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What is a Functional Language

Hard to give a precise definition, but generally
speaking:

• Functional programming is a style of
programming in which the basic method of
computation is functions application.

• A functional language is one that supports
and encourages the functional style.

However, higher-order functions and the
possibility to treat functions as data are
commonly accepted criteria.
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Example (1)

Summing the integers from 1 to 10 in Java:

total = 0;
for (i = 1; i <= 10; ++i)

total = total + 1;

The method of computation is to execute
operations in sequence , in particular variable
assignment .
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Example (2)

Summing the integers from 1 to 10 in Haskell:

sum [1..10]

The method of computation is function application .
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Example (2)

Summing the integers from 1 to 10 in Haskell:

sum [1..10]

The method of computation is function application .

Of course, essentially the same program could
be written in Java, but:
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Example (2)

Summing the integers from 1 to 10 in Haskell:

sum [1..10]

The method of computation is function application .

Of course, essentially the same program could
be written in Java, but:

• it would be far more verbose
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Example (2)

Summing the integers from 1 to 10 in Haskell:

sum [1..10]

The method of computation is function application .

Of course, essentially the same program could
be written in Java, but:

• it would be far more verbose
• for most purposes, it wouldn’t be a “good”

Java program: this is simply not how one
programs in Java.
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This Lecture

• First steps
• Types in Haskell
• Defining functions
• Recursive functions
• Declaring types
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The GHC System (1)

• GHC supports Haskell 98 and many
extensions

• GHC is currently the most advanced Haskell
system available

• GHC is a compiler, but can also be used
interactively: ideal for serious development as
well as teaching and prototyping purposes
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The GHC System (2)

On a Unix system, GHCi can be started from the
ghci:

isis-1% ghci

___ ___ _

/ _ \ /\ /\/ __(_)

/ /_\// /_/ / / | | GHC Interactive, version 6.3, for Haskell 98.

/ /_\\/ __ / /___| | http://www.haskell.org/ghc/

\____/\/ /_/\____/|_| Type :? for help.

Loading package base ... linking ... done.

Prelude>
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The GHC System (3)

The GHCi > prompt means that the GHCi system
is ready to evaluate an expression.
For example:

> 2+3*4
14

> reverse [1,2,3]
[3,2,1]

> take 3 [1,2,3,4,5]
[1,2,3]
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Function Application (1)

In mathematics, function application is denoted
using parentheses, and multiplication is often
denoted using juxtaposition or space.

f(a,b) + c d

“Apply the function f to a and b, and add the
result to the product of c and d.”
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Function Application (2)

In Haskell, function application is denoted
using space , and multiplication is denoted using
*.

f a b + c*d

Meaning as before, but Haskell syntax.
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Function Application (3)

Moreover, function application is assumed to
have higher priority than all other operators. For
example:

f a + b

means

(f a) + b

not

f (a + b)
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What is a Type?

A type is a name for a collection of related
values. For example, in Haskell the basic type

Bool

contains the two logical values

False
True
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Types in Haskell

• If evaluating an expression e would produce a
value of type t, then e has type t, written

e :: t

• Every well-formed expression has a type,
which can be automatically calculated at
compile time using a process called type
inference or type reconstruction .

• However, giving manifest type declarations for
at least top-level definitions is good practice.
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Basic Types

Haskell has a number of basic types , including:

Bool Logical values
Char Single characters
String Strings of characters
Int Fixed-precision integers
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List Types

A list is sequence of values of the same type:

[False,True,False] :: [Bool]

[’a’,’b’,’c’,’d’] :: [Char]

In general:

[t] is the type of lists with elements of
type t.
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Tuple Types

A tuple is a sequence of values of different
types:

(False,True) :: (Bool,Bool)

(False,’a’,True) :: (Bool,Char,Bool)

In general:

(t1, t2, ..., tn) is the type of n-tuples
whose i

th component has type ti for
i ∈ [1 . . . n].
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Function Types (1)

A function is a mapping from values of one type
to values of another type:

not :: Bool -> Bool

In general:

t1 -> t2 is the type of functions that map
values of type t1 to values to type t2.
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Function Types (2)

If a function needs more than one argument,
pass a tuple, or use currying :

(&&) :: Bool -> Bool -> Bool

This really means:

(&&) :: Bool -> (Bool -> Bool)

Idea: arguments are applied one by one. This
allows partial application .
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Polymorphic Functions (1)

A function is called polymorphic (“of many
forms”) if its type contains one or more type
variables.

length :: [a] -> Int

“For any type a, length takes a list of values of
type a and returns an integer.”

This is called Parametric Polymorphism .
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Polymorphic Functions (2)

The type signature of length is really:

length :: forall a . [a] -> Int

• It is understood that a is a type variable, and
thus it ranges over all possible types.

• Haskell 98 does not allow explicit foralls:
all type variables are implicitly qualified at the
outermost level.

• Haskell extensions allow explicit foralls.
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Types are Central in Haskell

Types in Haskell play a much more central role
than in many other languages. Two reasons:

• Haskell’s type system is very expressive
thanks to Parametric Polymorphism:

(++) :: [a] -> [a] -> [a]
• The types say a lot about what functions do

because Haskell is a pure language: no side
effects (Referential Transparency)
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Conditional Expressions

As in most programming languages, functions
can be defined using conditional expressions :

abs :: Int -> Int
abs n = if n >= 0 then n else -n

Alternatively, such a function can be defined
using guards :

abs :: Int -> Int
abs n | n >= 0 = n

| otherwise = -n
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Pattern Matching (1)

Many functions have a particularly clear definition
using pattern matching on their arguments:

not :: Bool -> Bool
not False = True
not True = False
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Pattern Matching (2)

Case expressions allow pattern matching to be
performed wherever an expression is allowed,
not just at the top-level of a function definition:

not :: Bool -> Bool
not b = case b of

False -> True
True -> False
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List Patterns (1)

Internally, every non-empty list is constructed by
repeated use of an operator (:) called “cons”
that adds an element to the start of a list, starting
from [], the empty list .

Thus:

[1,2,3,4]

means

1:(2:(3:(4:[])))
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List patterns (2)

Functions on lists can be defined using x:xs
patterns:

head :: [a] -> a
head (x:_) = x

tail :: [a] -> [a]
tail (_:xs) = xs
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Lambda Expressions

A function can be constructed without giving it a
name by using a lambda expression :

\x -> x + 1

“The nameless function that takes a number x
and returns the result x + 1”

Note that the ASCII character \ stands for λ

(lambda).

G52CMP: Lecture 2 – p.27/40



Why Are Lambda’s Useful?

Lambda expressions can be used to give a
formal meaning to functions defined using
currying .

For example:

add x y = x+y

means

add = \x -> (\y -> x+y)
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Recursive Functions (1)

In Haskell, functions can also be defined in terms
of themselves. Such functions are called
recursive . For example:

factorial 0 = 1

factorial n | n >= 1 = n * factorial (n - 1)
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Recursive Functions (2)

Why does this work? Well, consider:

factorial 3
= 3 * factorial 2
= 3 * (2 * factorial 1)
= 3 * (2 * (1 * factorial 0))
= 3 * (2 * (1 * 1))
= 3 * (2 * 1)
= 3 * 2
= 6
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Why Is Recursion Useful?

• Some functions, such as factorial, are
simpler to define in terms of other functions.

• As we shall see, however, many functions can
naturally be defined in terms of themselves.

• Properties of functions defined using
recursion can be proved using the simple but
powerful mathematical technique of
induction .
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Recursion on Lists (1)

Recursion is not restricted to numbers, but can
also be used to define functions on lists. For
example:

product :: [Int] -> Int
product [] = 1
product (n:ns) = n * product ns
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Recursion on Lists (2)

product [2,3,4]
= 2 * product [3,4]
= 2 * (3 * product [4])
= 2 * (3 * (4 * product []))
= 2 * (3 * (4 * 1))
= 24
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Data Declarations (1)

A new type can be declared by specifying its set
of values using a data declaration . For example,
Bool is in principle defined as:

data Bool = False | True
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Data Declarations (2)

What happens is:
• A new type Bool is introduced
• Constructors (functions to build values of the

type) are introduced:
False :: Bool
True :: Bool

(In this case, just constants.)
• Since constructor functions are bijective, and

thus in particular injective, pattern matching
can be used to take apart values of defined
types.

G52CMP: Lecture 2 – p.35/40



Data Declarations (3)

Values of new types can be used in the same
ways as those of built in types. E.g., given:

data Answer = Yes | No | Unknown

we can define:

answers :: [Answer]
answers = [Yes,No,Unknown]

flip :: Answer -> Answer
flip Yes = No
flip No = Yes
flip Unknown = Unknown
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Recursive Types (1)

In Haskell, new types can be declared in terms of
themselves. That is, types can be recursive :

data Nat = Zero | Succ Nat

Nat is a new type with constructors
•

• Zero :: Nat

• Succ :: Nat -> Nat

Effectively, we get both a new way form terms
and typing rules for these new terms.

G52CMP: Lecture 2 – p.37/40



Recursive Types (2)

A value of type Nat is either Zero, or of the form
Succ n where n :: Nat. That is, Nat contains
the following infinite sequence of values:

Zero

Succ Zero

Succ (Succ Zero)
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Recursion and Recursive Types

Using recursion, it is easy to define functions that
convert between values of type Nat and Int:

nat2int :: Nat -> Int

nat2int Zero = 0

nat2int (Succ n) = 1 + nat2int n

int2nat :: Int -> Nat

int2nat 0 = Zero

int2nat n | n >= 1 = Succ (int2nat (n - 1))
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Parameterized Types

Types can also be parameterized on other types:

data List a = Nil | Cons a (List a)

data Tree a = Leaf a
| Node (Tree a) (Tree a)

Resulting constructors:

Nil :: List a
Cons :: a -> List a -> List a
Leaf :: a -> Tree a
Node :: Tree a -> Tree a -> Tree a
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