This Lecture (1)

Henrik Nilsson

University of Nottingham

_ Greactines sndTher tanousgEsL e P12

This Lecture (2)

So, what class of languages do the REs describe?
Smaller? Larger? Completely different?

In fact:
« Regular Expressions describe the Regular
Languages
 Proof: translation between RE and FA
« This lecture: translation of RE into NFA

Will start by a motivating example.
Time permitting, brief look at another application:
scanners. Study details in your own time if of interest.

G52MALMachines and Their LanguagesLecture 6 — p.3/28

» We have seen three ways of formally
describing potentially infinite languages:
- Deterministic Finite Automata (DFA)
- Nondeterministic Finite Automata (NFA)

- Regular Expressions (RE)

- Because
- a DFA is a special case of an NFA
- any NFA can be converted into an
equivalent DFA
DFAs and NFAs describe the same of
languages: the languages.

_ greLtlacines sno her tanausgestectre 0 =p 2

Applications (1)

RE to NFA conversion has important practical
applications.

The following is a very nice, practically oriented
article you should be able to fully appreciate
based on what you have learned in G52MAL

thus far:

Russ Cox. Regular Expression Matching

Can Be Simple And Fast (but is slow in

Java, Perl, PHP, Python, Ruby, ...),

January 2007.
http://swtch.com/~rsc/regexp/regexpl.html

G52MALMachines and Their LanguagesLecture 6 — p.4/28

Applications (2)

Underlying message: if you're ignorant about CS
theory, your code can perform really poorly.
Example from the paper:

60 Perl 5.8.7 60
7 40 g 40
g @
g Thompson NFA
= 20 = 20 /
0 | I I I | 0 | N N |
0 10 20 30 0 10 20 30

Time to match (a + ¢)"a" against a”

http://en.wikipedia.org/wiki/Thompson’ s_construction

Recap: Syntax of Regular Expressions

1. 0 is an RE
eis an RE

Forall x € ¥, xis an RE
(Handwriting convention: z is an RE)

If £ and I" are REs, sois £ + F
If £ and F are REs, sois EF

If £is an REs, so is E*

7. If Eis an REs, so is (F)

ines and Their LanguagesLecture 6 — p.5/28

W N

o O &

These are 2/l regular expressions.

_ GoRMAMzchines an ThelrLanguagestecture 6 —p7/28

Applications (3)

To quantify:

« Thompson NFA implementation a
times faster than Perl (5.8.7) when running on
a 29-character string.

« Thompson NFA handles a 100-character
string in under 200 microseconds; Perl would
require over years.

How old is the universe?

Current best estimate: ...
or about 10!V years. 10'° years is a looong time ...

_ greLtlacines e her tanausgestactre 8 =p 0%

Recap: Semantics of Regular Expr.

L) =0

L(e) = {e}

Forallz € ¥, L(x) = {z}
L(E+F)=L(E)UL(F)
L(EF) = L(E)L(F)
L(E") = L(E)”

L((E)) = L(E)

N o os N =

_ GOEMALMachines and ThelrLanguagestcture © ~p 828

Translating RE to NFA (1)

We are going to detail a “Graphical Construction”
for converting an RE to an NFA that is suitable for
carrying out by hand.

It can be further refined into a fully formal
algorithm: see the lecture notes for details.

(Our “Graphical Construction” is a variation of
Thompson’s Construction. The latter translates
into NFA,, a variation of NFA with a special
e-move that does not consume any input, that we
don’t cover.)

a

ir LanguagesLecture 6 — p.9/28

RE to NFA, Case ()

Recall: L(()) =

N(0):

_,O

Note: L(N(0)) = 0 = L(0); specification satisfied
in this case.

Note: States are given without names for
simplicity. Suffice as construction is graphical;
states to be named at the end.

G52MALMachines and Their LanguagesLecture 6 —p.11/28

Translating RE to NFA (2)

Let N(F) denote the NFA that results by applying
the graphical construction to an RE E. Then the
following equation must hold:

L(E) = L(N(E))

(Note that L is : the language of an
RE to the left, the language of an NFA to the right.)

We proceed case by case according to the
structure of the syntax of REs.

a
@
-

RE to NFA, Case ¢

Recall: L(e) = {¢}
Ne):

_,©

Note: L(N(€)) = {e} = L(e); specification
satisfied in this case.

RE to NFA, Case x for © € X

RE to NFA, Case £ + F' (1)

Recall: Foreach z € ¥, L(x) = {z} Recall: L(E + F) = L(E) U L(F)
N(x): N(E+ F):

X The NFAs N(FE) and N(F)
. O . @ N(E) in parallel. The initial
states of N(F + F) are the

Note: L(N(x)) = {z} = L(x); specification N(F) union of the initial states of
satisfied in this case. N(E)and N(F).

RE to NFA, Case E + F' (2) RE to NFA, Case FF' (1)
Note: Assuming specification holds for E and F, Sub-case 1: No initial state of N(E) is accepting;

.. e ¢ L(N(E)) (Recall: L(EF) = L(E)L(F))
L(N(E+F)) = L(N(E))UL(N(F)) G G
L(E) U L(F)

- LE+F) >0 O

Thus, specification holds in this case.
(This is an case.)

+O ©

RE to NFA, Case FF' (2)

N(EF) a

_/\

N(F)

RE to NFA, Case EF' (4)

N(EF) _

N(E

—~J.

N(F)

RE to NFA, Case EF' (3)

Sub-case 2: Some initial states of N(FE) are
accepting;i.e. e € L(N(F))

N(E) a

RE to NFA, Case EF' (5)

N(F)

~O O

~O O

Note: Assuming specification holds for £ and F,

L(N(EF))

L(N(E))L(N(F))

L(E)L(F)

— L(EF)

Thus, specification holds in this case.
case.)

(This is an

RE to NFA, Case £~ (1) RE to NFA, Case £~ (2)

(Recall: L(E*) = L(E)*) N(E™)
N(E) a *
1 1
: : Note the addi-
I I tional initial and
__)O C)\C)Q accepting state
that ensures the
empty word is
accepted.
RE to NFA, Case E* (3) RE to NFA, Case (F)
Note: Assuming specification holds for E, (Recall: L((E)) = L(E))
L(N(E*)) = L(N(E)) N((E))=N(E)
= L(E)" Note: Assuming specification holds for F,
= L(E”
(&) LIN((E))) = L(N(E))
Thus, specification holds in this case. = L(F)
(This is an case.) = L((E))

Thus, specification holds in this case.
(This is an case.)

GORMALMzchines and ThelrLanguagesLeclure 6 —p 23/28 _

Scanning (1

Systematically construct an NFA for the regular « The first stage of many real-world language
expression: processing tasks, such as a compiler, is to
(a+b)'c group individual characters into language-
(“zero or more as or bs, followed by a single ¢”) specific symbqls called or
he hical o he whi - Keywords (like i ¢, :)
Use the “graphical construction”. On the white - Literals (like 2, , ,)
board. . :
- Special symbols and separators (like : =, ¢, ;)
 This process is called or
, and is performed by a :
Scanning (2) Scanning (3)
- Commonly, and are « There are many famous so called
understood as : ; €.0. Lex, Flex: given regular
- An additional task of the scanner is often to expressions describing the lexical syntax,
white space and comments as they they produce a scanner for the language.
usually serve no purpose after the scanning. « Internally, they use Thompson’s construction
- Regular expressions is the most commonly (or similar).

used formalism for describing the
of a language; i.e. the syntax of the
tokes, white space, and comments.

* |In essence, a scanner is thus a

G52MALMachines and Their LanguagesLecture 6 — p.27/28

G52MALMachines and Their LanguagesLecture 6 — p.28/28

	This Lecture (1)
	This Lecture (2)
	Applications (1)
	Applications (2)
	Applications (3)
	Recap: Syntax of Regular Expressions
	Recap: Semantics of Regular Expr.
	Translating RE to NFA (1)
	Translating RE to NFA (2)
	RE to NFA, Case $emptyset $
	RE to NFA, Case $epsilon $
	RE to NFA, Case $
esymb {x}$ for $x in Sigma $
	RE to NFA, Case $E + F$ (1)
	RE to NFA, Case $E + F$ (2)
	RE to NFA, Case EF (1)
	RE to NFA, Case EF (2)
	RE to NFA, Case EF (3)
	RE to NFA, Case EF (4)
	RE to NFA, Case EF (5)
	RE to NFA, Case E^* (1)
	RE to NFA, Case E^* (2)
	RE to NFA, Case E^* (3)
	RE to NFA, Case (E)
	Example
	Scanning (1)
	Scanning (2)
	Scanning (3)

