This Lecture (1)
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This Lecture (2)

So, what class of languages do the REs describe?
Smaller? Larger? Completely different?

In fact:
« Regular Expressions describe the Regular
Languages
 Proof: translation between RE and FA
« This lecture: translation of RE into NFA

Will start by a motivating example.
Time permitting, brief look at another application:
scanners. Study details in your own time if of interest.
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» We have seen three ways of formally
describing potentially infinite languages:
- Deterministic Finite Automata (DFA)
- Nondeterministic Finite Automata (NFA)

- Regular Expressions (RE)

- Because
- a DFA is a special case of an NFA
- any NFA can be converted into an
equivalent DFA
DFAs and NFAs describe the same of
languages: the languages.
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Applications (1)

RE to NFA conversion has important practical
applications.

The following is a very nice, practically oriented
article you should be able to fully appreciate
based on what you have learned in G52MAL

thus far:

Russ Cox. Regular Expression Matching

Can Be Simple And Fast (but is slow in

Java, Perl, PHP, Python, Ruby, ...),

January 2007.
http://swtch.com/~rsc/regexp/regexpl.html
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Applications (2)

Underlying message: if you're ignorant about CS
theory, your code can perform really poorly.
Example from the paper:

60 Perl 5.8.7 60
7 40 g 40
g @
g Thompson NFA
= 20 = 20 /
0 | I I I | 0 | N N |
0 10 20 30 0 10 20 30

Time to match (a + ¢)"a" against a”

http://en.wikipedia.org/wiki/Thompson’ s_construction

Recap: Syntax of Regular Expressions

1. 0 is an RE
eis an RE

Forall x € ¥, xis an RE
(Handwriting convention: z is an RE)

If £ and I" are REs, sois £ + F
If £ and F are REs, sois EF

If £is an REs, so is E*

7. If Eis an REs, so is (F)
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These are 2/l regular expressions.
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Applications (3)

To quantify:

« Thompson NFA implementation a
times faster than Perl (5.8.7) when running on
a 29-character string.

« Thompson NFA handles a 100-character
string in under 200 microseconds; Perl would
require over years.

How old is the universe?

Current best estimate: ...
or about 10!V years. 10'° years is a looong time ...
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Recap: Semantics of Regular Expr.

L) =0

L(e) = {e}

Forallz € ¥, L(x) = {z}
L(E+F)=L(E)UL(F)
L(EF) = L(E)L(F)
L(E") = L(E)”

L((E)) = L(E)

N o os N =
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Translating RE to NFA (1)

We are going to detail a “Graphical Construction”
for converting an RE to an NFA that is suitable for
carrying out by hand.

It can be further refined into a fully formal
algorithm: see the lecture notes for details.

(Our “Graphical Construction” is a variation of
Thompson’s Construction. The latter translates
into NFA,, a variation of NFA with a special
e-move that does not consume any input, that we
don’t cover.)

a
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RE to NFA, Case ()

Recall: L(()) =

N(0):

_,O

Note: L(N(0)) = 0 = L(0); specification satisfied
in this case.

Note: States are given without names for
simplicity. Suffice as construction is graphical;
states to be named at the end.
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Translating RE to NFA (2)

Let N(F) denote the NFA that results by applying
the graphical construction to an RE E. Then the
following equation must hold:

L(E) = L(N(E))

(Note that L is : the language of an
RE to the left, the language of an NFA to the right.)

We proceed case by case according to the
structure of the syntax of REs.

a
@
-

RE to NFA, Case ¢

Recall: L(e) = {¢}
Ne):

_,©

Note: L(N(€)) = {e} = L(e); specification
satisfied in this case.




RE to NFA, Case x for © € X

RE to NFA, Case £ + F' (1)

Recall: Foreach z € ¥, L(x) = {z} Recall: L(E + F) = L(E) U L(F)
N(x): N(E+ F):

X The NFAs N(FE) and N(F)
. O . @ N(E) in parallel.  The initial
states of N(F + F) are the

Note: L(N(x)) = {z} = L(x); specification N(F) union of the initial states of
satisfied in this case. N(E)and N(F).

RE to NFA, Case E + F' (2) RE to NFA, Case FF' (1)
Note: Assuming specification holds for E and F, Sub-case 1: No initial state of N(E) is accepting;

.. e ¢ L(N(E)) (Recall: L(EF) = L(E)L(F))
L(N(E+F)) = L(N(E))UL(N(F)) G G
L(E) U L(F)

- LE+F) >0 O

Thus, specification holds in this case.
(This is an case.)

+O ©




RE to NFA, Case FF' (2)

N(EF) a

_/\

N(F)

RE to NFA, Case EF' (4)

N(EF) _

N(E

—~J.

N(F)

RE to NFA, Case EF' (3)

Sub-case 2: Some initial states of N(FE) are
accepting;i.e. e € L(N(F))

N(E) a

RE to NFA, Case EF' (5)

N(F)

~O O

~O O

Note: Assuming specification holds for £ and F,

L(N(EF))

L(N(E))L(N(F))

L(E)L(F)

— L(EF)

Thus, specification holds in this case.
case.)

(This is an




RE to NFA, Case £~ (1) RE to NFA, Case £~ (2)

(Recall: L(E*) = L(E)*) N(E™)
N(E) a *
1 1
: : Note the addi-
I I tional initial and
__)O C)\C)Q accepting state
that ensures the
empty word is
accepted.
RE to NFA, Case E* (3) RE to NFA, Case (F)
Note: Assuming specification holds for E, (Recall: L( (E) ) = L(E))
L(N(E*)) = L(N(E)) N((E))=N(E)
= L(E)" Note: Assuming specification holds for F,
= L(E”
(&) LIN((E))) = L(N(E))
Thus, specification holds in this case. = L(F)
(This is an case.) = L((E))

Thus, specification holds in this case.
(This is an case.)
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Scanning (1

Systematically construct an NFA for the regular « The first stage of many real-world language
expression: processing tasks, such as a compiler, is to
(a+b)'c group individual characters into language-
(“zero or more as or bs, followed by a single ¢”) specific symbqls called or
he hical o he whi - Keywords (like i ¢, : )
Use the “graphical construction”. On the white - Literals (like 2, , , )
board. . :
- Special symbols and separators (like : =, ¢, ;)
 This process is called or
, and is performed by a :
Scanning (2) Scanning (3)
- Commonly, and are « There are many famous so called
understood as : ; €.0. Lex, Flex: given regular
- An additional task of the scanner is often to expressions describing the lexical syntax,
white space and comments as they they produce a scanner for the language.
usually serve no purpose after the scanning. « Internally, they use Thompson’s construction
- Regular expressions is the most commonly (or similar).

used formalism for describing the
of a language; i.e. the syntax of the
tokes, white space, and comments.

* |In essence, a scanner is thus a
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