Wl S

We give a brief recap on some central notions
from the theory of formal languages, covered in a
typical undergraduate course on that topic such
as G52MAL, before moving on to abstract syntax.

To recap, consult the G52MAL lecture notes:

Henrik Nilsson or a book on the topic, such as

University of Nottingham, UK John E. Hopcroft, Rajeev Motwani, Jeffrey
D. Ullman. Introduction to Automata
Theory, Languages, and Computation,
2nd edition, Addison Wesley, 2001.

I -
Syntax and Semantics (1)

The notions of and are . . the of programs

central to any discourse on languages. Focusing . * the static, at

on : , meaning of programs and

o ' the of programs program fragments. E.g. types.
- (or Surface Syntax): - : what programs and

(typically) the exact character sequences program fragments mean (or do) when
that are syntactically valid programs. executed, at

- : the essential structure of
syntactically valid programs.

_ cron e a2 _ cron e a2

Syntax and Semantics (3)

» Methods for defining the syntax and
semantics of programming languages are
thus the very foundation for systematic study
of programming languages.

+ A large part of this module will thus be
concerned with various aspects of syntax and
semantics for programming languages.

« We will start by looking at syntax,
recapitulating some notions from the theory of
formal languages related to :
and then move on to

Symbolsand Alphabets

What is a symbol, then?

Anything, but it has to come from an alphabet X
which is a set.

A common (and important) instance is
¥ ={0,1}.

¢, the empty word, is
alphabet.

a symbol of an

Formal Languages

In the context of languages, the terms

and are used in a strict technical

sense:

A Is a (possibly infinite) set of words.

<A isa sequence (or string) of

symbols.

¢ denotes the , the sequence of zero
symbols.
The term Is often used interchangeably

with the term

L anguages. Examples

alphabet ¥ ={a,b}
words

Note the distinction between e, (), and {e}!

Exercises

« |Is the set of natural numbers, N, a possible
alphabet? Why/why not?

+ What about the set of all natural numbers
smaller than some given number n?

« Homework:
- Suggest an alphabet of a handful of

- List some words over your alphabet.

- Does all possible words describe
“interesting” drinks?

- Define a language of interesting drinks.

o}
&
£
5
o
hy
°

All Words over an Alphabet (2)

Example: Given ¥ = {0, 1}, some elements of ¥*
are

¢ € (the empty word)
« 0,1
- 00, 10, 01, 11
+ 000, 100, 010, 110, 001, 101, 011, 111
We are just applying the inductive definition.

Note: although there are infinitely many words in
>*, each word has a length!

G54FOP: Lecture 1 —p.11/32

All Wordsover an Alphabet (1)

Given an alphabet > we define the set X* as set
of words (or sequences) over >:

» The empty word ¢ € >*.

« given a symbol z € ¥ and a word w € ¥*,
Tw € XNF.

* These are all elements in X*.
This is called an

Inductive definitions and reasoning by induction
over inductively defined structures will be
recurring themes in this module.

_ cen e o2

L anguages Revisited

The notion of a language L of a set of words over
an alphabet X can now be made precise:

« L C X¥*, orequivalently
« L eP(X).

_ con tecue 2

Examples of L anguages

Some examples of languages:
+ The set {0010,00000000, ¢} is a language over
¥ ={0,1}.
This is an example of a language.

« The set of words with odd length over
¥ = {1}. (Finite or infinite?)

» The set of words that contain the same
number of Os and 1s is a language over
¥ = {0, 1}. (Finite or infinite?)

» The set of correct Java programs. This is a
language over the set of UNICODE characters.

_ crro tecen e

Context-Free Grammars (2)

Thus, describing a programming language by a
“reasonable” CFG

- allows context-free constraints to be expressed

« imparts a hierarchical structure to the words
in the language
« allows simple and efficient
- determining if a word belongs to the
language
- determining its if so.

I

Context-Free Grammars (1)

A (CFG) is a way of
formally describing
(CFL):
» The CFLs captures ideas common in
programming languages such as
- nested structure
- balanced parentheses
- matching keywords like begi n and end.

» Most “reasonable” CFLs can be recognised
by a fairly simple machine: a

Context-Free Grammars (3)

A is a 4-tuple
(N, T, P,S) where

« N is a finite set of

« T is a finite set of (the of
the language being described)

*« NNT =0 (N and T are disjoint)
« S, the , Is a distinguished
element of NV

« P s a finite set of , written
A— a,where Ac Nand o € (NUT)*

Context-Free Grammar: Example Context-Free Grammars. Notation

_ « Productions with the same LHS are usually
G._ (15 4} a0}, _P’ 5) grouped together. For example, the
where /> consists of the productions productions for S from the previous example:
S =o€ S —e|aA
o This i hi hat is k
A — bS is is (roughly) what is known as

« Another common way of writing productions is

A=«
L 1 . L 1
The Directly Derives Relation (1) The Directly Derives Relation (2)
To formally define the language generated by When it is clear which grammar G is involved, we
G = (N,T,P,S) use = instead of =
we first define a binary relation ? on strings over Example: Given the grammar
NUT, read “ in grammar G”, S — €|ad
being the least relation such that A — bS
ady = afy we have
whenever A — [is a production in G. S = ¢ aAd = abS
Note: a production can be applied regardless of S — ad Sudaa = SabSaa

context, hence

G54FOP: Lecture 1 — p.19/32

The Derives Relation (1)

The relation :;> read “ in grammar G, is

the reflexive, transitive closure of ?

That is, % is the least relation on strings over
N U T such that:
o= if
Q ?; 15} Q :G> 15}

e % o (reflexive)
o= if Sy Ay = transitive
a=p a=yAy=p ()

G54FOP: Lecture 1 - p.21/32

L anguage Generated by a Grammar

The language generated by a context-free
grammar
G = (N,T,P,S)

denoted L(G), is defined as follows:
LG)={w|weT" A S:;>w}

Alanguage Lis a
(CFL) iff L = L(G) for some CFG G.

Astringa e (NUT)"is a iff
S = a.

g

The Derives Relation (2)

Again, we use = instead of % when G is obvious.

Example: Given the grammar

S — €e|aA
A — bS
we have
S = ¢ S = abS
S = aA S = ababS
ad = abS S = abab

L anguage Generation: Example

Given the grammar
G=(N={S A},T ={a,b}, P,S) where P are
the productions

S — €|aA
A — bS

we have

L(G) = {(ab)|i =0}
= {e¢, ab, abab, ababab, abababab, . . .}

Example: MiniTriangle CFG (1)

Concrete syntax for MiniTriangle:
Program — Command
Commands — Command
| Command ;. Commands
Command — VarExpression Ezxpression
VarExpression [Ezrpressions
Ezxpression Command Command

|

|

| Ezxpression Command
| Declarations Command

|

Commands

Example: MiniTriangle CFG (3)

Declarations — Declaration
| Declaration ; Declarations

Declaration — TypeDenoter = Expression
| TypeDenoter
| TypeDenoter Ezxpression

TypeDenoter —

G54FOP: Lecture 1 - p.27/32

Example: MiniTriangle CFG (2)

FEzxpressions — Fxpression

| Ezxpression . Expressions
FEzxpression — PrimaryEzpression

| Ezxpression PrimaryFExpression
PrimaryFxpression —

| VarEzpression

| PrimaryFExpression

| Ezxpression

VarExpression —

_ can tecue a2

A MiniTriangle Program

| et
var y: |nteger
I n
begi n
y =y + 1;
putint(y)
end

G54FOP: Lecture 1 — p.28/32

Parse Treefor the Program MiniTriangle Abstract Syntax (1)

" The details of the concrete syntax often obscure
/“”“m’\m the essence of the structure of a program. In
o /ml\ contrast, describe this directly:
/Dwa’% CM Program — Command Program
: | y m anm..: Command — Expression : = Expression CmdAssign
Imci.ger | Expfmrm me | Ezxpression (Ezpression™ Cmadcall
y: p,mnypron i | | WLOH | Command* CmdSeq
Varsx;!rm-m 1 i Primarnynron | Expression Command Cmdlf
! Va'EJ"‘ﬁ"" Command
g | | Expression Command CmdWhile
g | Declaration* | n Command CmdLet

_ Srirom tecuempae _ cren tecue a2

MiniTriangle Abstract Syntax (2)

Ezxpression — ExpLitint Program
| ExpVar CmLLet
| Ezxpression (Expression™ ExpApp Dec,/\c,n,séq
Declaration — TypeDenoter DeclConst T e Sl

. |
Expression | | /\ /\
y ExpVar EXpApp ExpVar ExpVar
|
| TypeDenoter DeclVar | | /IV\L |
I nt eger ExpVar ExpVar ExpLitint
|

(- = Expression | €) : | | :
y y

TypeDenoter — TDBaseType I I I putiee
| | |
Note: Keywords and other fixed-spelling terminals serve : g !
only to make the connection with the concrete syntax clear. Key Point: The abstract syntax specifies :

C , C not strings.

_ crrom tecue a2 _ con tecue 2

	About These Slides
	Syntax and Semantics (1)
	Syntax and Semantics (2)
	Syntax and Semantics (3)
	Formal Languages
	Symbols and Alphabets
	Languages: Examples
	Exercises
	All Words over an Alphabet (1)
	All Words over an Alphabet (2)
	Languages Revisited
	Examples of Languages
	Context-Free Grammars (1)
	Context-Free Grammars (2)
	Context-Free Grammars (3)
	Context-Free Grammar: Example
	Context-Free Grammars: Notation
	The Directly Derives Relation (1)
	The Directly Derives Relation (2)
	The Derives Relation (1)
	The Derives Relation (2)
	Language Generated by a Grammar
	Language Generation: Example
	Example: MiniTriangle CFG (1)
	Example: MiniTriangle CFG (2)
	Example: MiniTriangle CFG (3)
	A MiniTriangle Program
	Parse Tree for the Program
	MiniTriangle Abstract Syntax (1)
	MiniTriangle Abstract Syntax (2)
	Abstract Syntax Tree for the Program

