G54FOP: Lecture 1

Basic Formal Language Notions and Abstract Syntax

Henrik Nilsson

University of Nottingham, UK

About These Slides

We give a brief recap on some central notions from the theory of formal languages, covered in a typical undergraduate course on that topic such as G52MAL, before moving on to abstract syntax.

To recap, consult the G52MAL lecture notes:

http://www.cs.nott.ac.uk/~nhn/G52MAL

or a book on the topic, such as

John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman. *Introduction to Automata Theory, Languages, and Computation, 2nd edition*, Addison Wesley, 2001.

The notions of *Syntax* and *Semantics* are central to any discourse on languages. Focusing on *programming languages*:

The notions of *Syntax* and *Semantics* are central to any discourse on languages. Focusing on *programming languages*:

Syntax: the form of programs

The notions of **Syntax** and **Semantics** are central to any discourse on languages. Focusing on **programming languages**:

- Syntax: the form of programs
 - (typically) the exact character sequences that are syntactically valid programs.

The notions of Syntax and Semantics are central to any discourse on languages. Focusing on programming languages:

- Syntax: the form of programs
 - Concrete Syntax (or Surface Syntax):

 (typically) the exact character sequences
 that are syntactically valid programs.
 - Abstract Syntax: the essential structure of syntactically valid programs.

Semantics: the meaning of programs

- Semantics: the meaning of programs
 - Static Semantics: the static, at compile-time, meaning of programs and program fragments. E.g. types.

- Semantics: the meaning of programs
 - Static Semantics: the static, at compile-time, meaning of programs and program fragments. E.g. types.
 - Dynamic Semantics: what programs and program fragments mean (or do) when executed, at run-time.

Methods for defining the syntax and semantics of programming languages are thus the very foundation for systematic study of programming languages.

- Methods for defining the syntax and semantics of programming languages are thus the very foundation for systematic study of programming languages.
- A large part of this module will thus be concerned with various aspects of syntax and semantics for programming languages.

- Methods for defining the syntax and semantics of programming languages are thus the very foundation for systematic study of programming languages.
- A large part of this module will thus be concerned with various aspects of syntax and semantics for programming languages.
- We will start by looking at syntax, recapitulating some notions from the theory of formal languages related to *concrete syntax*, and then move on to *abstract syntax*.

In the context of *formal* languages, the terms language and word are used in a strict technical sense:

In the context of *formal* languages, the terms language and word are used in a strict technical sense:

A language is a (possibly infinite) set of words.

In the context of *formal* languages, the terms language and word are used in a strict technical sense:

- A language is a (possibly infinite) set of words.
- A word is a finite sequence (or string) of symbols.

In the context of *formal* languages, the terms language and word are used in a strict technical sense:

- A language is a (possibly infinite) set of words.
- A word is a finite sequence (or string) of symbols.

 ϵ denotes the *empty word*, the sequence of zero symbols.

In the context of *formal* languages, the terms language and word are used in a strict technical sense:

- A language is a (possibly infinite) set of words.
- A word is a finite sequence (or string) of symbols.

 ϵ denotes the **empty word**, the sequence of zero symbols.

The term **string** is often used interchangeably with the term **word**.

What is a symbol, then?

What is a symbol, then?

Anything, but it has to come from an **alphabet** Σ which is a **finite** set.

What is a symbol, then?

Anything, but it has to come from an **alphabet** Σ which is a **finite** set.

A common (and important) instance is $\Sigma = \{0, 1\}$.

What is a symbol, then?

Anything, but it has to come from an *alphabet* Σ which is a *finite* set.

A common (and important) instance is $\Sigma = \{0, 1\}$.

 ϵ , the empty word, is **never** a symbol of an alphabet.

alphabet words

$$\Sigma = \{a, b\}$$

?

alphabet words

$$\Sigma = \{a, b\}$$

$$\epsilon, a, b, aa, ab, ba, bb,$$

alphabet words

$$\Sigma = \{a, b\}$$

 $\epsilon, a, b, aa, ab, ba, bb,$
 $aaa, aab, aba, abb, baa, bab, \dots$

alphabet $\Sigma = \{a,b\}$ words $\epsilon, a, b, aa, ab, ba, bb,$

 $aaa, aab, aba, abb, baa, bab, \dots$

languages

alphabet words

languages

 $\Sigma = \{a, b\}$

 $\epsilon, a, b, aa, ab, ba, bb,$

 $aaa, aab, aba, abb, baa, bab, \dots$

 $\emptyset, \{\epsilon\}, \{a\}, \{b\}, \{a, aa\}, \{$

alphabet words

languages

 $\Sigma = \{a, b\}$ $\epsilon, a, b, aa, ab, ba, bb,$ $aaa, aab, aba, abb, baa, bab, \dots$ $\emptyset, \{\epsilon\}, \{a\}, \{b\}, \{a, aa\},$ $\{\epsilon, a, aa, aaa\},$

alphabet words

languages

$$\Sigma = \{a, b\}$$

 $\epsilon, a, b, aa, ab, ba, bb,$
 $aaa, aab, aba, abb, baa, bab, ...$
 $\emptyset, \{\epsilon\}, \{a\}, \{b\}, \{a, aa\},$
 $\{\epsilon, a, aa, aaa\},$
 $\{a^n | n \ge 0\},$

alphabet words

languages

$$\Sigma = \{a, b\}$$

 $\epsilon, a, b, aa, ab, ba, bb,$
 $aaa, aab, aba, abb, baa, bab, ...$
 $\emptyset, \{\epsilon\}, \{a\}, \{b\}, \{a, aa\},$
 $\{\epsilon, a, aa, aaa\},$
 $\{a^n | n \ge 0\},$
 $\{a^n b^n | n \ge 0, n \text{ even}\}$

```
alphabet \Sigma = \{a,b\} words \epsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, \dots languages \emptyset, \{\epsilon\}, \{a\}, \{b\}, \{a, aa\}, \{\epsilon, a, aa, aaa\}, \{a^n | n \geq 0\}, \{a^n b^n | n \geq 0, n \text{ even}\}
```

Note the distinction between ϵ , \emptyset , and $\{\epsilon\}$!

Exercises

Is the set of natural numbers, \mathbb{N} , a possible alphabet? Why/why not?

Exercises

- Is the set of natural numbers, N, a possible alphabet? Why/why not?
- What about the set of all natural numbers smaller than some given number n?

Exercises

- Is the set of natural numbers, N, a possible alphabet? Why/why not?
- What about the set of all natural numbers smaller than some given number n?
- Homework:
 - Suggest an alphabet of a handful of drink ingredients.
 - List some words over your alphabet.
 - Does all possible words describe "interesting" drinks?
 - Define a language of interesting drinks.

All Words over an Alphabet (1)

Given an alphabet Σ we define the set Σ^* as set of words (or sequences) over Σ :

- The empty word $\epsilon \in \Sigma^*$.
- given a symbol $x \in \Sigma$ and a word $w \in \Sigma^*$, $xw \in \Sigma^*$.
- These are all elements in Σ^* .

This is called an *inductive definition*.

All Words over an Alphabet (1)

Given an alphabet Σ we define the set Σ^* as set of words (or sequences) over Σ :

- The empty word $\epsilon \in \Sigma^*$.
- given a symbol $x \in \Sigma$ and a word $w \in \Sigma^*$, $xw \in \Sigma^*$.
- These are all elements in Σ^* .

This is called an *inductive definition*.

Inductive definitions and reasoning by induction over inductively defined structures will be recurring themes in this module.

All Words over an Alphabet (2)

Example: Given $\Sigma = \{0, 1\}$, some elements of Σ^* are

- ϵ (the empty word)
- **0**, 1
- 00, 10, 01, 11
- 000, 100, 010, 110, 001, 101, 011, 111
- . . .

All Words over an Alphabet (2)

Example: Given $\Sigma = \{0, 1\}$, some elements of Σ^* are

- ϵ (the empty word)
- **0**, 1
- 00, 10, 01, 11
- 000, 100, 010, 110, 001, 101, 011, 111
- •

We are just applying the inductive definition.

All Words over an Alphabet (2)

Example: Given $\Sigma = \{0, 1\}$, some elements of Σ^* are

- ϵ (the empty word)
- **0**, 1
- 00, 10, 01, 11
- 000, 100, 010, 110, 001, 101, 011, 111

• . . .

We are just applying the inductive definition.

Note: although there are infinitely many words in Σ^* , each word has a *finite* length!

Languages Revisited

The notion of a language L of a set of words over an alphabet Σ can now be made precise:

Languages Revisited

The notion of a language L of a set of words over an alphabet Σ can now be made precise:

$$L \subseteq \Sigma^*$$
,

Languages Revisited

The notion of a language L of a set of words over an alphabet Σ can now be made precise:

- $L \subseteq \Sigma^*$, or equivalently
- $L \in \mathcal{P}(\Sigma^*)$.

Some examples of languages:

The set $\{0010,00000000,\epsilon\}$ is a language over $\Sigma=\{0,1\}$.

Some examples of languages:

The set $\{0010,00000000,\epsilon\}$ is a language over $\Sigma=\{0,1\}$.

This is an example of a *finite* language.

- The set $\{0010,00000000,\epsilon\}$ is a language over $\Sigma=\{0,1\}$. This is an example of a *finite* language.
- The set of words with odd length over $\Sigma = \{1\}$. (Finite or infinite?)

- The set $\{0010,00000000,\epsilon\}$ is a language over $\Sigma=\{0,1\}$. This is an example of a *finite* language.
- The set of words with odd length over $\Sigma = \{1\}$. (Finite or infinite?)
- The set of words that contain the same number of 0s and 1s is a language over $\Sigma = \{0, 1\}$. (Finite or infinite?)

- The set $\{0010,00000000,\epsilon\}$ is a language over $\Sigma=\{0,1\}$. This is an example of a *finite* language.
- The set of words with odd length over $\Sigma = \{1\}$. (Finite or infinite?)
- The set of words that contain the same number of 0s and 1s is a language over $\Sigma = \{0, 1\}$. (Finite or infinite?)
- The set of correct Java programs. This is a language over the set of UNICODE characters.

A Context-Free Grammar (CFG) is a way of formally describing Context-Free Languages (CFL):

A Context-Free Grammar (CFG) is a way of formally describing Context-Free Languages (CFL):

- The CFLs captures ideas common in programming languages such as
 - nested structure
 - balanced parentheses
 - matching keywords like begin and end.

A Context-Free Grammar (CFG) is a way of formally describing Context-Free Languages (CFL):

- The CFLs captures ideas common in programming languages such as
 - nested structure
 - balanced parentheses
 - matching keywords like begin and end.
- Most "reasonable" CFLs can be recognised by a fairly simple machine: a deterministic pushdown automaton.

Thus, describing a programming language by a "reasonable" CFG

Thus, describing a programming language by a "reasonable" CFG

allows context-free constraints to be expressed

Thus, describing a programming language by a "reasonable" CFG

- allows context-free constraints to be expressed
- imparts a hierarchical structure to the words in the language

Thus, describing a programming language by a "reasonable" CFG

- allows context-free constraints to be expressed
- imparts a hierarchical structure to the words in the language
- allows simple and efficient parsing:
 - determining if a word belongs to the language
 - determining its *phrase structure* if so.

A Context-Free Grammar is a 4-tuple (N,T,P,S) where

N is a finite set of nonterminals

- N is a finite set of nonterminals
- T is a finite set of terminals (the alphabet of the language being described)

- N is a finite set of nonterminals
- T is a finite set of terminals (the alphabet of the language being described)
- $N \cap T = \emptyset$ (N and T are disjoint)

- N is a finite set of nonterminals
- T is a finite set of terminals (the alphabet of the language being described)
- $N \cap T = \emptyset$ (N and T are disjoint)
- ullet S, the **start symbol**, is a distinguished element of N

- N is a finite set of nonterminals
- T is a finite set of terminals (the alphabet of the language being described)
- $N \cap T = \emptyset$ (N and T are disjoint)
- ullet S, the **start symbol**, is a distinguished element of N
- P is a finite set of productions, written $A \to \alpha$, where $A \in N$ and $\alpha \in (N \cup T)^*$

Context-Free Grammar: Example

$$G = (\{S, A\}, \{a, b\}, P, S)$$

where P consists of the productions

$$S \rightarrow \epsilon$$

$$S \rightarrow aA$$

$$A \rightarrow bS$$

Context-Free Grammars: Notation

Productions with the same LHS are usually grouped together. For example, the productions for *S* from the previous example:

$$S \to \epsilon \mid aA$$

This is (roughly) what is known as **Backus-Naur Form**.

Context-Free Grammars: Notation

Productions with the same LHS are usually grouped together. For example, the productions for *S* from the previous example:

$$S \to \epsilon \mid aA$$

This is (roughly) what is known as **Backus-Naur Form**.

Another common way of writing productions is

$$A ::= \alpha$$

The Directly Derives Relation (1)

To formally define the language generated by

$$G = (N, T, P, S)$$

we first define a binary relation \Rightarrow on strings over

 $N \cup T$, read "directly derives in grammar G", being the least relation such that

$$\alpha A \gamma \Rightarrow_{G} \alpha \beta \gamma$$

whenever $A \to \beta$ is a production in G.

The Directly Derives Relation (1)

To formally define the language generated by

$$G = (N, T, P, S)$$

we first define a binary relation \Rightarrow on strings over $N \cup T$, read "directly derives in grammar G", being the least relation such that

$$\alpha A \gamma \Rightarrow_{G} \alpha \beta \gamma$$

whenever $A \rightarrow \beta$ is a production in G. **Note:** a production can be applied regardless of context, hence *context-free*.

The Directly Derives Relation (2)

When it is clear which grammar G is involved, we use \Rightarrow instead of \Rightarrow .

Example: Given the grammar

$$\begin{array}{ccc} S & \to & \epsilon \mid aA \\ A & \to & bS \end{array}$$

we have

$$S \Rightarrow \epsilon$$
 $aA \Rightarrow abS$ $S \Rightarrow aA$ $SaAaa \Rightarrow SabSaa$

The relation $\underset{G}{\overset{*}{\Rightarrow}}$, read "derives in grammar G", is the reflexive, transitive closure of $\underset{G}{\Rightarrow}$.

That is, $\underset{G}{\overset{*}{\Rightarrow}}$ is the least relation on strings over $N \cup T$ such that:

The relation $\stackrel{*}{\underset{G}{\Rightarrow}}$, read "derives in grammar G", is the reflexive, transitive closure of \Rightarrow .

That is, $\stackrel{*}{\underset{G}{\Rightarrow}}$ is the least relation on strings over $N \cup T$ such that:

$$\alpha \stackrel{*}{\underset{G}{\Rightarrow}} \beta \quad \text{if} \quad \alpha \stackrel{*}{\underset{G}{\Rightarrow}} \beta$$

The relation $\underset{G}{\overset{*}{\Rightarrow}}$, read "derives in grammar G", is the reflexive, transitive closure of $\underset{G}{\Rightarrow}$.

That is, $\overset{*}{\underset{G}{\Rightarrow}}$ is the least relation on strings over $N \cup T$ such that:

$$\alpha \stackrel{*}{\underset{G}{\Rightarrow}} \beta \quad \text{if} \quad \alpha \stackrel{*}{\underset{G}{\Rightarrow}} \beta$$

$$\alpha \stackrel{*}{\Rightarrow} \alpha$$

(reflexive)

The relation $\stackrel{*}{\underset{G}{\Rightarrow}}$, read "derives in grammar G", is the reflexive, transitive closure of \Rightarrow .

That is, $\overset{*}{\underset{G}{\Rightarrow}}$ is the least relation on strings over $N \cup T$ such that:

$$\alpha \stackrel{*}{\underset{G}{\Rightarrow}} \beta \quad \text{if} \quad \alpha \stackrel{*}{\underset{G}{\Rightarrow}} \beta$$

$$\alpha \stackrel{*}{\underset{G}{\Rightarrow}} \alpha \qquad \qquad \text{(reflexive)}$$

$$\alpha \stackrel{*}{\underset{G}{\Rightarrow}} \beta$$
 if $\alpha \stackrel{*}{\underset{G}{\Rightarrow}} \gamma \wedge \gamma \stackrel{*}{\underset{G}{\Rightarrow}} \beta$ (transitive)

Again, we use $\overset{*}{\Rightarrow}$ instead of $\overset{*}{\underset{G}{\Rightarrow}}$ when G is obvious.

Example: Given the grammar

$$\begin{array}{ccc} S & \to & \epsilon \mid aA \\ A & \to & bS \end{array}$$

we have

$$S \stackrel{*}{\Rightarrow} \epsilon \qquad S \stackrel{*}{\Rightarrow} abS$$

$$S \stackrel{*}{\Rightarrow} aA \qquad S \stackrel{*}{\Rightarrow} ababS$$

$$aA \stackrel{*}{\Rightarrow} abS \qquad S \stackrel{*}{\Rightarrow} abab$$

Language Generated by a Grammar

The language generated by a context-free grammar

$$G = (N, T, P, S)$$

denoted L(G), is defined as follows:

$$L(G) = \{ w \mid w \in T^* \land S \stackrel{*}{\underset{G}{\Rightarrow}} w \}$$

A language L is a Context-Free Language (CFL) iff L = L(G) for some CFG G.

A string $\alpha \in (N \cup T)^*$ is a *sentential form* iff $S \stackrel{*}{\Rightarrow} \alpha$.

Language Generation: Example

Given the grammar

$$G = (N = \{S, A\}, T = \{a, b\}, P, S)$$
 where P are the productions

$$\begin{array}{ccc} S & \to & \epsilon \mid aA \\ A & \to & bS \end{array}$$

we have

$$L(G) = \{(ab)^i \mid i \ge 0\}$$

= \{\epsilon, ab, abab, ababab, abababab, \ldots\}

Example: MiniTriangle CFG (1)

Concrete syntax for MiniTriangle:

```
Program
                -Command
Commands

ightarrow Command
                 Command : Commands
Command
            \rightarrow VarExpression := Expression
                 VarExpression (Expressions)
                 if Expression then Command else Command
                 while Expression do Command
                 let Declarations in Command
                 begin Commands end
```

Example: MiniTriangle CFG (2)

```
Expression
Expressions
                           Expression , Expressions
Expression
                          Primary Expression
                           Expression Operator PrimaryExpression
Primary Expression
                          IntegerLiteral
                           VarExpression
                           Operator Primary Expression
                           ( Expression )
                          Identifier
VarExpression
```

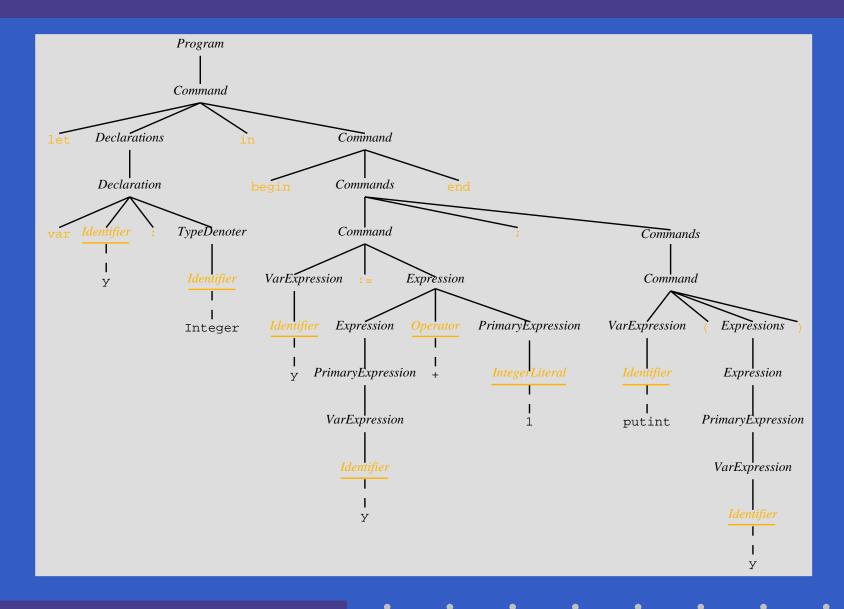
Example: MiniTriangle CFG (3)

A MiniTriangle Program

```
let
    var y: Integer
in

begin
    y := y + 1;
    putint(y)
end
```

Parse Tree for the Program



MiniTriangle Abstract Syntax (1)

The details of the concrete syntax often obscure the essence of the structure of a program. In contrast, abstract syntax describe this directly:

Program	\longrightarrow	Command	Program
Command	\longrightarrow	Expression := Expression	CmdAssign
		$Expression (Expression^*)$	CmdCall
		$Command^*$	CmdSeq
		if Expression then Command	Cmdlf
		else Command	
		while Expression do Command	CmdWhile
		let Declaration* in Command	CmdLet

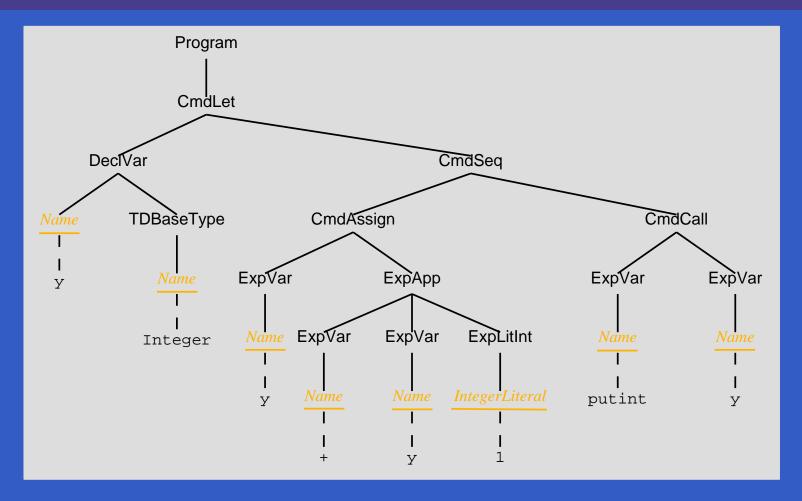
MiniTriangle Abstract Syntax (2)

```
ExpLitInt
                     IntegerLiteral
Expression
                                                     ExpVar
                     Name
                     Expression (Expression^*)
                                                     ExpApp
                     const Name: TypeDenoter
                                                     DeclConst
Declaration
                     = Expression
                     var <u>Name</u> : TypeDenoter
                                                     DeclVar
                     ( := Expression \mid \epsilon )
                                                     TDBaseType
              \rightarrow Name
TypeDenoter
```

Note: Keywords and other fixed-spelling terminals serve only to make the connection with the concrete syntax clear.

 $Identifier \subseteq \underline{Name}, \ Operator \subseteq \underline{Name}$

Abstract Syntax Tree for the Program



Key Point: The abstract syntax specifies *trees*, not strings.