
G52CMP: Lecture 2
Review of Haskell:

A lightening tour in 50 minutes

Adapted from slides by Graham Hutton

University of Nottingham, UK

G52CMP: Lecture 2 – p.1/40

What is a Functional Language

Hard to give a precise definition, but generally
speaking:

• Functional programming is a style of
programming in which the basic method of
computation is functions application.

• A functional language is one that supports
and encourages the functional style.

However, higher-order functions and the
possibility to treat functions as data are
commonly accepted criteria.

G52CMP: Lecture 2 – p.2/40

Example (1)

Summing the integers from 1 to 10 in Java:

total = 0;
for (i = 1; i <= 10; ++i)

total = total + 1;

The method of computation is to execute
operations in sequence , in particular variable
assignment .

G52CMP: Lecture 2 – p.3/40

Example (2)

Summing the integers from 1 to 10 in Haskell:

sum [1..10]

The method of computation is function application .

G52CMP: Lecture 2 – p.4/40

Example (2)

Summing the integers from 1 to 10 in Haskell:

sum [1..10]

The method of computation is function application .

Of course, essentially the same program could
be written in Java, but:

G52CMP: Lecture 2 – p.4/40

Example (2)

Summing the integers from 1 to 10 in Haskell:

sum [1..10]

The method of computation is function application .

Of course, essentially the same program could
be written in Java, but:

• it would be far more verbose

G52CMP: Lecture 2 – p.4/40

Example (2)

Summing the integers from 1 to 10 in Haskell:

sum [1..10]

The method of computation is function application .

Of course, essentially the same program could
be written in Java, but:

• it would be far more verbose
• for most purposes, it wouldn’t be a “good”

Java program: this is simply not how one
programs in Java.

G52CMP: Lecture 2 – p.4/40

This Lecture

• First steps
• Types in Haskell
• Defining functions
• Recursive functions
• Declaring types

G52CMP: Lecture 2 – p.5/40

The GHC System (1)

• GHC supports Haskell 98 and many
extensions

• GHC is currently the most advanced Haskell
system available

• GHC is a compiler, but can also be used
interactively: ideal for serious development as
well as teaching and prototyping purposes

G52CMP: Lecture 2 – p.6/40

The GHC System (2)

On a Unix system, GHCi can be started from the
ghci:

isis-1% ghci

___ ___ _

/ _ \ /\ /\/ __(_)

/ /_\// /_/ / / | | GHC Interactive, version 6.3, for Haskell 98.

/ /_\\/ __ / /___| | http://www.haskell.org/ghc/

____/\/ /_/____/|_| Type :? for help.

Loading package base ... linking ... done.

Prelude>

G52CMP: Lecture 2 – p.7/40

The GHC System (3)

The GHCi > prompt means that the GHCi system
is ready to evaluate an expression.
For example:

> 2+3*4
14

> reverse [1,2,3]
[3,2,1]

> take 3 [1,2,3,4,5]
[1,2,3]

G52CMP: Lecture 2 – p.8/40

Function Application (1)

In mathematics, function application is denoted
using parentheses, and multiplication is often
denoted using juxtaposition or space.

f(a,b) + c d

“Apply the function f to a and b, and add the
result to the product of c and d.”

G52CMP: Lecture 2 – p.9/40

Function Application (2)

In Haskell, function application is denoted
using space , and multiplication is denoted using
*.

f a b + c*d

Meaning as before, but Haskell syntax.

G52CMP: Lecture 2 – p.10/40

Function Application (3)

Moreover, function application is assumed to
have higher priority than all other operators. For
example:

f a + b

means

(f a) + b

not

f (a + b)

G52CMP: Lecture 2 – p.11/40

What is a Type?

A type is a name for a collection of related
values. For example, in Haskell the basic type

Bool

contains the two logical values

False
True

G52CMP: Lecture 2 – p.12/40

Types in Haskell

• If evaluating an expression e would produce a
value of type t, then e has type t, written

e :: t

• Every well-formed expression has a type,
which can be automatically calculated at
compile time using a process called type
inference or type reconstruction .

• However, giving manifest type declarations for
at least top-level definitions is good practice.

G52CMP: Lecture 2 – p.13/40

Basic Types

Haskell has a number of basic types , including:

Bool Logical values
Char Single characters
String Strings of characters
Int Fixed-precision integers

G52CMP: Lecture 2 – p.14/40

List Types

A list is sequence of values of the same type:

[False,True,False] :: [Bool]

[’a’,’b’,’c’,’d’] :: [Char]

In general:

[t] is the type of lists with elements of
type t.

G52CMP: Lecture 2 – p.15/40

Tuple Types

A tuple is a sequence of values of different
types:

(False,True) :: (Bool,Bool)

(False,’a’,True) :: (Bool,Char,Bool)

In general:

(t1, t2, ..., tn) is the type of n-tuples
whose i

th component has type ti for
i ∈ [1 . . . n].

G52CMP: Lecture 2 – p.16/40

Function Types (1)

A function is a mapping from values of one type
to values of another type:

not :: Bool -> Bool

In general:

t1 -> t2 is the type of functions that map
values of type t1 to values to type t2.

G52CMP: Lecture 2 – p.17/40

Function Types (2)

If a function needs more than one argument,
pass a tuple, or use currying :

(&&) :: Bool -> Bool -> Bool

This really means:

(&&) :: Bool -> (Bool -> Bool)

Idea: arguments are applied one by one. This
allows partial application .

G52CMP: Lecture 2 – p.18/40

Polymorphic Functions (1)

A function is called polymorphic (“of many
forms”) if its type contains one or more type
variables.

length :: [a] -> Int

“For any type a, length takes a list of values of
type a and returns an integer.”

This is called Parametric Polymorphism .

G52CMP: Lecture 2 – p.19/40

Polymorphic Functions (2)

The type signature of length is really:

length :: forall a . [a] -> Int

• It is understood that a is a type variable, and
thus it ranges over all possible types.

• Haskell 98 does not allow explicit foralls:
all type variables are implicitly qualified at the
outermost level.

• Haskell extensions allow explicit foralls.

G52CMP: Lecture 2 – p.20/40

Types are Central in Haskell

Types in Haskell play a much more central role
than in many other languages. Two reasons:

• Haskell’s type system is very expressive
thanks to Parametric Polymorphism:

(++) :: [a] -> [a] -> [a]
• The types say a lot about what functions do

because Haskell is a pure language: no side
effects (Referential Transparency)

G52CMP: Lecture 2 – p.21/40

Conditional Expressions

As in most programming languages, functions
can be defined using conditional expressions :

abs :: Int -> Int
abs n = if n >= 0 then n else -n

Alternatively, such a function can be defined
using guards :

abs :: Int -> Int
abs n | n >= 0 = n

| otherwise = -n

G52CMP: Lecture 2 – p.22/40

Pattern Matching (1)

Many functions have a particularly clear definition
using pattern matching on their arguments:

not :: Bool -> Bool
not False = True
not True = False

G52CMP: Lecture 2 – p.23/40

Pattern Matching (2)

Case expressions allow pattern matching to be
performed wherever an expression is allowed,
not just at the top-level of a function definition:

not :: Bool -> Bool
not b = case b of

False -> True
True -> False

G52CMP: Lecture 2 – p.24/40

List Patterns (1)

Internally, every non-empty list is constructed by
repeated use of an operator (:) called “cons”
that adds an element to the start of a list, starting
from [], the empty list .

Thus:

[1,2,3,4]

means

1:(2:(3:(4:[])))

G52CMP: Lecture 2 – p.25/40

List patterns (2)

Functions on lists can be defined using x:xs
patterns:

head :: [a] -> a
head (x:_) = x

tail :: [a] -> [a]
tail (_:xs) = xs

G52CMP: Lecture 2 – p.26/40

Lambda Expressions

A function can be constructed without giving it a
name by using a lambda expression :

\x -> x + 1

“The nameless function that takes a number x
and returns the result x + 1”

Note that the ASCII character \ stands for λ

(lambda).

G52CMP: Lecture 2 – p.27/40

Why Are Lambda’s Useful?

Lambda expressions can be used to give a
formal meaning to functions defined using
currying .

For example:

add x y = x+y

means

add = \x -> (\y -> x+y)

G52CMP: Lecture 2 – p.28/40

Recursive Functions (1)

In Haskell, functions can also be defined in terms
of themselves. Such functions are called
recursive . For example:

factorial 0 = 1

factorial n | n >= 1 = n * factorial (n - 1)

G52CMP: Lecture 2 – p.29/40

Recursive Functions (2)

Why does this work? Well, consider:

factorial 3
= 3 * factorial 2
= 3 * (2 * factorial 1)
= 3 * (2 * (1 * factorial 0))
= 3 * (2 * (1 * 1))
= 3 * (2 * 1)
= 3 * 2
= 6

G52CMP: Lecture 2 – p.30/40

Why Is Recursion Useful?

• Some functions, such as factorial, are
simpler to define in terms of other functions.

• As we shall see, however, many functions can
naturally be defined in terms of themselves.

• Properties of functions defined using
recursion can be proved using the simple but
powerful mathematical technique of
induction .

G52CMP: Lecture 2 – p.31/40

Recursion on Lists (1)

Recursion is not restricted to numbers, but can
also be used to define functions on lists. For
example:

product :: [Int] -> Int
product [] = 1
product (n:ns) = n * product ns

G52CMP: Lecture 2 – p.32/40

Recursion on Lists (2)

product [2,3,4]
= 2 * product [3,4]
= 2 * (3 * product [4])
= 2 * (3 * (4 * product []))
= 2 * (3 * (4 * 1))
= 24

G52CMP: Lecture 2 – p.33/40

Data Declarations (1)

A new type can be declared by specifying its set
of values using a data declaration . For example,
Bool is in principle defined as:

data Bool = False | True

G52CMP: Lecture 2 – p.34/40

Data Declarations (2)

What happens is:
• A new type Bool is introduced
• Constructors (functions to build values of the

type) are introduced:
False :: Bool
True :: Bool

(In this case, just constants.)
• Since constructor functions are bijective, and

thus in particular injective, pattern matching
can be used to take apart values of defined
types.

G52CMP: Lecture 2 – p.35/40

Data Declarations (3)

Values of new types can be used in the same
ways as those of built in types. E.g., given:

data Answer = Yes | No | Unknown

we can define:

answers :: [Answer]
answers = [Yes,No,Unknown]

flip :: Answer -> Answer
flip Yes = No
flip No = Yes
flip Unknown = Unknown

G52CMP: Lecture 2 – p.36/40

Recursive Types (1)

In Haskell, new types can be declared in terms of
themselves. That is, types can be recursive :

data Nat = Zero | Succ Nat

Nat is a new type with constructors
•

• Zero :: Nat

• Succ :: Nat -> Nat

Effectively, we get both a new way form terms
and typing rules for these new terms.

G52CMP: Lecture 2 – p.37/40

Recursive Types (2)

A value of type Nat is either Zero, or of the form
Succ n where n :: Nat. That is, Nat contains
the following infinite sequence of values:

Zero

Succ Zero

Succ (Succ Zero)

G52CMP: Lecture 2 – p.38/40

Recursion and Recursive Types

Using recursion, it is easy to define functions that
convert between values of type Nat and Int:

nat2int :: Nat -> Int

nat2int Zero = 0

nat2int (Succ n) = 1 + nat2int n

int2nat :: Int -> Nat

int2nat 0 = Zero

int2nat n | n >= 1 = Succ (int2nat (n - 1))

G52CMP: Lecture 2 – p.39/40

Parameterized Types

Types can also be parameterized on other types:

data List a = Nil | Cons a (List a)

data Tree a = Leaf a
| Node (Tree a) (Tree a)

Resulting constructors:

Nil :: List a
Cons :: a -> List a -> List a
Leaf :: a -> Tree a
Node :: Tree a -> Tree a -> Tree a

G52CMP: Lecture 2 – p.40/40

	What is a Functional Language
	Example (1)
	Example (2)
	This Lecture
	The GHC System (1)
	The GHC System (2)
	The GHC System (3)
	Function Application (1)
	Function Application (2)
	Function Application (3)
	What is a Type?
	Types in Haskell
	Basic Types
	List Types
	Tuple Types
	Function Types (1)
	Function Types (2)
	Polymorphic Functions (1)
	Polymorphic Functions (2)
	Types are Central in Haskell
	Conditional Expressions
	Pattern Matching (1)
	Pattern Matching (2)
	List Patterns (1)
	List patterns (2)
	Lambda Expressions
	Why Are Lambda's Useful?
	Recursive Functions (1)
	Recursive Functions (2)
	Why Is Recursion Useful?
	Recursion on Lists (1)
	Recursion on Lists (2)
	Data Declarations (1)
	Data Declarations (2)
	Data Declarations (3)
	Recursive Types (1)
	Recursive Types (2)
	Recursion and Recursive Types
	Parameterized Types

