G52MAL Machines and Their Languages Lecture 7

Minimization of Finite Automata

Henrik Nilsson

University of Nottingham

G52MALMachines and Their LanguagesLecture 7 - p.1/7

Applications (1)

Applying all we know after this lecture, we can for example:

 Given a regular expression E, construct the smallest possible DFA for recognizing the language:

This is in essence what tools like Lex and Flex do generate efficient scanners from declarative specifications stated in terms of regular expressions.

Minimization? What and Why?

- Q: Is there a unique smallest DFA for recognizing a particular regular language?
- A: Yes! (Up to renaming of states.)
 - Moreover, this minimal DFA can be found mechanically.

Why useful?

- Small improves efficiency if we want to implement a DFA.
- Unique means it is easy to check if two automata really are the same.

G52MALMachines and Their LanguagesLecture 7 - p.2/7

Applications (2)

 Given two regular expressions E and F, check if they denote the same language.

For example, are \mathbf{a}^* and $(\mathbf{a}^*)^*$ equivalent? One possibility:

$$minimize(D(N(E))) = minimize(D(N(F)))$$

where = is a structural comparison of DFAs.

Not the only or necessarily the best way, but it is one way.

G52MALMachines and Their LanguagesLecture 7 - p.3/7

Testing Equivalence of States

For DFA $(Q, \Sigma, \delta, q_0, F)$, states $p, q \in Q$ are *equivalent* iff $\forall w \in \Sigma^*$. $\hat{\delta}(p, w) \in F \Leftrightarrow \hat{\delta}(q, w) \in F$

If two states are not equivalent, then they are **distinguishable** on at least one word w.

Note that an accepting state is always distinguishable from a non-accepting state on the empty word ϵ . To see this, assume $p \in F, q \notin F$. Then:

$$\hat{\delta}(p,\epsilon) = p \in F$$

 $\hat{\delta}(q,\epsilon) = q \notin F$

352MALMachines and Their LanguagesLecture 7 - p.5/7

The Table-filling Algorithm (2)

INDUCTION:

For
$$p, q, r, s \in Q$$
, $a \in \Sigma$, if

$$(r,s) = (\hat{\delta}(p,a), \hat{\delta}(q,a))$$

a distinguishable state pair, then (p,q) is also a distinguishable state pair.

Theorem: If two states are *not* distinguishable by the table-filling algorithm, then they are *equivalent*.

The Table-filling Algorithm (1)

Systematic discovery of distinguishable state pairs for DFA $(Q, \Sigma, \delta, q_0, F)$:

BASIS:

For
$$p, q \in Q$$
, if

$$(p \in F \land q \notin F) \lor (p \notin F \land q \in F)$$

then (p, q) is a distiguishable state pair.

G52MALMachines and Their LanguagesLecture 7 - p.6/7