∗ =
∞⋃

n=0

Ln

G52MALMachines and Their LanguagesLecture 1 – p.36/37

Language Membership

Fundamental question for a language L: w ∈ L?

• L finite: Easy! (Enumerate L and check)

• L infinite: ?

We need:

• A finite (and preferably concise) formal
description of L.

• An algorithmic method to decide if w ∈ L

given a suitable description.

Various approaches to achieve this will be key a
theme throughout the module.

G52MALMachines and Their LanguagesLecture 1 – p.37/37

	Finding People and Information
	Aims of the Course
	Organization (1)
	Organization (2)
	Literature (1)
	Literature (2)
	Literature (3)
	Content
	Why Study All This? (1)
	Why Study All This? (2)
	Why Study All This? (3)
	Why Study All This? (4)
	Example: The Halting Problem (1)
	Example: The Halting Problem (2)
	Example: The Halting Problem (3)
	Alan Turing (1)
	Alan Turing (2)
	Noam Chomsky (1)
	Noam Chomsky (2)
	The Chomsky Hierarchy
	Languages
	Symbols and Alphabets
	Languages: Examples
	Exercises
	All Words Over an Alphabet (1)
	All Words over an Alphabet (2)
	Concatenation of Words (1)
	Concatenation of Words (2)
	Languages Revisited
	Examples of Languages (1)
	Examples of Languages (2)
	Concatenation of Languages (1)
	Concatenation of Languages (2)
	Concatenation of Languages (3)
	Concatenation of Languages (4)
	Language Membership

