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Why Does PL Semantics Matter? (1)

• Documentation
- Programmers (“What does X mean? Did

the compiler get it right?”)
- Implementers (“How to implement X?”)

• Formal Reasoning
- Proofs about programs
- Proofs about programming languages

(E.g. “Well-typed programs do not go
wrong”)

- Proofs about tools
(E.g. compiler correctness)
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Why Does PL Semantics Matter? (2)

• Language Design
- Semantic simplicity is a good guiding

principle
- Ensure desirable meta-theoretical

properties hold (like “well-typed programs
do not go wrong”)

• Education
- Learning new languages
- Comparing languages

• Research
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Static vs. Dynamic Semantics (1)

• Static Semantics: “compile-time” meaning
- Scope rules
- Type rules

Example: the meaning of 1+2 is an integer
value (its type is Integer)

• Dynamic Semantics: “run-time” meaning
- Exactly what value does a term evaluate to?
- What are the effects of a computation?

Example: the meaning of 1+2 is the integer 3.
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Static vs. Dynamic Semantics (2)

Distinction between static and dynamic
semantics not always clear cut. E.g.

• Multi-staged languages (“more than one
run-time”)

• Dependently typed languages (computation
at the type level)
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Styles of Semantics (1)
Main examples:

• Operational Semantics: Meaning given by
Abstract Machine, often a Transition Function
mapping a state to a “more evaluated” state.

Kinds:
- small-step semantics: each step is

atomic; more machine like
- structural operational semantics (SOS):

compound, but still simple, steps
- big-step or natural semantics: Single,

compound step evaluates term to final value.
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Styles of Semantics (2)

• small-step semantics:

t → t(1) → t(2) → . . . → v

• structural operational semantics:

t
∇
→ t(1)

∇
→ t(2)

∇
→ . . .

∇
→ v

• big-step or natural semantics:

t
∇
→ v

where ∇ suggests a proof (tree) justifying the step.
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Example: Small Step Semantics (1)

Consider a simple machine for evaluating
arithmetic expressions. Its state is denoted

(t̄, v̄)

where
• t̄ is a sequence of expressions (including

values) and operators
• v̄ is a stack (sequence) of values
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Example: Small-Step Semantics (2)

Idea of the machine. Given state (t̄, v̄):

• If t̄ is empty, we’re done; whatever is on the
value stack v̄ is the result.

• If head of t̄ is a value, push it onto v̄.
• If head of t̄ is an expression, prepend the

individual subexpressions and the operator to
the tail of t̄.

• If head of t̄ is an operator, apply it to appropriate
number of arguments on top of the value
stack and replace them with the result.
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Example: Small-Step Semantics (3)

An evaluation might proceed as follows:

(〈1+(2-3)〉, 〈〉) → (〈2-3,1,+〉, 〈〉)

→ (〈3,2,-,1,+〉, 〈〉)

→ (〈2,-,1,+〉, 〈3〉)

→ (〈-,1,+〉, 〈2,3〉)

→ (〈1,+〉, 〈-1〉)

→ (〈+〉, 〈1,-1〉)

→ (〈〉, 〈0〉)

Exercise: Evaluate (〈(5-3)*(1+2)〉, 〈〉)
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Example: Small-Step Semantics (4)

Note:

• Each step describes a small, essentially
mechanical, syntactic transformation of the
machine state; i.e., a very operational view of
computation.

• Our description was informal. We will discuss
at length how to formalise operational
semantics in a mathematically precise way,
typically using inference rules.
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Styles of Semantics (3)

• Denotational Semantics: More abstract
view:
- meaning of a term is a mathematical object

(like a number (e.g. N or Z) or function
(e.g. Z → Z);

- an interpretation function maps terms
((abstract) syntax) to their meaning
(semantics).
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Example: Denotational Semantics (1)

Given the abstract syntax for expressions:

e → expressions:

| Z integer literals

| e + e addition

| e - e subtraction

| e * e multiplication
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Example: Denotational Semantics (2)

the denotational semantics (the interpretation
function mapping the (abstract) syntax of an
expression to its meaning) might be specified as:

[[·]] : e → Z

[[n]] = n

[[e1 + e2]] = [[e1]] + [[e2]]

[[e1 - e2]] = [[e1]] − [[e2]]

[[e1 * e2]] = [[e1]] × [[e2]]

Not vacuous: e.g., note the difference between
+, syntax, and +, the ordinary function plus.
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Example: Denotational Semantics (3)

Exercise. Given:

[[·]] : e → Z

[[n]] = n

[[e1 + e2]] = [[e1]] + [[e2]]

[[e1 - e2]] = [[e1]] − [[e2]]

[[e1 * e2]] = [[e1]] × [[e2]]

Calculate the denotation (meaning) of:

1 + (2 - 3)
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Styles of Semantics (4)

• Axiomatic Semantics: More abstract still:
- An operational or denotational semantics

implies certain properties or laws.
- An axiomatic semantics takes such laws as

the starting point: the laws defines the
semantics and the meaning is just what
can be proved.

- Closely related to Hoare logic.
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Example: Axiomatic Semantics (1)

The meaning of a command c is given by
specifying a precondition and a postcondition:

{PRE} c {POST}

This says: If PRE holds for a program state, then
executing c in that state will terminate and POST

will hold in the resulting state.
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Example: Axiomatic Semantics (2)

For example, the meaning of assignment is given by:

{P [v 7→ e]} v := e {P}

This says: For any predicate P whatsoever that
holds in a program state when e is substituted for
free occurrences of v, it is the case that P holds
in the state resulting after the assignment.

Note: Nothing is said about how execution is
carried out, but the focus is on what its effect is.
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Example: Axiomatic Semantics (3)

We can now prove e.g.

{x = 7} x := x+1 {x = 8}

(often easier to work backwards from postcondition):

{x = 8} postcondition
{x+ 1 = 8} substituting x+ 1 for x
{x = 8 − 1} arithmetic
{x = 7} simplification yields precondition
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Example: Axiomatic Semantics (4)

Works for any predicate. Consider proving:

{x ≥ 0} x := x+1 {x > 0}

{x > 0} postcondition
{x+ 1 > 0} substituting x+ 1 for x
{x+ 1 ≥ 1} n > 0 ≡ n ≥ 1 for any integer n

{x ≥ 1 − 1} arithmetic
{x ≥ 0} simplification yields precondition
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Example: Axiomatic Semantics (5)

Exercise. Prove:

{i = 6 ∧ j = 7} i := i * j {i = 42 ∧ j = 7}
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