
G53CMP: Lecture 12 & 13
Code Generation II

Henrik Nilsson

University of Nottingham, UK

G53CMP: Lecture 12 & 13 – p.1/46

Code Generation: Demo I

Let us generate code for:

let

var f: Integer := 1;

var i: Integer := 1

in

while i <= 10 do begin

f := f * i;

putint(f);

i := i + 1

end

G53CMP: Lecture 12 & 13 – p.2/46

Code Generation: Demo II (1)

And for this program using arrays and a procedure:

let

proc swap(var x: Integer, var y: Integer)

let

var t: Integer

in begin

t := x; x := y; y := t

end;

var a: Integer[5] := [7,3,1,9,2];

var i: Integer;

var j: Integer

G53CMP: Lecture 12 & 13 – p.3/46

Code Generation: Demo II (2)

in begin

i := 0;

while i < 4 do begin

j := i + 1;

while j < 5 do begin

if a[i] > a[j] then

swap(a[i], a[j])

else skip();

j := j + 1

end;

i := i + 1

end;

G53CMP: Lecture 12 & 13 – p.4/46

Code Generation: Demo II (3)

i := 0;

while i <= 4 do begin

putint(a[i]);

i := i + 1

end

end

G53CMP: Lecture 12 & 13 – p.5/46

Specifying Code Selection (1)

• Code selection is specified inductively over
the phrases of the source language:

Command → Identifier := Expression

| Command ; Command

. . .

• Code Function: maps a source phrase to an
instruction sequence. For example:

execute : Command → Instruction∗

evaluate : Expression → Instruction∗

elaborate : Declaration → Instruction∗

G53CMP: Lecture 12 & 13 – p.6/46

Specifying Code Selection (2)

Note:

• execute generates code for executing a
command (it does not execute a command
directly);

• evaluate generates code for evaluating an
expression, leaving the result on the top of
the stack.

• elaborate generates code for reserving
storage for declared constants and variables,
evaluating any initialisation expressions, and
for declared procedures and functions.

G53CMP: Lecture 12 & 13 – p.7/46

Specifying Code Selection (3)

• Code functions are specified by means of
code templates:

execute [[C1 ; C2]] =

execute C1

execute C2

- The brackets [[and]] enclose pieces of
concrete syntax and meta variables.

- Note the recursion; i.e. inductive definition
over the underlying phrase structure.

(Think of [[·]] as a map from concrete to abstract syntax

as specified by the abstract syntax grammars.)
G53CMP: Lecture 12 & 13 – p.8/46

Specifying Code Selection (4)

In a simple language, the code template for
assignment might be:

execute [[I := E]] =

evaluate E

STORE addr(I)
where

addr : Identifier → Address

Note that the instruction sequences and
individual instructions in the RHS of the defining
equation are implicitly concatenated.

Note: meta variables range over abstract syntax.
G53CMP: Lecture 12 & 13 – p.9/46

Exercise: Code Templates

Generate code for the fragment

f := f * n;

n := n - 1

using the following two templates:

execute [[C1 ; C2]] =

execute C1

execute C2

execute [[I := E]] =

evaluate E

STORE addr(I)

and addr(f) = [SB + 11], addr(n) = [SB + 17].

Expand as far as the above templates allow.

G53CMP: Lecture 12 & 13 – p.10/46

Not Quite that Simple . . .

However, something is clearly missing! Recall:

execute : Command → Instruction∗

evaluate : Expression → Instruction∗

elaborate : Declaration → Instruction∗

addr : Identifier → Address

and consider again:

execute [[I := E]] =

evaluate E

STORE addr(I)

How can the function addr possibly map an
identifier (a name) to an address?

G53CMP: Lecture 12 & 13 – p.11/46

Not Quite that Simple . . . (2)

In more detail:

• elaborate is responsible for assigning
addresses to variables

• a function like addr needs access to the
addresses assigned by elaborate

• but the given type signatures for the code
functions do not permit this communication!

G53CMP: Lecture 12 & 13 – p.12/46

Not Quite that Simple . . . (3)

Consequently:

• The code functions need an additional stack
environment argument, associating
variables with addresses.

• The code function elaborate must return an
updated stack environment.

• Need to keep track of the current stack
depth (with respect to LB) to allow elaborate
to determine the address (within activation
record) for a new variable.

G53CMP: Lecture 12 & 13 – p.13/46

Not Quite that Simple . . . (5)

• Need to keep track of the current scope level
as the difference of current scope level and
the scope level of a variable is needed in
addition to its address to access it (see later
lecture on run-time organisation and static
links).

Moreover, need to generate fresh names for
jump targets (recall the demo).

G53CMP: Lecture 12 & 13 – p.14/46

Not Quite that Simple . . . (6)

To clearly convey the basic ideas first, we will:

• Use simplified MiniTriangle as main example:

- No user-defined procedures or functions
(only predefined, global ones).

- Consequently, all variables are global
(addressed with respect to SB).

- No arrays (only simple variables, all of size
1 word) .

• Gloss over the bookkeeping details for the
most part.

G53CMP: Lecture 12 & 13 – p.15/46

Not Quite that Simple . . . (7)

However:

• Additional details will be given occasionally.

• Will revisit at appropriate points in lectures on
run-time organisation.

• Refer to the HMTC (coursework compiler)
source code for full details.

G53CMP: Lecture 12 & 13 – p.16/46

Code Functions for MiniTriangle

In the simplified exposition, we can consider the
code functions to have the following types:

run : Program → Instruction∗

execute : Command → Instruction∗

execute∗ : Command ∗ → Instruction∗

evaluate : Expression → Instruction∗

evaluate∗ : Expression∗ → Instruction∗

fetch : Identifier → Instruction∗

assign : Identifier → Instruction∗

elaborate : Declaration → Instruction∗

elaborate∗ : Declaration∗ → Instruction∗

G53CMP: Lecture 12 & 13 – p.17/46

A Code Generation Monad

HMTC uses a Code Generation monad to
facilitate some of the bookkeeping:

instance Monad (CG instr)

Takes care of:

• Collation of generated instructions

• Generation of fresh names

Typical operations:

• emit :: instr -> CG instr ()

• newName :: CG instr Name

G53CMP: Lecture 12 & 13 – p.18/46

Some HMTC Code Functions

execute :: Level -> CGEnv -> Depth -> Command

-> CG TAMInst ()

evaluate :: Level -> CGEnv -> Expression

-> CG TAMInst ()

elaborateDecls :: Level -> CGEnv -> Depth

-> [Declaration]

-> CG TAMInst (CGEnv, Depth)

(In essence: actual signatures differ in minor ways.)

G53CMP: Lecture 12 & 13 – p.19/46

MiniTriangle Abstract Syntax Part I

(Simplified: no procedures, functions, arrays)

Program → Command Program

Command → Identifier := Expression CmdAssign

| Identifier (Expression∗) CmdCall

| begin Command∗ end CmdSeq

| if Expression then Command CmdIf

else Command

| while Expression do Command CmdWhile

| let Declaration∗ in Command CmdLet

G53CMP: Lecture 12 & 13 – p.20/46

Meta Variable Conventions

C ∈ Command

Cs ∈ Command ∗

E ∈ Expression

Es ∈ Expression∗

D ∈ Declaration

Ds ∈ Declaration∗

I ∈ Identifier

O ∈ Operator

IL ∈ IntegerLiteral

TD ∈ TypeDenoter

G53CMP: Lecture 12 & 13 – p.21/46

Code Function execute (1)

run : Program→ Instruction∗

execute : Command→ Instruction∗

run [[C]] =

execute C

HALT

execute [[I := E]] =

evaluate E

assign I

G53CMP: Lecture 12 & 13 – p.22/46

Code Function execute (2)

execute [[I (Es)]] =

evaluate∗ Es

CALL addr(I)

execute [[begin Cs end]] =

execute∗ Cs

G53CMP: Lecture 12 & 13 – p.23/46

Code Function execute (3)

execute [[if E then C1 else C2]] =

evaluate E

JUMPIFZ g

execute C1

JUMP h

g : execute C2

h :

where g and h are fresh names.

G53CMP: Lecture 12 & 13 – p.24/46

Exercise: Code Function execute

Given

evaluate [[I]] =

LOAD addr(I)

execute [[I := IL]] =

LOADL IL

STORE addr(I)

addr(a) = [SB + 11]

addr(b) = [SB + 12]

addr(c) = [SB + 13]

generate code for:
if b then

if c then a := 1 else a := 2

else

a := 3

G53CMP: Lecture 12 & 13 – p.25/46

Code Function execute (5)

In detail (pseudo Haskell, code generation monad):

execute l env n [[if E then C1 else C2]] = do

g ← newName
h← newName

evaluate l env E

emit (JUMPIFZ g)
execute l env n C1

emit (JUMP h)
emit (Label g)
execute l env n C2

emit (Label h)

G53CMP: Lecture 12 & 13 – p.26/46

Code Function execute (6)

execute [[while E do C]] =

JUMP h

g : execute C

h : evaluate E

JUMPIFNZ g

where g and h are fresh names.

G53CMP: Lecture 12 & 13 – p.27/46

Code Function execute (7)

execute [[let Ds in C]] =

elaborate∗ Ds

execute C

POP 0 s

where s is the amount of storage allocated by
elaborate∗ Ds .

G53CMP: Lecture 12 & 13 – p.28/46

Code Function execute (8)

In detail (pseudo Haskell, code generation monad):

execute l env n [[let Ds in C]] = do

(env ′, n′) ← elaborate∗ l env n Ds

execute l env ′ n′ C

emit (POP 0 (n′ − n))

where:

elaborate∗ : Level → CGEnv → Depth

→ Declaration∗

→ CG TAMInst (Env ,Depth)
G53CMP: Lecture 12 & 13 – p.29/46

Code Function execute∗

The code function execute∗ has the obvious
definition:

execute∗ [[ǫ]] = ǫ

execute∗ [[C ; Cs]] =

execute C

execute∗ Cs

G53CMP: Lecture 12 & 13 – p.30/46

MiniTriangle Abstract Syntax Part II

Expression → IntegerLiteral ExpLitInt

| Identifier ExpVar

| Operator Expression ExpUnOpApp

| Expression Operator ExpBinOpApp

Expression

Declaration → const Identifier : DeclConst

TypeDenoter = Expression

| var Identifier : TypeDenoter DeclVar

(:= Expression | ǫ)

TypeDenoter → Identifier TDBaseType

G53CMP: Lecture 12 & 13 – p.31/46

Code Function evaluate (1)

evaluate : Expression → Instruction∗

Fundamental invariant: all operations take
arguments from the stack and writes result back
onto the stack.

G53CMP: Lecture 12 & 13 – p.32/46

Code Function evaluate (2)

Consider evaluating 2 + 4 ∗ 3− 5. Plausible
instruction sequence:

LOADL 2 Stack: 2

LOADL 4 Stack: 4, 2

LOADL 3 Stack: 3, 4, 2

CALL mul Stack: 12, 2

CALL add Stack: 14

LOADL 5 Stack: 5, 14

CALL sub Stack: 9

(mul, add, sub are routines in the MiniTriangle
standard library.)

G53CMP: Lecture 12 & 13 – p.33/46

Code Function evaluate (3)

evaluate [[IL]] =

LOADL c

where c is the value of IL.

evaluate [[I]] =

fetch I

G53CMP: Lecture 12 & 13 – p.34/46

Code Function evaluate (4)

evaluate [[⊖ E]] =

evaluate E

CALL addr(⊖)

evaluate [[E1 ⊗ E2]] =

evaluate E1

evaluate E2

CALL addr(⊗)

(A call to a known function that can be replaced
by a short code sequence can be optimised
away at a later stage; e.g. CALL add⇒ ADD.)

G53CMP: Lecture 12 & 13 – p.35/46

Code Functions fetch and assign (1)

In simplified MiniTriangle, all constants and variables
are global. Hence addressing relative to SB.

fetch [[I]] =

LOAD [SB + d]

where d is offset (or displacement) of I relative to SB.

assign [[I]] =

STORE [SB + d]

where d is offset of I relative to SB.

G53CMP: Lecture 12 & 13 – p.36/46

Code Functions fetch and assign (2)

In a more realistic language, fetch and assign
would take the current scope level and the scope
level of the variable into account:

• Global variables addressed relative to SB.

• Local variables addressed relative to LB.

• Non-global variables in enclosing scopes
would be reached by following the static
links (see later lecture) in one or more steps,
and fetch and assign would have to generate
the appropriate code.

G53CMP: Lecture 12 & 13 – p.37/46

Assignment revisited

In detail (pseudo Haskell, code generation monad),
the code for assignment looks more like this.
Note that the variable actually is represented by
an expression that gets evaluated to an address:

execute l env n [[Ev := E]] = do

evaluate l env E

evaluate l env Ev

case sizeof (E) of

1 → emit (STOREI 0)
s → emit (STOREIB s)

(Reasons include: array references (a[i]), call
by reference parameters.)

G53CMP: Lecture 12 & 13 – p.38/46

Exercise: Code Function evaluate

Given

addr(a) = [SB + 11]

addr(b) = [SB + 12]

addr(+) = add

addr(*) = mult

generate code for:

a + (b * 2)

G53CMP: Lecture 12 & 13 – p.39/46

Code Function elaborate (1)

Elaboration must deposit value/reserve space for
value on stack. Also, address (offset) of
elaborated entity must be recorded (to be used
by fetch and assign).

elaborate : Declaration→ Instruction∗

elaborate [[const I : TD = E]] =

evaluate E

(Additionally, the offset (w.r.t. SB) has to be
recorded for the identifier denoted by I.)

G53CMP: Lecture 12 & 13 – p.40/46

Code Function elaborate (2)

elaborate [[var I : TD]] =

LOADL 0

elaborate [[var I : TD := E]] =

evaluate E

(Additionally, the offset (w.r.t. SB) has to be
recorded for the identifier denoted by I.)

LOADL 0 is just used to reserve space on the
stack; the value of the literal does not matter.
More space must be reserved if the values of the
type are big (e.g. record, array).

G53CMP: Lecture 12 & 13 – p.41/46

Code Function elaborate (3)

For procedures and functions:

• Generate a fresh name for the entry point.

• Extend the environment according to formal
argument declarations (the caller will push
actual arguments onto stack prior to call).

• Generate code for the body at a scope level
incremented by 1 and in the extended
environment.

G53CMP: Lecture 12 & 13 – p.42/46

Identifiers vs. Symbols (1)

• The coursework compiler HMTC uses symbols
instead of identifiers in the latter stages.

• Symbols are introduced in the type checker
(responsible for identification in HMTC) in place
of identifiers (rep. changed from AST to MTIR).

• Symbols carry semantic information (e.g.,
type, scope level) to make that information
readily available to e.g. the code generator.

(Cf. the lectures on identification where applied
identifier occurrences were annotated with
semantic information.)

G53CMP: Lecture 12 & 13 – p.43/46

Identifiers vs. Symbols (2)

• Two kinds of (term-level) symbols:

- External: defined outside the current
compilation unit (e.g., in a library).

- Internal: defined in the current compilation
unit (in a let).

type TermSym = Either ExtTermSym IntTermSym

data ExtTermSym = ExtTermSym { ... }

data IntTermSym = IntTermSym { ... }

G53CMP: Lecture 12 & 13 – p.44/46

External Symbols

• External symbols are known entities.

• Can thus be looked up once and for all
(during identification).

• Have a value, such as a (symbolic) address.

data ExtTermSym = ExtTermSym {

etmsName :: Name,

etmsType :: Type,

etmsVal :: ExtSymVal

}

data ExtSymVal = ESVLbl Name | ESVInt MTInt | ...

G53CMP: Lecture 12 & 13 – p.45/46

Internal Symbols

• Internal symbols do not carry any value such
as stack displacement because this is not
computed until the time of code generation.

• Such “late” information about an entity referred
to by an internal symbol thus has to be looked
up in the code generation environment.

data IntTermSym = IntTermSym {

itmsLvl :: ScopeLvl,

itmsName :: Name,

itmsType :: Type,

itmsSrcPos :: SrcPos

}
G53CMP: Lecture 12 & 13 – p.46/46

	Code Generation: Demo I
	Code Generation: Demo II (1)
	Code Generation: Demo II (2)
	Code Generation: Demo II (3)
	Specifying Code Selection (1)
	Specifying Code Selection (2)
	Specifying Code Selection (3)
	Specifying Code Selection (4)
	Exercise: Code Templates
	Not Quite that Simple ldots
	Not Quite that Simple ldots (2)
	Not Quite that Simple ldots (3)
	Not Quite that Simple ldots (5)
	Not Quite that Simple ldots (6)
	Not Quite that Simple ldots (7)
	Code Functions for MiniTriangle
	A Code Generation Monad
	Some HMTC Code Functions
	MiniTriangle Abstract Syntax Part I
	Meta Variable Conventions
	Code Function $mathit {execute}$ (1)
	Code Function $mathit {execute}$ (2)
	Code Function $mathit {execute}$ (3)
	Exercise: Code Function $mathit {execute}$
	Code Function $mathit {execute}$ (5)
	Code Function $mathit {execute}$ (6)
	Code Function $mathit {execute}$ (7)
	Code Function $mathit {execute}$ (8)
	Code Function $mathit {execute}^*$
	MiniTriangle Abstract Syntax Part II
	Code Function $mathit {evaluate}$ (1)
	Code Function $mathit {evaluate}$ (2)
	Code Function $mathit {evaluate}$ (3)
	Code Function $mathit {evaluate}$ (4)
	Code Functions $mathit {fetch}$ and $mathit {assign}$ (1)
	Code Functions $mathit {fetch}$ and $mathit {assign}$ (2)
	Assignment revisited
	Exercise: Code Function $mathit {evaluate}$
	Code Function $mathit {elaborate}$ (1)
	Code Function $mathit {elaborate}$ (2)
	Code Function $mathit {elaborate}$ (3)
	Identifiers vs. Symbols (1)
	Identifiers vs. Symbols (2)
	External Symbols
	Internal Symbols

