G54FOP: Lecture 1

Basic Formal Language Notions and Abstract Syntax

Henrik Nilsson

University of Nottingham, UK

Syntax and Semantics (1)

The notions of *Syntax* and *Semantics* are central to any discourse on languages. Focusing on *programming languages*:

- Syntax: the form of programs
 - Concrete Syntax (or Surface Syntax): (typically) the exact character sequences that are syntactically valid programs.
 - Abstract Syntax: the essential structure of syntactically valid programs.

About These Slides

We give a brief recap on some central notions from the theory of formal languages, covered in a typical undergraduate course on that topic such as G52MAL, before moving on to abstract syntax.

To recap, consult the G52MAL lecture notes:

http://www.cs.nott.ac.uk/~nhn/G52MAL

or a book on the topic, such as

John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman. *Introduction to Automata Theory, Languages, and Computation, 2nd edition*, Addison Wesley, 2001.

Syntax and Semantics (2)

- Semantics: the meaning of programs
 - Static Semantics: the static, at compile-time, meaning of programs and program fragments. E.g. types.
 - Dynamic Semantics: what programs and program fragments mean (or do) when executed, at run-time.

G54FOP: Lecture 1 - p.1/32

G54FOP: Lecture 1 - p.2/32

Syntax and Semantics (3)

- Methods for defining the syntax and semantics of programming languages are thus the very foundation for systematic study of programming languages.
- A large part of this module will thus be concerned with various aspects of syntax and semantics for programming languages.
- We will start by looking at syntax, recapitulating some notions from the theory of formal languages related to *concrete syntax*, and then move on to *abstract syntax*.

G54FOP: Lecture 1 - p.5/32

G54FOP: Lecture 1 - p.7/32

Symbols and Alphabets

What is a symbol, then?

Anything, but it has to come from an **alphabet** Σ which is a *finite* set.

A common (and important) instance is $\Sigma = \{0, 1\}.$

 ϵ , the empty word, is *never* a symbol of an alphabet.

Formal Languages

In the context of *formal* languages, the terms *language* and *word* are used in a strict technical sense:

- A *language* is a (possibly infinite) set of words.
- A word is a finite sequence (or string) of symbols.

 ϵ denotes the *empty word*, the sequence of zero symbols.

The term *string* is often used interchangeably with the term *word*.

G54FOP: Lecture 1 - p.6/32

G54FOP: Lecture 1 - p.8/32

Languages: Examples

alphabet words $\Sigma = \{a, b\}$

Note the distinction between ϵ , \emptyset , and $\{\epsilon\}$!

Exercises

- Is the set of natural numbers, ℕ, a possible alphabet? Why/why not?
- What about the set of all natural numbers smaller than some given number *n*?
- Homework:
 - Suggest an alphabet of a handful of *drink ingredients*.
 - List some words over your alphabet.
 - Does all possible words describe "interesting" drinks?
 - Define a language of interesting drinks.

G54FOP: Lecture 1 - p.9/32

G54FOP: Lecture 1 - p.11/32

All Words over an Alphabet (2)

Example: Given $\Sigma = \{0,1\}$, some elements of Σ^* are

- ϵ (the empty word)
- 0, 1
- 00, 10, 01, 11
- 000, 100, 010, 110, 001, 101, 011, 111
- . . .

We are just applying the inductive definition.

Note: although there are infinitely many words in

 Σ^* , each word has a *finite* length!

All Words over an Alphabet (1)

Given an alphabet Σ we define the set Σ^* as set of words (or sequences) over Σ :

- The empty word $\epsilon \in \Sigma^*$.
- given a symbol $x \in \Sigma$ and a word $w \in \Sigma^*$, $xw \in \Sigma^*$.
- These are all elements in Σ^* .

This is called an *inductive definition*.

Inductive definitions and reasoning by induction over inductively defined structures will be recurring themes in this module.

G54FOP: Lecture 1 - p.10/32

G54FOP: Lecture 1 - p.12/32

Languages Revisited

The notion of a language *L* of a set of words over an alphabet Σ can now be made precise:

- $L \subseteq \Sigma^*$, or equivalently
- $L \in \mathcal{P}(\Sigma^*)$.

Examples of Languages

Some examples of languages:

• The set $\{0010, 0000000, \epsilon\}$ is a language over $\Sigma = \{0, 1\}.$

This is an example of a *finite* language.

- The set of words with odd length over $\Sigma = \{1\}$. (Finite or infinite?)
- The set of words that contain the same number of 0s and 1s is a language over Σ = {0,1}. (Finite or infinite?)
- The set of correct Java programs. This is a language over the set of UNICODE characters.

G54FOP: Lecture 1 - p.13/32

G54FOP: Lecture 1 - p.15/32

Context-Free Grammars (2)

Thus, describing a programming language by a "reasonable" CFG

- allows context-free constraints to be expressed
- imparts a hierarchical structure to the words in the language
- allows simple and efficient parsing:
 - determining if a word belongs to the language
 - determining its *phrase structure* if so.

Context-Free Grammars (1)

A **Context-Free Grammar** (CFG) is a way of formally describing **Context-Free Languages** (CFL):

- The CFLs captures ideas common in programming languages such as
 - nested structure
 - balanced parentheses
 - matching keywords like begin and end.
- Most "reasonable" CFLs can be recognised by a fairly simple machine: a *deterministic pushdown automaton*.

G54FOP: Lecture 1 - p.14/32

G54FOP: Lecture 1 - p.16/32

Context-Free Grammars (3)

A Context-Free Grammar is a 4-tuple (N, T, P, S) where

- N is a finite set of *nonterminals*
- *T* is a finite set of *terminals* (the *alphabet* of the language being described)
- $N \cap T = \emptyset$ (N and T are disjoint)
- *S*, the *start symbol*, is a distinguished element of *N*
- *P* is a finite set of *productions*, written $A \rightarrow \alpha$, where $A \in N$ and $\alpha \in (N \cup T)^*$

Context-Free Grammar: Example

$$G = (\{S, A\}, \{a, b\}, P, S)$$

where *P* consists of the productions

$$\begin{array}{rccc} S & \to & \epsilon \\ S & \to & aA \\ A & \to & bS \end{array}$$

Context-Free Grammars: Notation

• Productions with the same LHS are usually grouped together. For example, the productions for *S* from the previous example:

 $S \to \epsilon \mid aA$

This is (roughly) what is known as *Backus-Naur Form*.

· Another common way of writing productions is

 $A ::= \alpha$

G54FOP: Lecture 1 – p.18/32

G54EOP: Lecture 1 - p.20/32

The Directly Derives Relation (1)

To formally define the language generated by

$$G = (N, T, P, S)$$

G54FOP: Lecture 1 - p.17/32

G54FOP: Lecture 1 - p 19/32

we first define a binary relation \Rightarrow_{G} on strings over $N \cup T$, read "*directly derives* in grammar *G*", being the least relation such that

$$\alpha A\gamma \underset{G}{\Rightarrow} \alpha \beta \gamma$$

whenever $A \rightarrow \beta$ is a production in *G*. **Note:** a production can be applied regardless of context, hence *context-free*.

The Directly Derives Relation (2)

When it is clear which grammar *G* is involved, we use \Rightarrow instead of \Rightarrow_{G} .

Example: Given the grammar

 $\begin{array}{rcl} S & \to & \epsilon \mid aA \\ A & \to & bS \end{array}$

we have

The Derives Relation (1)

The relation $\stackrel{*}{\underset{G}{\rightarrow}}$, read "*derives* in grammar *G*", is the reflexive, transitive closure of $\stackrel{*}{\underset{G}{\rightarrow}}$.

That is, $\stackrel{*}{\underset{G}{\Rightarrow}}$ is the least relation on strings over $N \cup T$ such that:

- $\alpha \stackrel{*}{\underset{G}{\Rightarrow}} \beta$ if $\alpha \stackrel{*}{\underset{G}{\Rightarrow}} \beta$ • $\alpha \stackrel{*}{\underset{C}{\Rightarrow}} \alpha$
- $\alpha \stackrel{*}{\underset{G}{\Rightarrow}} \beta$ if $\alpha \stackrel{*}{\underset{G}{\Rightarrow}} \gamma \land \gamma \stackrel{*}{\underset{G}{\Rightarrow}} \beta$

(reflexive)

(transitive)

G54FOP: Lecture 1 – p.21/32

G54FOP: Lecture 1 - p.23/32

Language Generated by a Grammar

The language generated by a context-free grammar

$$G = (N, T, P, S)$$

denoted L(G), is defined as follows:

 $L(G) = \{ w \mid w \in T^* \land S \stackrel{*}{\Rightarrow}_{G} w \}$

A language L is a *Context-Free Language* (CFL) iff L = L(G) for some CFG G.

A string $\alpha \in (N \cup T)^*$ is a sentential form iff $S \stackrel{*}{\Rightarrow} \alpha$.

The Derives Relation (2)

Again, we use $\stackrel{*}{\Rightarrow}$ instead of $\stackrel{*}{\xrightarrow[C]{\rightarrow}}$ when *G* is obvious.

Example: Given the grammar

 $\begin{array}{rcl} S & \to & \epsilon \mid aA \\ A & \to & bS \end{array}$

we have

$S \stackrel{*}{\Rightarrow} \epsilon$	$S \stackrel{*}{\Rightarrow} abS$
$S \stackrel{*}{\Rightarrow} aA$	$S \stackrel{*}{\Rightarrow} ababS$
$aA \stackrel{*}{\Rightarrow} abS$	$S \stackrel{*}{\Rightarrow} abab$
	G54FOP: Lecture 1 – p.22/32

Language Generation: Example

Given the grammar $G = (N = \{S, A\}, T = \{a, b\}, P, S)$ where P are the productions

$$\begin{array}{rcl} S & \to & \epsilon \mid aA \\ A & \to & bS \end{array}$$

we have

$$L(G) = \{(ab)^i \mid i \ge 0\}$$

= $\{\epsilon, ab, abab, ababab, abababab, \ldots\}$

G54FOP: Lecture 1 - p.24/32

Example: MiniTriangle CFG (1)

Concrete syntax for MiniTriangle:

Program	\rightarrow	Command
Commands	\rightarrow	Command
		Command ; Commands
Command	\rightarrow	VarExpression := Expression
		VarExpression (Expressions)
		if Expression then Command else Command
		while Expression do Command
		let Declarations in Command
		begin Commands end

Example: MiniTriangle CFG (3)

Declarations	\rightarrow	Declaration
		Declaration ; Declarations
Declaration	\rightarrow	const <u>Identifier</u> : TypeDenoter = Expression
		var <u>Identifier</u> : TypeDenoter
		var <u>Identifier</u> : TypeDenoter := Expression
TypeDenoter	\rightarrow	Identifier

Example: MiniTriangle CFG (2)

Expressions	\rightarrow	Expression
		Expression , $Expressions$
Expression	\rightarrow	Primary Expression
		Expression Operator PrimaryExpression
Primary Expression	\rightarrow	IntegerLiteral
		VarExpression
		<u>Operator</u> PrimaryExpression
		(Expression)
VarExpression	\rightarrow	Identifier

A MiniTriangle Program

let				
	var	y:	Inte	eger
in				
	beg	in		
		У	:= y	+ 1;
		pu	tint	(y)
	end			

G54FOP: Lecture 1 - p.25/32

G54FOP: Lecture 1 - p.26/32

Parse Tree for the Program

MiniTriangle Abstract Syntax (2)

Expression	\rightarrow	IntegerLiteral	ExpLitInt
		<u>Name</u>	ExpVar
		$Expression$ ($Expression^{\ast}$)	ЕхрАрр
Declaration	\rightarrow	<pre>const <u>Name</u> : TypeDenoter</pre>	DeclConst
		= Expression	
		<pre>var <u>Name</u> : TypeDenoter</pre>	DeclVar
		(:= $Expression \epsilon$)	
TypeDenoter	\rightarrow	<u>Name</u>	TDBaseType

Note: Keywords and other fixed-spelling terminals serve only to make the connection with the concrete syntax clear. *Identifier* \subseteq *Name*, *Operator* \subseteq *Name*

G54FOP: Lecture 1 – p.31/32

MiniTriangle Abstract Syntax (1)

The details of the concrete syntax often obscure the essence of the structure of a program. In contrast, *abstract syntax* describe this directly:

Program	\rightarrow	Command	Program
Command	\rightarrow	Expression := Expression	CmdAssign
		$Expression$ ($Expression^{\ast}$)	CmdCall
		$Command^*$	CmdSeq
		if Expression then Command	Cmdlf
		else Command	
		while Expression do Command	CmdWhile
		let Declaration* in Command	CmdLet
			G54FOP: Lecture 1 – p.30

Abstract Syntax Tree for the Program

Key Point: The abstract syntax specifies *trees*, not strings.

G54FOP: Lecture 1 - p.32/32