G52MAL
 Machines and Their Langauges Lecture 17

Recursive-Descent Parsing: Predictive Parsing

Henrik Nilsson

University of Nottingham, UK

This lecture:

- The problem of choice revisited.
- Predictive Parsing and LL(1) grammars.
- Computation of First and Follow Sets.
- Left factoring

Recap: Recursive-Descent Parsing (1)

Recursive-descent parsing is an example of the top-down parsing method:

Recap: Recursive-Descent Parsing (1)

Recursive-descent parsing is an example of the top-down parsing method:

- One parsing function associated with each nonterminal; e.g., for nonterminal X, parseX:
parseX :: [Token] -> Maybe [Token]

Recap: Recursive-Descent Parsing (1)

Recursive-descent parsing is an example of the top-down parsing method:

- One parsing function associated with each nonterminal; e.g., for nonterminal X, parseX:
parseX :: [Token] -> Maybe [Token]
- A parsing function attempts to derive a prefix of the current input according to the grammar starting from the nonterminal.

Recap: Recursive-Descent Parsing (1)

Recursive-descent parsing is an example of the top-down parsing method:

- One parsing function associated with each nonterminal; e.g., for nonterminal X, parseX:
parseX :: [Token] -> Maybe [Token]
- A parsing function attempts to derive a prefix of the current input according to the grammar starting from the nonterminal.
- Other parsing functions invoked (recursively) as needed according to the RHS of the production(s) for the nonterminal.

Recap: Recursive-Descent Parsing (2)

- If successful, a parsing function returns the remainder of the input.

Recap: Recursive-Descent Parsing (2)

- If successful, a parsing function returns the remainder of the input.
E.g. if input is $\alpha \beta, X \stackrel{*}{\Rightarrow} \alpha$, and parseX could carry out this derivation, then:
parseX $\alpha \beta=$ Just β

Recap: Recursive-Descent Parsing (2)

- If successful, a parsing function returns the remainder of the input.
E.g. if input is $\alpha \beta, X \stackrel{*}{\Rightarrow} \alpha$, and parseX could carry out this derivation, then:
parseX $\alpha \beta=$ Just β
- If unsuccessful, a parsing function returns Nothing.

Recap: Handling Choice (1)

Of course, we want a parsing function to be successful exactly when a prefix of the input can be derived from the corresponding nonterminal.

Recap: Handling Choice (1)

Of course, we want a parsing function to be successful exactly when a prefix of the input can be derived from the corresponding nonterminal.

This can be achieved by:

Recap: Handling Choice (1)

Of course, we want a parsing function to be successful exactly when a prefix of the input can be derived from the corresponding nonterminal.

This can be achieved by:

- Adopting a suitable parsing strategy, specifically regarding how to handle choice between two or more productions for one nonterminal.

Recap: Handling Choice (1)

Of course, we want a parsing function to be successful exactly when a prefix of the input can be derived from the corresponding nonterminal.

This can be achieved by:

- Adopting a suitable parsing strategy, specifically regarding how to handle choice between two or more productions for one nonterminal.
- Impose restrictions on the grammar to ensure success of the chosen parsing strategy.

Recap: Handling Choice (1)

Of course, we want a parsing function to be successful exactly when a prefix of the input can be derived from the corresponding nonterminal.

This can be achieved by:

- Adopting a suitable parsing strategy, specifically regarding how to handle choice between two or more productions for one nonterminal.
- Impose restrictions on the grammar to ensure success of the chosen parsing strategy.
In particular, left recursion usually not allowed.

Recap: Handling Choice (2)

Two strategies for handling choice, as in

$$
S \rightarrow A B \mid C D
$$

Recap: Handling Choice (2)

Two strategies for handling choice, as in

$$
S \rightarrow A B \mid C D
$$

- Looking at the next input symbol is sometimes enough; e.g.:

$$
S \rightarrow a B \mid c D
$$

Recap: Handling Choice (2)

Two strategies for handling choice, as in

$$
S \rightarrow A B \mid C D
$$

- Looking at the next input symbol is sometimes enough; e.g.:

$$
S \rightarrow a B \mid c D
$$

- If not, all alternatives could be explored through backtracking:
parseX :: [Token] -> [[Token]]

Predictive Parsing (1)

Today, we are going to look into exactly when the next input symbol, a one symbol lookahead, can be used to make all parsing decisions.

Predictive Parsing (1)

Today, we are going to look into exactly when the next input symbol, a one symbol lookahead, can be used to make all parsing decisions.

We note that this can be the case even if the RHSs start with nonterminals:

$$
\begin{aligned}
& S \rightarrow A B \mid C D \\
& A \rightarrow a \mid b \\
& C \rightarrow c \mid d
\end{aligned}
$$

Predictive Parsing (2)

- Predictive parsing is an example of recursive descent parsing where no backtracking is needed.
- The grammar must be such that the next input symbol uniquely determines the next production to use (a grammar restriction).

Productions: $X \rightarrow \alpha \mid \beta$

```
parseX (t : ts) =
    l t ?? -> parse \alpha
    | t ?? -> parse \beta
    | otherwise -> Nothing
```


Predictive Parsing (3)

How to make the choices? Idea:

Predictive Parsing (3)

How to make the choices? Idea:

- Compute the set of terminal symbols that can start strings derived from each alternative, the first set.

Predictive Parsing (3)

How to make the choices? Idea:

- Compute the set of terminal symbols that can start strings derived from each alternative, the first set.
- If there is a choice between two or more alternatives, insist that the first sets for those are disjoint (a grammar restriction).

Predictive Parsing (3)

How to make the choices? Idea:

- Compute the set of terminal symbols that can start strings derived from each alternative, the first set.
- If there is a choice between two or more alternatives, insist that the first sets for those are disjoint (a grammar restriction).
- The right choice can now be made simply by determining to which alternative's first set the next input symbol belongs.

Predictive Parsing (4)

Productions: $X \rightarrow \alpha \mid \beta$
parse (t : ts) =
| $\mathrm{t} \in \operatorname{first}(\alpha)$-> parse α
$\mid t \in \operatorname{first}(\beta)->$ parse β
| otherwise -> Nothing

Predictive Parsing (5)

Again, consider: $X \rightarrow \alpha \mid \beta$
What if e.g. $\beta \stackrel{*}{\Rightarrow} \epsilon$?
Clearly, the next input symbol could be a terminal that can follow a string derivable form X !

$$
\begin{aligned}
& \text { parseX }(t \text { : ts) }= \\
& \quad \text { | } \in \operatorname{first}(\alpha) \quad \text { parse } \alpha \\
& \mid \mathrm{t} \in \operatorname{first}(\beta) \cup \text { follow }(X) \text {-> parse } \beta \\
& \text { | otherwise }->\text { Nothing }
\end{aligned}
$$

The branches must be mutually exclusive!

First and Follow Sets (1)

Following (roughly) "the Dragon Book" [ASU86]
For a CFG $G=(N, T, P, S)$:

$$
\begin{aligned}
\operatorname{first}(\alpha)= & \{a \in T \mid \alpha \underset{G}{*} a \beta\} \\
\text { follow }(A)= & \{a \in T \mid S \underset{G}{*} \alpha A a \beta\} \\
& \cup\{\$ \mid S \underset{G}{*} \alpha A\}
\end{aligned}
$$

where we assume $\alpha, \beta \in(N \cup T)^{*}, A \in N$, and where $\$$ is a special "end of input" marker.

First and Follow Sets (2)

Consider:

$$
\begin{array}{ll}
S \rightarrow A B C & B \rightarrow b \mid \epsilon \\
A \rightarrow a A \mid \epsilon & C \rightarrow c \mid d
\end{array}
$$

first $(C)=\{c, d\}$
$\operatorname{first}(B)=\{b\}$
first $(A)=\{a\}$
first $(S)=\operatorname{first}(A B C)$
$=[$ because $A \stackrel{*}{\Rightarrow} \epsilon$ and $B \stackrel{*}{\Rightarrow} \epsilon]$ first $(A) \cup$ first $(B) \cup$ first (C)
$=\{a, b, c, d\}$

First and Follow Sets (3)

Same grammar:

$$
\begin{array}{ll}
S \rightarrow A B C & B \rightarrow b \mid \epsilon \\
A \rightarrow a A \mid \epsilon & C \rightarrow c \mid d
\end{array}
$$

Follow sets:

$$
\begin{aligned}
\operatorname{follow}(C)= & \{\$\} \\
\text { follow }(B)= & \operatorname{first}(C)=\{c, d\} \\
\text { follow }(A)= & {[\text { because } B \stackrel{=}{\Rightarrow} \epsilon] } \\
& \text { first }(B) \cup \text { first }(C) \\
= & \{b, c, d\}
\end{aligned}
$$

LL(1) Grammars (1)

Consider all productions for a nonterminal A in some grammar:

$$
A \rightarrow \alpha_{1}\left|\alpha_{2}\right| \ldots \mid \alpha_{n}
$$

LL(1) Grammars (1)

Consider all productions for a nonterminal A in some grammar:

$$
A \rightarrow \alpha_{1}\left|\alpha_{2}\right| \ldots \mid \alpha_{n}
$$

In the parsing function for A, on input symbol t, we parse according to α_{i} if $t \in \operatorname{first}\left(\alpha_{i}\right)$.

LL(1) Grammars (1)

Consider all productions for a nonterminal A in some grammar:

$$
A \rightarrow \alpha_{1}\left|\alpha_{2}\right| \ldots \mid \alpha_{n}
$$

In the parsing function for A, on input symbol t, we parse according to α_{i} if $t \in \operatorname{first}\left(\alpha_{i}\right)$.

If $\alpha_{i} \stackrel{*}{\Rightarrow} \epsilon$, we should parse according to α_{i} also if $t \in$ follow (A) !

LL(1) Grammars (2)

Thus, if:

LL(1) Grammars (2)

Thus, if:

- $\operatorname{first}\left(\alpha_{i}\right) \cap \operatorname{first}\left(\alpha_{j}\right)=\emptyset$ for $1 \leq i<j \leq n$, and

LL(1) Grammars (2)

Thus, if:

- $\operatorname{first}\left(\alpha_{i}\right) \cap \operatorname{first}\left(\alpha_{j}\right)=\emptyset$ for $1 \leq i<j \leq n$, and
- if $\alpha_{i} \stackrel{*}{\Rightarrow} \in$ for some i, then, for all $1 \leq j \leq n, j \neq i$,

LL(1) Grammars (2)

Thus, if:

- first $\left(\alpha_{i}\right) \cap \operatorname{first}\left(\alpha_{j}\right)=\emptyset$ for $1 \leq i<j \leq n$, and
- if $\alpha_{i} \stackrel{*}{\Rightarrow} \epsilon$ for some i, then, for all $1 \leq j \leq n, j \neq i$,
- $\alpha_{j} \neq$ 涪 ϵ, and

LL(1) Grammars (2)

Thus, if:

- $\operatorname{first}\left(\alpha_{i}\right) \cap \operatorname{first}\left(\alpha_{j}\right)=\emptyset$ for $1 \leq i<j \leq n$, and
- if $\alpha_{i} \stackrel{*}{\Rightarrow} \epsilon$ for some i, then, for all $1 \leq j \leq n, j \neq i$,
- $\alpha_{j} \stackrel{\text { 券 }}{\neq}$, and
- follow $(A) \cap \operatorname{first}\left(\alpha_{j}\right)=\emptyset$

LL(1) Grammars (2)

Thus, if:

- first $\left(\alpha_{i}\right) \cap \operatorname{first}\left(\alpha_{j}\right)=\emptyset$ for $1 \leq i<j \leq n$, and
- if $\alpha_{i} \stackrel{*}{\Rightarrow} \in$ for some i, then, for all $1 \leq j \leq n, j \neq i$,
- $\alpha_{j} \stackrel{*}{\nRightarrow} \epsilon$, and
- follow $(A) \cap \operatorname{first}\left(\alpha_{j}\right)=\emptyset$
then it is always clear what do do!

LL(1) Grammars (2)

Thus, if:

- first $\left(\alpha_{i}\right) \cap \operatorname{first}\left(\alpha_{j}\right)=\emptyset$ for $1 \leq i<j \leq n$, and
- if $\alpha_{i} \stackrel{*}{\Rightarrow} \in$ for some i, then, for all $1 \leq j \leq n, j \neq i$,
- $\alpha_{j} \stackrel{*}{\Rightarrow} \epsilon$, and
- follow $(A) \cap \operatorname{first}\left(\alpha_{j}\right)=\emptyset$
then it is always clear what do do!
A grammar satisfying these conditions is said to be an $L L(1)$ grammar.

Nullable Nonterminals (1)

In order to compute the first and follow sets for a grammar $G=(N, T, P, S)$, we first need to know all nonterminals $A \in N$ such that $A \stackrel{*}{\Rightarrow} \epsilon$; i.e. the set $N_{\epsilon} \subseteq N$ of nullable nonterminals.

Let $\operatorname{syms}(\alpha)$ denote the set of symbols in a string α :

$$
\begin{aligned}
\operatorname{syms} & \in(N \cup T)^{*} \rightarrow \mathcal{P}(N \cup T) \\
\operatorname{syms}(\epsilon) & =\emptyset \\
\operatorname{syms}(X \alpha) & =\{X\} \cup \operatorname{syms}(\alpha)
\end{aligned}
$$

Nullable Nonterminals (2)

The set N_{ϵ} is the smallest solution to the equation
$N_{\epsilon}=\left\{A \mid A \rightarrow \alpha \in P \wedge \forall X \in \operatorname{syms}(\alpha) \cdot X \in N_{\epsilon}\right\}$
(Note that $A \in N_{\epsilon}$ if $A \rightarrow \epsilon \in P$ because syms $(\epsilon)=\emptyset$ and $\forall X \in \emptyset$. . . is trivially true.)
We can now define a predicate nullable on strings of grammar symbols:

$$
\begin{aligned}
\text { nullable } & \in(N \cup T)^{*} \rightarrow \text { Bool } \\
\text { nullable }(\epsilon) & =\text { true } \\
\text { nullable }(X \alpha) & =X \in N_{\epsilon} \wedge \text { nullable }(\alpha)
\end{aligned}
$$

Nullable Nonterminals (3)

The equation for N_{ϵ} can be solved iteratively as follows:

1. Initialize N_{ϵ} to $\{A \mid A \rightarrow \epsilon \in P\}$.
2. If there is a production $A \rightarrow \alpha$ such that $\forall X \in \operatorname{syms}(\alpha) . X \in N_{\epsilon}$, then add A to N_{ϵ}.
3. Repeat step 2 until no further nullable nonterminals can be found.

Nullable Nonterminals (4)

Consider the following grammar:

$$
\begin{array}{ll}
S \rightarrow A B C \mid A B & B \rightarrow b \mid \epsilon \\
A \rightarrow a A \mid B B & C \rightarrow c \mid d
\end{array}
$$

Nullable Nonterminals (4)

Consider the following grammar:

$$
\begin{array}{ll}
S \rightarrow A B C \mid A B & B \rightarrow b \mid \epsilon \\
A \rightarrow a A \mid B B & C \rightarrow c \mid d
\end{array}
$$

- Because $B \rightarrow \epsilon$ is a production, $B \in N_{\epsilon}$.

Nullable Nonterminals (4)

Consider the following grammar:

$$
\begin{array}{ll}
S \rightarrow A B C \mid A B & B \rightarrow b \mid \epsilon \\
A \rightarrow a A \mid B B & C \rightarrow c \mid d
\end{array}
$$

- Because $B \rightarrow \epsilon$ is a production, $B \in N_{\epsilon}$.
- Because $A \rightarrow B B$ is a production and $B \in N_{\epsilon}$, additionally $A \in N_{\epsilon}$.

Nullable Nonterminals (4)

Consider the following grammar:

$$
\begin{array}{ll}
S \rightarrow A B C \mid A B & B \rightarrow b \mid \epsilon \\
A \rightarrow a A \mid B B & C \rightarrow c \mid d
\end{array}
$$

- Because $B \rightarrow \epsilon$ is a production, $B \in N_{\epsilon}$.
- Because $A \rightarrow B B$ is a production and $B \in N_{\epsilon}$, additionally $A \in N_{\epsilon}$.
- Because $S \rightarrow A B$ is a production, and $A, B \in N_{\epsilon}$, additionally $S \in N_{\epsilon}$.

Nullable Nonterminals (4)

Consider the following grammar:

$$
\begin{array}{ll}
S \rightarrow A B C \mid A B & B \rightarrow b \mid \epsilon \\
A \rightarrow a A \mid B B & C \rightarrow c \mid d
\end{array}
$$

- Because $B \rightarrow \epsilon$ is a production, $B \in N_{\epsilon}$.
- Because $A \rightarrow B B$ is a production and $B \in N_{\epsilon}$, additionally $A \in N_{\epsilon}$.
- Because $S \rightarrow A B$ is a production, and $A, B \in N_{\epsilon}$, additionally $S \in N_{\epsilon}$.
- No more production with nullable RHS. The set of nullable symbols $N_{\epsilon}=\{S, A, B\}$.

Computing First Sets (1)

For a CFG $G=(N, T, P, S)$, the sets first (A) for $A \in N$ are the smallest sets satisfying:

$$
\begin{aligned}
\operatorname{first}(A) & \subseteq T \\
\operatorname{first}(A) & =\bigcup_{A \rightarrow \alpha \in P} \operatorname{first}(\alpha)
\end{aligned}
$$

Computing First Sets (2)

For strings, first is defined as (note the overloaded notation):

$$
\begin{aligned}
\text { first } & \in(N \cup T)^{*} \rightarrow \mathcal{P}(T) \\
\text { first }(\epsilon) & =\emptyset \\
\text { first }(a \alpha) & =\{a\} \\
\text { first }(A \alpha) & =\operatorname{first}(A) \cup\left\{\begin{aligned}
\text { first }(\alpha), & \text { if } A \in N_{\epsilon} \\
\emptyset, & \text { if } A \notin N_{\epsilon}
\end{aligned}\right.
\end{aligned}
$$

where $a \in T, A \in N$, and $\alpha \in(N \cup T)^{*}$.

Computing First Sets (3)

The solutions can often be obtained directly by expanding out all definitions.

If necessary, the equations can be solved by iteration in a similar way to how N_{ϵ} is computed.

Note that the smallest solution to set equations of the type

$$
A=A \cup B
$$

is simply

$$
A=B
$$

Computing First Sets (4)

Consider (again):

$$
\begin{array}{ll}
S \rightarrow A B C & B \rightarrow b \mid \epsilon \\
A \rightarrow a A \mid \epsilon & C \rightarrow c \mid d
\end{array}
$$

First compute the nullable nonterminals:
$N_{\epsilon}=\{A, B\}$.
Then compute first sets:

$$
\begin{aligned}
\operatorname{first}(A) & =\operatorname{first}(a A) \cup \text { first }(\epsilon) \\
& =\{a\} \cup \emptyset=\{a\}
\end{aligned}
$$

Computing First Sets (5)

$$
\begin{array}{ll}
S \rightarrow A B C & B \rightarrow b \mid \epsilon \\
A \rightarrow a A \mid \epsilon & C \rightarrow c \mid d
\end{array}
$$

first $(B)=\operatorname{first}(b) \cup$ first (ϵ)

$$
=\{b\} \cup \emptyset=\{b\}
$$

first $(C)=\operatorname{first}(c) \cup$ first (d)

$$
=\{c\} \cup\{d\}=\{c, d\}
$$

Computing First Sets (6)

$$
\begin{array}{ll}
S \rightarrow A B C & B \rightarrow b \mid \epsilon \\
A \rightarrow a A \mid \epsilon & C \rightarrow c \mid d
\end{array}
$$

first $(S)=$ first $(A B C)$

$$
=\left[A \in N_{\epsilon}\right]
$$

$$
\text { first }(A) \cup \text { first }(B C)
$$

$$
=\left[B \in N_{\epsilon} \wedge C \notin N_{\epsilon}\right]
$$

$$
\text { first }(A) \cup \text { first }(B) \cup \text { first }(C) \cup \emptyset
$$

$$
=\{a\} \cup\{b\} \cup\{c, d\}=\{a, b, c, d\}
$$

Computing Follow Sets (1)

For a CFG $G=(N, T, P, S)$, the sets follow (A) are the smallest sets satisfying:

- $\{\$\} \subseteq$ follow (S)
- If $A \rightarrow \alpha B \beta \in P$, then first $(\beta) \subseteq$ follow (B)
- If $A \rightarrow \alpha B \beta \in P$, and nullable (β) then follow $(A) \subseteq$ follow (B)
$A, B \in N$, and $\alpha, \beta \in(N \cup T)^{*}$.
(It is assumed that there are no useless symbols; i.e., all symbols can appear in the derivation of some sentence.)

Computing Follow Sets (2)

$$
\begin{array}{ll}
S \rightarrow A B C & B \rightarrow b \mid \epsilon \\
A \rightarrow a A \mid \epsilon & C \rightarrow c \mid d
\end{array}
$$

Constraints for follow (S) :

$$
\{\$\} \subseteq \text { follow }(S)
$$

Computing Follow Sets (2)

$$
\begin{array}{ll}
S \rightarrow A B C & B \rightarrow b \mid \epsilon \\
A \rightarrow a A \mid \epsilon & C \rightarrow c \mid d
\end{array}
$$

Constraints for follow (S) :

$$
\{\$\} \subseteq \text { follow }(S)
$$

Constraints for follow (A) (note: \neg nullable($B C$)):

$$
\begin{aligned}
\text { first }(B C) & \subseteq \text { follow }(A) \\
\text { first }(\epsilon) & \subseteq \text { follow }(A) \\
\text { follow }(A) & \subseteq \text { follow }(A)
\end{aligned}
$$

Computing Follow Sets (3)

$$
\begin{array}{ll}
S \rightarrow A B C & B \rightarrow b \mid \epsilon \\
A \rightarrow a A \mid \epsilon & C \rightarrow c \mid d
\end{array}
$$

Constraints for follow (B) (note: \neg nullable (C)):

$$
\text { first }(C) \subseteq \text { follow }(B)
$$

Computing Follow Sets (3)

$$
\begin{array}{ll}
S \rightarrow A B C & B \rightarrow b \mid \epsilon \\
A \rightarrow a A \mid \epsilon & C \rightarrow c \mid d
\end{array}
$$

Constraints for follow (B) (note: \neg nullable (C)):

$$
\text { first }(C) \subseteq \text { follow }(B)
$$

Constraints for follow (C) (note: nullable (ϵ)):

$$
\begin{aligned}
\text { first }(\epsilon) & \subseteq \text { follow }(C) \\
\text { follow }(S) & \subseteq \text { follow }(C)
\end{aligned}
$$

Computing Follow Sets (4)

In general:

$$
A \subseteq C \wedge B \subseteq C \quad \Longleftrightarrow \quad A \cup B \subseteq C
$$

Also, constraints like $A \subseteq A$ are trivially satisfied and can be omitted.
The constraints can thus be written as:

$\{\$\}$	\subseteq follow (S)
first $(B C) \cup$ first (ϵ)	\subseteq follow (A)
first (C)	\subseteq follow (B)
first $(\epsilon) \cup$ follow (S)	\subseteq follow (C)

Computing Follow Sets (5)

Using

$$
\begin{aligned}
\operatorname{first}(\epsilon) & =\emptyset \\
\operatorname{first}(C) & =\{c, d\} \\
\operatorname{first}(B C) & =\operatorname{first}(B) \cup \operatorname{first}(C) \cup \emptyset \\
& =\{b\} \cup\{c, d\}=\{b, c, d\}
\end{aligned}
$$

the constraints can be simplified further:

$$
\begin{aligned}
\{\$\} & \subseteq \text { follow }(S) \\
\{b, c, d\} & \subseteq \text { follow }(A) \\
\{c, d\} & \subseteq \text { follow }(B) \\
\text { follow }(S) & \subseteq \text { follow }(C) \text {. }
\end{aligned}
$$

Computing Follow Sets (6)

Looking for the smallest sets satisfying these constraints, we get:

$$
\begin{aligned}
\operatorname{follow}(S) & =\{\$\} \\
\text { follow }(A) & =\{b, c, d\} \\
\text { follow }(B) & =\{c, d\} \\
\text { follow }(C) & =\operatorname{follow}(S)=\{\$\}
\end{aligned}
$$

LL(1), Left-Recursion, Ambiguity (1)

No left-recursive or ambiguous grammar can be LL(1)!

LL(1), Left-Recursion, Ambiguity (1)

No left-recursive or ambiguous grammar can be LL(1)! For example, consider:

$$
A \rightarrow A a \mid \beta
$$

First assume first $(\beta) \neq \emptyset$.

LL(1), Left-Recursion, Ambiguity (1)

No left-recursive or ambiguous grammar can be LL(1)! For example, consider:

$$
A \rightarrow A a \mid \beta
$$

First assume first $(\beta) \neq \emptyset$.
Note that

- $\operatorname{first}(\beta) \subseteq \operatorname{first}(A)$
- $\operatorname{first}(A) \subseteq \operatorname{first}(A a)$ $(\operatorname{first}(A)=\operatorname{first}(A a)$ if $A \nRightarrow \epsilon)$

LL(1), Left-Recursion, Ambiguity (1)

No left-recursive or ambiguous grammar can be LL(1)! For example, consider:

$$
A \rightarrow A a \mid \beta
$$

First assume first $(\beta) \neq \emptyset$.
Note that

- $\operatorname{first}(\beta) \subseteq \operatorname{first}(A)$
- $\operatorname{first}(A) \subseteq \operatorname{first}(A a)$ $(\operatorname{first}(A)=\operatorname{first}(A a)$ if $A \nRightarrow \epsilon$)
- Thus first $(A a) \cap$ first $(\beta) \neq \emptyset$. Not LL(1)!

LL(1), Left-Recursion, Ambiguity (2)

Now assume $\operatorname{first}(\beta)=\emptyset$

LL(1), Left-Recursion, Ambiguity (2)

Now assume first $(\beta)=\emptyset$
This can only be the case if $\beta \stackrel{*}{\Rightarrow} \epsilon$ and nothing else.

LL(1), Left-Recursion, Ambiguity (2)

Now assume first $(\beta)=\emptyset$
This can only be the case if $\beta \stackrel{*}{\Rightarrow} \epsilon$ and nothing else.
Assuming $S \stackrel{*}{\Rightarrow} \alpha A \gamma$, we note

- $a \in \operatorname{first}(A a)$ because $A \Rightarrow \beta \stackrel{*}{\Rightarrow} \epsilon$, and
- $a \in \operatorname{follow}(A)$ because $S \stackrel{*}{\Rightarrow} \alpha A \gamma \Rightarrow \alpha A a \gamma$

LL(1), Left-Recursion, Ambiguity (2)

Now assume first $(\beta)=\emptyset$
This can only be the case if $\beta \stackrel{*}{\Rightarrow} \epsilon$ and nothing else.
Assuming $S \stackrel{*}{\Rightarrow} \alpha A \gamma$, we note

- $a \in \operatorname{first}(A a)$ because $A \Rightarrow \beta \stackrel{*}{\Rightarrow} \epsilon$, and
- $a \in \operatorname{follow}(A)$ because $S \stackrel{*}{\Rightarrow} \alpha A \gamma \Rightarrow \alpha A a \gamma$
- Because $\beta \stackrel{*}{\Rightarrow} \epsilon$, the $\operatorname{LL}(1)$ conditions require that first ($A a$) and follow (A) be disjoint. But that is clearly not the case!

Left Factoring (1)

Left factoring means factoring out a common prefix among a group of productions. This can help making a grammar suitable for predictive recursive descent parsing.

Example:

$$
S \rightarrow a X b Y \mid a X b Y c Z
$$

Not suitable for predictive parsing!
But note common prefix! Let's try to postpone the choice!

Left Factoring (2)

Before left factoring:

$$
S \rightarrow a X b Y \mid a X b Y c Z
$$

After left factoring:

$$
\begin{aligned}
S & \rightarrow a X b Y S^{\prime} \\
S^{\prime} & \rightarrow \epsilon \mid c Z
\end{aligned}
$$

Now suitable for predictive parsing!

