G52MAL Machines and Their Languages Lecture 7 Minimization of Finite Automata

Henrik Nilsson

University of Nottingham

G52MALMachines and Their LanguagesLecture 7 - p.1/7

Applications (2)

• Given two regular expressions *E* and *F*, check if they denote the same language.

For example, are \mathbf{a}^* and $(\mathbf{a}^*)^*$ equivalent? One possibility:

minimize(D(N(E))) = minimize(D(N(F)))

where = is a structural comparison of DFAs.

Not the only or necessarily the best way, but it is one way.

G52MALMachines and Their LanguagesLecture 7 – p.4/7

The Table-filling Algorithm (2)

INDUCTION:

For $p, q, r, s \in Q$, $a \in \Sigma$, if

$$(r,s) = (\delta(p,a), \delta(q,a))$$

a distinguishable state pair, then (p,q) is also a distinguishable state pair.

Theorem: If two states are *not* distinguishable by the table-filling algorithm, then they are *equivalent*.

Minimization? What and Why?

- Q: Is there a unique smallest DFA for recognizing a particular regular language?
- A: Yes! (Up to renaming of states.)
 - Moreover, this minimal DFA can be found mechanically.

Why useful?

- Small improves efficiency if we want to implement a DFA.
- Unique means it is easy to check if two automata really are the same.

Testing Equivalence of States

For DFA $(Q, \Sigma, \delta, q_0, F)$, states $p, q \in Q$ are *equivalent* iff $\forall w \in \Sigma^* \cdot \hat{\delta}(p, w) \in F \Leftrightarrow \hat{\delta}(q, w) \in F$

If two states are not equivalent, then they are *distinguishable* on at least one word w.

Note that an accepting state is always distinguishable from a non-accepting state on the empty word ϵ . To see this, assume $p \in F, q \notin F$. Then:

$$\delta(p,\epsilon) = p \in F$$
$$\hat{\delta}(q,\epsilon) = q \notin F$$

G52MALMachines and Their LanguagesLecture 7 – p.5/7

Applications (1)

Applying all we know after this lecture, we can for example:

 Given a regular expression *E*, construct the smallest possible DFA for recognizing the language:

minimize(D(N(E)))

This is in essence what tools like Lex and Flex do generate efficient scanners from declarative specifications stated in terms of regular expressions.

The Table-filling Algorithm (1)

Systematic discovery of distinguishable state pairs for DFA $(Q, \Sigma, \delta, q_0, F)$:

BASIS:

For $p, q \in Q$, if

 $(p \in F \land q \notin F) \lor (p \notin F \land q \in F)$

G52MALMachines and Their LanguagesLecture 7 - p.6/7

then (p,q) is a distiguishable state pair.