
G54FOP: Lecture 1
Basic Formal Language Notions

and
Abstract Syntax

Henrik Nilsson

University of Nottingham, UK

G54FOP: Lecture 1 – p.1/32

About These Slides
We give a brief recap on some central notions
from the theory of formal languages, covered in a
typical undergraduate course on that topic such
as G52MAL, before moving on to abstract syntax.

To recap, consult the G52MAL lecture notes:

http://www.cs.nott.ac.uk/~nhn/G52MAL

or a book on the topic, such as

John E. Hopcroft, Rajeev Motwani, Jeffrey
D. Ullman. Introduction to Automata
Theory, Languages, and Computation,
2nd edition, Addison Wesley, 2001.

G54FOP: Lecture 1 – p.2/32

Syntax and Semantics (1)

The notions of Syntax and Semantics are
central to any discourse on languages. Focusing
on programming languages :

• Syntax : the form of programs
- Concrete Syntax (or Surface Syntax):

(typically) the exact character sequences
that are syntactically valid programs.

- Abstract Syntax : the essential structure of
syntactically valid programs.

G54FOP: Lecture 1 – p.3/32

Syntax and Semantics (2)

• Semantics : the meaning of programs
- Static Semantics : the static, at

compile-time , meaning of programs and
program fragments. E.g. types.

- Dynamic Semantics : what programs and
program fragments mean (or do) when
executed, at run-time .

G54FOP: Lecture 1 – p.4/32

Syntax and Semantics (3)

• Methods for defining the syntax and
semantics of programming languages are
thus the very foundation for systematic study
of programming languages.

• A large part of this module will thus be
concerned with various aspects of syntax and
semantics for programming languages.

• We will start by looking at syntax,
recapitulating some notions from the theory of
formal languages related to concrete syntax ,
and then move on to abstract syntax .

G54FOP: Lecture 1 – p.5/32

Formal Languages

In the context of formal languages, the terms
language and word are used in a strict technical
sense:

• A language is a (possibly infinite) set of words.
• A word is a finite sequence (or string) of

symbols.

ǫ denotes the empty word , the sequence of zero
symbols.

The term string is often used interchangeably
with the term word .

G54FOP: Lecture 1 – p.6/32

Symbols and Alphabets

What is a symbol, then?

Anything, but it has to come from an alphabet Σ
which is a finite set.

A common (and important) instance is
Σ = {0, 1}.

ǫ, the empty word, is never a symbol of an
alphabet.

G54FOP: Lecture 1 – p.7/32

Languages: Examples

alphabet Σ = {a, b}

words

Note the distinction between ǫ, ∅, and {ǫ}!

G54FOP: Lecture 1 – p.8/32

Exercises
• Is the set of natural numbers, N, a possible

alphabet? Why/why not?
• What about the set of all natural numbers

smaller than some given number n?
• Homework:

- Suggest an alphabet of a handful of drink
ingredients .

- List some words over your alphabet.
- Does all possible words describe

“interesting” drinks?
- Define a language of interesting drinks.

G54FOP: Lecture 1 – p.9/32

All Words over an Alphabet (1)

Given an alphabet Σ we define the set Σ∗ as set
of words (or sequences) over Σ:

• The empty word ǫ ∈ Σ∗.
• given a symbol x ∈ Σ and a word w ∈ Σ∗,

xw ∈ Σ∗.
• These are all elements in Σ∗.

This is called an inductive definition .

Inductive definitions and reasoning by induction
over inductively defined structures will be
recurring themes in this module.

G54FOP: Lecture 1 – p.10/32

All Words over an Alphabet (2)
Example: Given Σ = {0, 1}, some elements of Σ∗

are
• ǫ (the empty word)
• 0, 1

• 00, 10, 01, 11

• 000, 100, 010, 110, 001, 101, 011, 111

• . . .

We are just applying the inductive definition.

Note: although there are infinitely many words in
Σ∗, each word has a finite length!

G54FOP: Lecture 1 – p.11/32

Languages Revisited

The notion of a language L of a set of words over
an alphabet Σ can now be made precise:

• L ⊆ Σ∗, or equivalently
• L ∈ P(Σ∗).

G54FOP: Lecture 1 – p.12/32

Examples of Languages
Some examples of languages:

• The set {0010, 00000000, ǫ} is a language over
Σ = {0, 1}.
This is an example of a finite language.

• The set of words with odd length over
Σ = {1}. (Finite or infinite?)

• The set of words that contain the same
number of 0s and 1s is a language over
Σ = {0, 1}. (Finite or infinite?)

• The set of correct Java programs. This is a
language over the set of UNICODE characters.

G54FOP: Lecture 1 – p.13/32

Context-Free Grammars (1)

A Context-Free Grammar (CFG) is a way of
formally describing Context-Free Languages
(CFL):

• The CFLs captures ideas common in
programming languages such as
- nested structure
- balanced parentheses
- matching keywords like begin and end.

• Most “reasonable” CFLs can be recognised
by a fairly simple machine: a deterministic
pushdown automaton .

G54FOP: Lecture 1 – p.14/32

Context-Free Grammars (2)

Thus, describing a programming language by a
“reasonable” CFG

• allows context-free constraints to be expressed
• imparts a hierarchical structure to the words

in the language
• allows simple and efficient parsing :

- determining if a word belongs to the
language

- determining its phrase structure if so.

G54FOP: Lecture 1 – p.15/32

Context-Free Grammars (3)

A Context-Free Grammar is a 4-tuple
(N,T, P, S) where

• N is a finite set of nonterminals
• T is a finite set of terminals (the alphabet of

the language being described)
• N ∩ T = ∅ (N and T are disjoint)
• S, the start symbol , is a distinguished

element of N

• P is a finite set of productions , written
A → α, where A ∈ N and α ∈ (N ∪ T)∗

G54FOP: Lecture 1 – p.16/32

Context-Free Grammar: Example

G = ({S,A}, {a, b}, P, S)

where P consists of the productions

S → ǫ

S → aA

A → bS

G54FOP: Lecture 1 – p.17/32

Context-Free Grammars: Notation

• Productions with the same LHS are usually
grouped together. For example, the
productions for S from the previous example:

S → ǫ | aA

This is (roughly) what is known as
Backus-Naur Form .

• Another common way of writing productions is

A ::= α

G54FOP: Lecture 1 – p.18/32

The Directly Derives Relation (1)
To formally define the language generated by

G = (N,T, P, S)

we first define a binary relation ⇒
G

on strings over

N ∪ T , read “directly derives in grammar G”,
being the least relation such that

αAγ ⇒
G

αβγ

whenever A → β is a production in G.
Note: a production can be applied regardless of
context, hence context-free .

G54FOP: Lecture 1 – p.19/32

The Directly Derives Relation (2)

When it is clear which grammar G is involved, we
use ⇒ instead of ⇒

G

.

Example: Given the grammar

S → ǫ | aA

A → bS

we have

S ⇒ ǫ

S ⇒ aA

aA ⇒ abS

SaAaa ⇒ SabSaa

G54FOP: Lecture 1 – p.20/32

The Derives Relation (1)

The relation ∗
⇒
G

, read “derives in grammar G”, is

the reflexive, transitive closure of ⇒
G

.

That is, ∗
⇒
G

is the least relation on strings over

N ∪ T such that:

• α
∗
⇒
G

β if α ⇒
G

β

• α
∗
⇒
G

α (reflexive)

• α
∗
⇒
G

β if α
∗
⇒
G

γ ∧ γ
∗
⇒
G

β (transitive)

G54FOP: Lecture 1 – p.21/32

The Derives Relation (2)

Again, we use ∗
⇒ instead of ∗

⇒
G

when G is obvious.

Example: Given the grammar

S → ǫ | aA

A → bS

we have

S
∗
⇒ ǫ

S
∗
⇒ aA

aA
∗
⇒ abS

S
∗
⇒ abS

S
∗
⇒ ababS

S
∗
⇒ abab

G54FOP: Lecture 1 – p.22/32

Language Generated by a Grammar

The language generated by a context-free
grammar

G = (N,T, P, S)

denoted L(G), is defined as follows:

L(G) = {w | w ∈ T ∗ ∧ S
∗
⇒
G

w}

A language L is a Context-Free Language
(CFL) iff L = L(G) for some CFG G.

A string α ∈ (N ∪ T)∗ is a sentential form iff
S

∗
⇒ α.

G54FOP: Lecture 1 – p.23/32

Language Generation: Example

Given the grammar
G = (N = {S,A}, T = {a, b}, P, S) where P are
the productions

S → ǫ | aA

A → bS

we have

L(G) = {(ab)i | i ≥ 0}

= {ǫ, ab, abab, ababab, abababab, . . .}

G54FOP: Lecture 1 – p.24/32

Example: MiniTriangle CFG (1)

Concrete syntax for MiniTriangle:
Program → Command

Commands → Command

| Command ; Commands

Command → VarExpression := Expression

| VarExpression (Expressions)

| if Expression then Command else Command

| while Expression do Command

| let Declarations in Command

| begin Commands end

G54FOP: Lecture 1 – p.25/32

Example: MiniTriangle CFG (2)

Expressions → Expression

| Expression , Expressions

Expression → PrimaryExpression

| Expression Operator PrimaryExpression

PrimaryExpression → IntegerLiteral

| VarExpression

| Operator PrimaryExpression

| (Expression)

VarExpression → Identifier

G54FOP: Lecture 1 – p.26/32

Example: MiniTriangle CFG (3)

Declarations → Declaration

| Declaration ; Declarations

Declaration → const Identifier : TypeDenoter = Expression

| var Identifier : TypeDenoter

| var Identifier : TypeDenoter := Expression

TypeDenoter → Identifier

G54FOP: Lecture 1 – p.27/32

A MiniTriangle Program

let
var y: Integer

in
begin

y := y + 1;
putint(y)

end

G54FOP: Lecture 1 – p.28/32

Parse Tree for the Program
Program

Command

let Declarations in

CommandsDeclaration

var Identifier : TypeDenoter

Integer

y Identifier

Identifier

y

:= Expression

Expression Operator PrimaryExpression

+PrimaryExpression

Identifier

y

IntegerLiteral

1

Command

begin end

Command

VarExpression

Commands

Command

VarExpression ()Expressions

ExpressionIdentifier

putint

VarExpression

Identifier

y

;

VarExpression PrimaryExpression

G54FOP: Lecture 1 – p.29/32

MiniTriangle Abstract Syntax (1)
The details of the concrete syntax often obscure
the essence of the structure of a program. In
contrast, abstract syntax describe this directly:

Program → Command Program

Command → Expression := Expression CmdAssign

| Expression (Expression∗) CmdCall

| Command∗ CmdSeq

| if Expression then Command CmdIf

else Command

| while Expression do Command CmdWhile

| let Declaration∗ in Command CmdLet
G54FOP: Lecture 1 – p.30/32

MiniTriangle Abstract Syntax (2)
Expression → IntegerLiteral ExpLitInt

| Name ExpVar

| Expression (Expression∗) ExpApp

Declaration → const Name : TypeDenoter DeclConst

= Expression

| var Name : TypeDenoter DeclVar

(:= Expression | ǫ)

TypeDenoter → Name TDBaseType

Note: Keywords and other fixed-spelling terminals serve
only to make the connection with the concrete syntax clear.
Identifier ⊆ Name, Operator ⊆ Name

G54FOP: Lecture 1 – p.31/32

Abstract Syntax Tree for the Program
Program

CmdLet

DeclVar

CmdAssignName TDBaseType

Integer

y Name

Name

y

ExpApp

ExpVar

Name

ExpLitInt

+

Name

y

IntegerLiteral

1

CmdSeq

ExpVar

ExpVar

CmdCall

ExpVar

Name

putint

Name

y

ExpVar

Key Point: The abstract syntax specifies trees ,
not strings.

G54FOP: Lecture 1 – p.32/32

	About These Slides
	Syntax and Semantics (1)
	Syntax and Semantics (2)
	Syntax and Semantics (3)
	Formal Languages
	Symbols and Alphabets
	Languages: Examples
	Exercises
	All Words over an Alphabet (1)
	All Words over an Alphabet (2)
	Languages Revisited
	Examples of Languages
	Context-Free Grammars (1)
	Context-Free Grammars (2)
	Context-Free Grammars (3)
	Context-Free Grammar: Example
	Context-Free Grammars: Notation
	The Directly Derives Relation (1)
	The Directly Derives Relation (2)
	The Derives Relation (1)
	The Derives Relation (2)
	Language Generated by a Grammar
	Language Generation: Example
	Example: MiniTriangle CFG (1)
	Example: MiniTriangle CFG (2)
	Example: MiniTriangle CFG (3)
	A MiniTriangle Program
	Parse Tree for the Program
	MiniTriangle Abstract Syntax (1)
	MiniTriangle Abstract Syntax (2)
	Abstract Syntax Tree for the Program

