
G52MAL

Machines and Their Languages
Lecture 7

Minimization of Finite Automata

Henrik Nilsson

University of Nottingham

G52MALMachines and Their LanguagesLecture 7 – p.1/7



Minimization? What and Why?

G52MALMachines and Their LanguagesLecture 7 – p.2/7



Minimization? What and Why?

Q: Is there a unique smallest DFA for
recognizing a particular regular language?

G52MALMachines and Their LanguagesLecture 7 – p.2/7



Minimization? What and Why?

Q: Is there a unique smallest DFA for
recognizing a particular regular language?

A: - Yes! (Up to renaming of states.)

G52MALMachines and Their LanguagesLecture 7 – p.2/7



Minimization? What and Why?

Q: Is there a unique smallest DFA for
recognizing a particular regular language?

A: - Yes! (Up to renaming of states.)

- Moreover, this minimal DFA can be found
mechanically.

G52MALMachines and Their LanguagesLecture 7 – p.2/7



Minimization? What and Why?

Q: Is there a unique smallest DFA for
recognizing a particular regular language?

A: - Yes! (Up to renaming of states.)

- Moreover, this minimal DFA can be found
mechanically.

Why useful?

G52MALMachines and Their LanguagesLecture 7 – p.2/7



Minimization? What and Why?

Q: Is there a unique smallest DFA for
recognizing a particular regular language?

A: - Yes! (Up to renaming of states.)

- Moreover, this minimal DFA can be found
mechanically.

Why useful?

• Small improves efficiency if we want to
implement a DFA.

G52MALMachines and Their LanguagesLecture 7 – p.2/7



Minimization? What and Why?

Q: Is there a unique smallest DFA for
recognizing a particular regular language?

A: - Yes! (Up to renaming of states.)

- Moreover, this minimal DFA can be found
mechanically.

Why useful?

• Small improves efficiency if we want to
implement a DFA.

• Unique means it is easy to check if two
automata really are the same.

G52MALMachines and Their LanguagesLecture 7 – p.2/7



Applications (1)

Applying all we know after this lecture, we can for
example:

• Given a regular expression E, construct the
smallest possible DFA for recognizing the
language:

minimize(D(N(E)))

G52MALMachines and Their LanguagesLecture 7 – p.3/7



Applications (1)

Applying all we know after this lecture, we can for
example:

• Given a regular expression E, construct the
smallest possible DFA for recognizing the
language:

minimize(D(N(E)))

This is in essence what tools like Lex and
Flex do generate efficient scanners from
declarative specifications stated in terms of
regular expressions.

G52MALMachines and Their LanguagesLecture 7 – p.3/7



Applications (2)

• Given two regular expressions E and F ,
check if they denote the same language.

G52MALMachines and Their LanguagesLecture 7 – p.4/7



Applications (2)

• Given two regular expressions E and F ,
check if they denote the same language.

For example, are a
∗ and (a∗)∗ equivalent?

G52MALMachines and Their LanguagesLecture 7 – p.4/7



Applications (2)

• Given two regular expressions E and F ,
check if they denote the same language.

For example, are a
∗ and (a∗)∗ equivalent?

One possibility:

minimize(D(N(E))) = minimize(D(N(F )))

where = is a structural comparison of DFAs.

G52MALMachines and Their LanguagesLecture 7 – p.4/7



Applications (2)

• Given two regular expressions E and F ,
check if they denote the same language.

For example, are a
∗ and (a∗)∗ equivalent?

One possibility:

minimize(D(N(E))) = minimize(D(N(F )))

where = is a structural comparison of DFAs.

Not the only or necessarily the best way, but it
is one way.

G52MALMachines and Their LanguagesLecture 7 – p.4/7



Testing Equivalence of States

For DFA (Q,Σ, δ, q0, F ), states p, q ∈ Q are equivalent

iff ∀w ∈ Σ∗ . δ̂(p, w) ∈ F ⇔ δ̂(q, w) ∈ F

G52MALMachines and Their LanguagesLecture 7 – p.5/7



Testing Equivalence of States

For DFA (Q,Σ, δ, q0, F ), states p, q ∈ Q are equivalent

iff ∀w ∈ Σ∗ . δ̂(p, w) ∈ F ⇔ δ̂(q, w) ∈ F

If two states are not equivalent, then they are
distinguishable on at least one word w.

G52MALMachines and Their LanguagesLecture 7 – p.5/7



Testing Equivalence of States

For DFA (Q,Σ, δ, q0, F ), states p, q ∈ Q are equivalent

iff ∀w ∈ Σ∗ . δ̂(p, w) ∈ F ⇔ δ̂(q, w) ∈ F

If two states are not equivalent, then they are
distinguishable on at least one word w.

Note that an accepting state is always
distinguishable from a non-accepting state on the
empty word ǫ. To see this, assume p ∈ F, q /∈ F .
Then:

δ̂(p, ǫ) = p ∈ F

δ̂(q, ǫ) = q /∈ F

G52MALMachines and Their LanguagesLecture 7 – p.5/7



The Table-filling Algorithm (1)

Systematic discovery of distinguishable state
pairs for DFA (Q,Σ, δ, q0, F ):

BASIS:
For p, q ∈ Q, if

(p ∈ F ∧ q /∈ F ) ∨ (p /∈ F ∧ q ∈ F )

then (p, q) is a distiguishable state pair.

G52MALMachines and Their LanguagesLecture 7 – p.6/7



The Table-filling Algorithm (2)

INDUCTION:
For p, q, r, s ∈ Q, a ∈ Σ, if

(r, s) = (δ̂(p, a), δ̂(q, a))

a distinguishable state pair, then (p, q) is also
a distinguishable state pair.

Theorem: If two states are not distinguishable by
the table-filling algorithm, then they are equivalent.

G52MALMachines and Their LanguagesLecture 7 – p.7/7


	Minimization? What and Why?
	Applications (1)
	Applications (2)
	Testing Equivalence of States
	The Table-filling Algorithm (1)
	The Table-filling Algorithm (2)

