One aspect of run-time organisation:
stack-based storage allocation

- Lifetime and storage
Henrik Nilsson - Basic stack allocation:
- stack frames
- dynamic links
« Allocation for nested procedures:
- non-local variable access

University of Nottingham, UK

- static links
Storage Areas Example: Lifetime (1)
. : storage for entities that live var X, i
throughout an execution. proc P ()
var pl, 2
. : storage allocated begii P end
dynamically, but deallocation must be carried roc Q() -
out in the opposite order to allocation. P
_ var gl, g2:
. : region of the memory where begin ... if ... Q(); ... end
entities can be allocated and deallocated proc R()
dynamically as needed, in any order. var rl, r2:
begin ... Q() ... end
begin ... P() ... R() ... end

_ s eeure TR _ s eeure TR

Example: Lifetime (2)

time

Yy

—_——— — ——- - - — — —]

|

|

|
start P() ret A b D

Storage Allocation (1)

= == = = = =

G53CMP: Lecture 14 — p.5/37

. exist throughout the

program’s run-time.

« Where to store such variables can thus be
decided , at compile (or link) time,

once and for all.

Example:
private static String

[]

tokenTable

G53CMP: Lecture 14 —p.7/37

Example: Lifetime (3)

private static Integer foo (int i) {
Integer n = new Integer(i);

return n;

}

» The lifetimes of i and n coincides with the
invocation of foo.

* The lifetime of the integer created by
new starts when new is executed and ends
when there are no more references to it.

« The integer object thus the
invocation of foo.

G53CMP: Lecture 14 — p.6/37

Storage Allocation (2)

. and exist only
during a function (or procedure or method)
invocation:

- Function calls are properly nested.

- In case of , a function may be
any number of times.

- Each function activation needs a private
set of arguments and local variables.

« These observations suggest that storage for
arguments and local variables should be
allocated on a

G53CMP: Lecture 14 —p.8/37

Storage Allocation (3) Stack Frames
One or

« When the lifetime does not coincide with for each
procedure/function invocations, currently active function/procedure/method.
is needed. E.g. for: Contents:
- objects in object-oriented languages - Arguments

- function closures in languages supporting
functions as first class entities

- storage allocated by procedures like

- Bookkeeping information; e.g.
- Return address

malloc in C. - Dyn_am_lc link
- - Static link
« Such storage either _
when no longer needed, or * Local variables
by a garbage collector. « Temporary workspace
Defining the Stack Typical Stack Frame Layout
address contents
The stack is usually defined by a handful of LB - argOffset | arguments
registers, dlctat_ed by the CPU architecture B Stafic Tink
and/or convention. For example: LB + 1 dynamic ink
. LB + 2 return address
* SB: Stack Base LB + 3 local variables
* ST: Stack Top LB + tempOffset ié?nporary storage
« LB: Local Base where
The names vary. Stack Pointer (SP) and Frame argOffset = Size(‘?rguments) .
Pointer (FP) are often used instead of ST and tempOffset = 3 + size(local variables)
LB, respectively. TAM uses this convention. (Word (e.g. 4 bytes)
ressin med, offsets in)

_ s eeure iR g et Tp e

Example: A function £ Example: Calling £

(Not quite current MiniTriangle, but language Call sequence for £ (3,7) * 8:
could easily be extended in this way.)
2015 LOADL 3 ; 1starg. (x)
var n: Integer; 2016 LOADL 7 ; 2ndarg. (v)
. 2017 CALL f
fun f(x,y: Integer): Integer = 2018 LOADL 8
let 2019 MUL

z: Integer _ _ o
in begin Address of each instruction explicitly indicated to

72 i=x x X + Yy % y; the left. Address of £ here given symbolically by
return n * z a label. Corresponds to the address where the
code for £ starts, say 2082.

G53CMP: Lecture 14 —p.13/37 G53CMP: Lecture 14 — p.14/37

0]
3
|| QL

Example: Stack layout on entry to £ Example: TAM Code for £
On entry to £; caller’s ST = £'s LB: TAM-code for the function £ (at address 2082):
address contents LOADL 0 ADD
LOAD [LB - 2]; x STORE [LB + 3] ; z
SB + 42 | nin
LOAD [LB - 2]; x LOAD [SB + 42]1; n
LB - 2 'X':'3 MUL LOAD (LB + 3] ; =z
LB - 1 |yi7 LOAD [LB - 1]; vy MUL,
LB static link LOAD [LB - 1]; vy POP 11
LB + 1 | dynamic link MUL RETURN 1 2
LB + 2 [return address = 2018 RETURN replaces activation record (frame) of £ by
Ret. addr. = old program counter (PC) = addr. of result, restores LB, and jumps to ret. addr. (2018).

instruction immediately after the call instruction.
New PC = address of first instruction of £ = 2082.

G53CMP: Lecture 14 —p.15/37

Note: all variable offsets are

G53CMP: Lecture 14 —p.16/37

Dynamic and Static Links Example: Stack Allocation (1)

. : Value to which 1.B (Local Base) o Teteaer (a1,
is restored by RETURN when exiting procedure; var b: Boolean;
i.e. addr. of =old LB: var ci Character;
- “Dynamic” because related to dynamic call proc ¥ ()
graph. e Integer;
. : Base of underlying frame of function L T e o Bhareeren, e nteser =
that this one.
- “Static” because related to program’s static R
structure. | ver B mteser
- Used to determine addresses of variables | begin ...; Y(); ... end
of lexically enclosing functions. T esin s Y0 20 .

ce P P
GEICUP ecre 14 o7 _ Gt ecre 487

Example: Stack Allocation (2) Example: Stack Allocation (3)

Initially LB = SB; i.e., the global variables constitute Call sequence: main —z —Y:
the frame of the main program.

_ _ _ . Global variables sB — [a[0]
Call sequence: main —Y (i.e. after main calling v): g%%
b
Global variables sB — [a[0] c
all] Frame of z static link
al2] dynamic link —
b return address
c f
Frame of v LB — | static link Frame of v LB — | static link
dynamic link — dynamic link —
return address return address
d d
e.c e.c
e.n e.n
ST — ST —

G53CMP: Lecture 14 — p.19/37 G53CMP: Lecture 14 — p.20/37

Exercise: Stack Allocation Non-Local Variable Access (1)

Global variables sB —s [a[0] Consider procedures:
g%% proc P ()
b var x, y, z: Integer
c proc Q()
Frame of z static link cee .
dynamic link — begin ... 1if ... Q() ... end
return address proc R()
f e
Frame of ¥ LB — | static link begin ... Q() ... end
dynamic link — begin ... Q() ... R() ... end
return address ,]]]
d P’s variables are in scope also in ¢ and R.
e.n But how to access them from ¢ or R?
ST Neither global, nor local!
In v, what is the address of: b? e.c? £? Belong to the .
Non-Local Variable Access (2) Non-Local Variable Access (3)
In particular: « We cannot access x, y, z relative to the local

base (LB) since we cannot (in general)
statically know if e.g. 0 was called directly
from p, or indirectly via R and/or recursively

« We cannot access x, y, z relative to the stack
base (sSB) since we cannot (in general)
statically know if P was called directly from

the main program or indirectly via one or via itself.

more other procedures. « |.e., there could be arbitrarily many stack
> l.e., there could be arbitrarily many stack frames Q’s and P’s frames.

frames P’s frame.

_ st Tp s _ g eeure e TpET

Non-Local Variable Access (4) Non-Local Variable Access (5)

Call sequence: main —...—P —Q:

Answer:
. , Global variables sB —
» The in Q’s and R’s frames are set other frames
:) : : Frame of P static link ——
to point to P’s frame on each activation. dynamic link —
- The static link in P’s frame is set to point to return address
the frame of /i closest lexically enclosing y
procedure, and so on. Frame of o LB —> [static link —=
. . o dynamic link —
« Thus, by following the chain of static links, return address
one can access variables at any level of a ST — |

nested scope.

s e mpERs _ g seure e mpest

Non-Local Variable Access (6) Non-Local Variable Access (7)
Call sequence: main —... —P —R —Q —0: Consider further levels of nesting:
Global variables sB — proc P ()
other frames var x, y, z: Integer
Frame of p Sdtatic lz_‘nl?——k’/ proc Q)
rci?;;macdéﬁess proc R ()
y pegin ...if ... R() ... end
Frame of & ZZ%CWS?IZ;{/ k.)ééil’l ... R() ... end
return address begin ... OO ... end

Frame of ¢ (1) static ink ==
dynamic link —]
return address

Q’s variables now in scope in R.
To access, compute the

Frameof o (2) 18— 3@%%?’%2{/ of the accessing procedure/function and the
refurn address accessed variable (),
ST and follow that many static links.

_ st mpES _ g eeure e Tp R

Non-Local Variable Access (8) Example: Call with Static Link

Call sequence: main —... —-P —Q —R —R: TAM code, P calling 0: Q’s static link = P’s local
base, pushed onto stack prior to call:

Global variables sB —
other frames ..
Frame of p stalic link — =

dynamic link — LOADA [LB + 0] ;7 Q's static link
;eturn address LOADCA #1 0O ; Address of Q
Y CALLI

Frame of 0 static link ——
dynamic link —1
return address

TAM code, R calling iteself recursively: copy of R’s
static link (as callee’s and caller’s scope levels
are the same) pushed onto stack prior to call:

Frame of r (1) Static Tk ==
dynamic link —]
return address

Frameof & (2) LB —» | stafic link == LOAD [LB + 0] ; R’s static link
dynamic link —
return address LOADCA #2_ R ; Address of R
CALLI

ST —
_ IR ecre 14-p 20T

G53CMP: Lecture 14 — p.30/37

Example: Non-local Access Code Generation (1)
evaluate majl env (ExpVar {evVar = itms}) =
Accessing y in P from within R; scope level case lookupISV itms env of
difference is 2: ISVDisp d —->

address majl vl d
ISVLbl 1 —-> do

staticLink majl vl

emit (LOADCA 1)

LOAD [LB + 0] ; R’'s static link
LOADI O ; O’'s static link
LOADI 4 ; vy at offset 4 in P’'s frame

where

vl = majScopelvl (itmsLvl itms)

Note: A label represents a procedure or function;
what is pushed onto stack is effectively the corre-
sponding (see later slide).

G53CMP: Lecture 14 —p.31/37 G53CMP: Lecture 14 — p.32/37

Code Generation (2)

address :: Int -> Int -> MTInt -> TAMCG ()
address cl vl d
| vl == topMajScopelvl =
emit. (LOADA (SB d))
| cl == vl =
emit (LOADA (LB d))
| ¢c1 > vl = do
emit (LOAD (LB sld))
emitN (¢l - vl - 1) (LOADI sld)
emit (LOADL d)
emit ADD

| otherwise = error "Bug: Not in scope!"

G53CMP: Lecture 14 — p.33/37

Closures (1)

A
« Code for function or procedure; and
« Bindings for all its free variables.
Under the present scheme:
« Code: Address of function or procedure;

« Bindings: Chain of stack-allocated activation
records linked by the static links.

Works only when closure does not survive the acti-
vation of the function/procedure where it was created.
support first-class functions/procedures!

G53CMP: Lecture 14 — p.35/37

Code Generation (3)

staticLink :: Int —-> Int —-> TAMCG ()
staticLink (crl) (cel
| cel == topMajScopelLvl =
emit (LOADL O0)
| crl == cel =
emit (LOADA (LB 0))
| crl > cel = do
emit (LOAD (LB sld))
emitN (crl - cel - 1) (LOADI sld)
| otherwise =

error "Bug: Not in scope!"

Closures (2)

« Functions/procedures are if they
can be handled just like any other values; e.g.

- bound to variables
- passed as arguments
- as results.
« Supporting first-class functlons/procedures
requires closures to be

- Code still just address of function or
procedure.

- Static link replaced by (pointer(s) to)
heap-allocated activation record(s).

G53CMP: Lecture 14 — p.34/37

G53CMP: Lecture 14 — p.36/37

Closures (3)

+ As an optimisation, one could imagine
combined schemes: stack allocation and
static links might be used when known that a
closure will never survive activation of
enclosing function/procedure.

_ s cure TR

	This Lecture
	Storage Areas
	Example: Lifetime (1)
	Example: Lifetime (2)
	Example: Lifetime (3)
	Storage Allocation (1)
	Storage Allocation (2)
	Storage Allocation (3)
	Stack Frames
	Defining the Stack
	Typical Stack Frame Layout
	Example: A function 	exttt {f}
	Example: Calling 	exttt {f}
	Example: Stack layout on entry to 	exttt {f}
	Example: TAM Code for 	exttt {f}
	Dynamic and Static Links
	Example: Stack Allocation (1)
	Example: Stack Allocation (2)
	Example: Stack Allocation (3)
	Exercise: Stack Allocation
	Non-Local Variable Access (1)
	Non-Local Variable Access (2)
	Non-Local Variable Access (3)
	Non-Local Variable Access (4)
	Non-Local Variable Access (5)
	Non-Local Variable Access (6)
	Non-Local Variable Access (7)
	Non-Local Variable Access (8)
	Example: Call with Static Link
	Example: Non-local Access
	Code Generation (1)
	Code Generation (2)
	Code Generation (3)
	Closures (1)
	Closures (2)
	Closures (3)

