
G54FOP: Lecture 3
Programming Language Semantics:

Introduction

Henrik Nilsson

University of Nottingham, UK

G54FOP: Lecture 3 – p.1/21

Why Does PL Semantics Matter? (1)

• Documentation
- Programmers (“What does X mean? Did

the compiler get it right?”)
- Implementers (“How to implement X?”)

• Formal Reasoning
- Proofs about programs
- Proofs about programming languages

(E.g. “Well-typed programs do not go
wrong”)

- Proofs about tools
(E.g. compiler correctness)

G54FOP: Lecture 3 – p.2/21

Why Does PL Semantics Matter? (2)

• Language Design
- Semantic simplicity is a good guiding

principle
- Ensure desirable meta-theoretical

properties hold (like “well-typed programs
do not go wrong”)

• Education
- Learning new languages
- Comparing languages

• Research
G54FOP: Lecture 3 – p.3/21

Static vs. Dynamic Semantics (1)

• Static Semantics: “compile-time” meaning
- Scope rules
- Type rules

Example: the meaning of 1+2 is an integer
value (its type is Integer)

• Dynamic Semantics: “run-time” meaning
- Exactly what value does a term evaluate to?
- What are the effects of a computation?

Example: the meaning of 1+2 is the integer 3.

G54FOP: Lecture 3 – p.4/21



Static vs. Dynamic Semantics (2)

Distinction between static and dynamic
semantics not always clear cut. E.g.

• Multi-staged languages (“more than one
run-time”)

• Dependently typed languages (computation
at the type level)

G54FOP: Lecture 3 – p.5/21

Styles of Semantics (1)
Main examples:

• Operational Semantics: Meaning given by
Abstract Machine, often a Transition Function
mapping a state to a “more evaluated” state.

Kinds:
- small-step semantics: each step is

atomic; more machine like
- structural operational semantics (SOS):

compound, but still simple, steps
- big-step or natural semantics: Single,

compound step evaluates term to final value.
G54FOP: Lecture 3 – p.6/21

Styles of Semantics (2)

• small-step semantics:

t → t(1) → t(2) → . . . → v

• structural operational semantics:

t
∇
→ t(1)

∇
→ t(2)

∇
→ . . .

∇
→ v

• big-step or natural semantics:

t
∇
→ v

where ∇ suggests a proof (tree) justifying the step.
G54FOP: Lecture 3 – p.7/21

Example: Small Step Semantics (1)

Consider a simple machine for evaluating
arithmetic expressions. Its state is denoted

(t̄, v̄)

where
• t̄ is a sequence of expressions (including

values) and operators
• v̄ is a stack (sequence) of values

G54FOP: Lecture 3 – p.8/21



Example: Small-Step Semantics (2)

Idea of the machine. Given state (t̄, v̄):

• If t̄ is empty, we’re done; whatever is on the
value stack v̄ is the result.

• If head of t̄ is a value, push it onto v̄.
• If head of t̄ is an expression, prepend the

individual subexpressions and the operator to
the tail of t̄.

• If head of t̄ is an operator, apply it to appropriate
number of arguments on top of the value
stack and replace them with the result.

G54FOP: Lecture 3 – p.9/21

Example: Small-Step Semantics (3)

An evaluation might proceed as follows:

(〈1+(2-3)〉, 〈〉) → (〈2-3,1,+〉, 〈〉)

→ (〈3,2,-,1,+〉, 〈〉)

→ (〈2,-,1,+〉, 〈3〉)

→ (〈-,1,+〉, 〈2,3〉)

→ (〈1,+〉, 〈-1〉)

→ (〈+〉, 〈1,-1〉)

→ (〈〉, 〈0〉)

Exercise: Evaluate (〈(5-3)*(1+2)〉, 〈〉)

G54FOP: Lecture 3 – p.10/21

Example: Small-Step Semantics (4)

Note:

• Each step describes a small, essentially
mechanical, syntactic transformation of the
machine state; i.e., a very operational view of
computation.

• Our description was informal. We will discuss
at length how to formalise operational
semantics in a mathematically precise way,
typically using inference rules.

G54FOP: Lecture 3 – p.11/21

Styles of Semantics (3)

• Denotational Semantics: More abstract
view:
- meaning of a term is a mathematical object

(like a number (e.g. N or Z) or function
(e.g. Z → Z);

- an interpretation function maps terms
((abstract) syntax) to their meaning
(semantics).

G54FOP: Lecture 3 – p.12/21



Example: Denotational Semantics (1)

Given the abstract syntax for expressions:

e → expressions:

| Z integer literals

| e + e addition

| e - e subtraction

| e * e multiplication

G54FOP: Lecture 3 – p.13/21

Example: Denotational Semantics (2)

the denotational semantics (the interpretation
function mapping the (abstract) syntax of an
expression to its meaning) might be specified as:

[[·]] : e → Z

[[n]] = n

[[e1 + e2]] = [[e1]] + [[e2]]

[[e1 - e2]] = [[e1]] − [[e2]]

[[e1 * e2]] = [[e1]] × [[e2]]

Not vacuous: e.g., note the difference between
+, syntax, and +, the ordinary function plus.

G54FOP: Lecture 3 – p.14/21

Example: Denotational Semantics (3)

Exercise. Given:

[[·]] : e → Z

[[n]] = n

[[e1 + e2]] = [[e1]] + [[e2]]

[[e1 - e2]] = [[e1]] − [[e2]]

[[e1 * e2]] = [[e1]] × [[e2]]

Calculate the denotation (meaning) of:

1 + (2 - 3)

G54FOP: Lecture 3 – p.15/21

Styles of Semantics (4)

• Axiomatic Semantics: More abstract still:
- An operational or denotational semantics

implies certain properties or laws.
- An axiomatic semantics takes such laws as

the starting point: the laws defines the
semantics and the meaning is just what
can be proved.

- Closely related to Hoare logic.

G54FOP: Lecture 3 – p.16/21



Example: Axiomatic Semantics (1)

The meaning of a command c is given by
specifying a precondition and a postcondition:

{PRE} c {POST}

This says: If PRE holds for a program state, then
executing c in that state will terminate and POST

will hold in the resulting state.

G54FOP: Lecture 3 – p.17/21

Example: Axiomatic Semantics (2)

For example, the meaning of assignment is given by:

{P [v 7→ e]} v := e {P}

This says: For any predicate P whatsoever that
holds in a program state when e is substituted for
free occurrences of v, it is the case that P holds
in the state resulting after the assignment.

Note: Nothing is said about how execution is
carried out, but the focus is on what its effect is.

G54FOP: Lecture 3 – p.18/21

Example: Axiomatic Semantics (3)

We can now prove e.g.

{x = 7} x := x+1 {x = 8}

(often easier to work backwards from postcondition):

{x = 8} postcondition
{x+ 1 = 8} substituting x+ 1 for x
{x = 8 − 1} arithmetic
{x = 7} simplification yields precondition

G54FOP: Lecture 3 – p.19/21

Example: Axiomatic Semantics (4)

Works for any predicate. Consider proving:

{x ≥ 0} x := x+1 {x > 0}

{x > 0} postcondition
{x+ 1 > 0} substituting x+ 1 for x
{x+ 1 ≥ 1} n > 0 ≡ n ≥ 1 for any integer n

{x ≥ 1 − 1} arithmetic
{x ≥ 0} simplification yields precondition

G54FOP: Lecture 3 – p.20/21



Example: Axiomatic Semantics (5)

Exercise. Prove:

{i = 6 ∧ j = 7} i := i * j {i = 42 ∧ j = 7}

G54FOP: Lecture 3 – p.21/21


	Why Does PL Semantics Matter? (1)
	Why Does PL Semantics Matter? (2)
	Static vs. Dynamic Semantics (1)
	Static vs. Dynamic Semantics (2)
	Styles of Semantics (1)
	Styles of Semantics (2)
	Example: Small Step Semantics (1)
	Example: Small-Step Semantics (2)
	Example: Small-Step Semantics (3)
	Example: Small-Step Semantics (4)
	Styles of Semantics (3)
	Example: Denotational Semantics (1)
	Example: Denotational Semantics (2)
	Example: Denotational Semantics (3)
	Styles of Semantics (4)
	Example: Axiomatic Semantics (1)
	Example: Axiomatic Semantics (2)
	Example: Axiomatic Semantics (3)
	Example: Axiomatic Semantics (4)
	Example: Axiomatic Semantics (5)

