G54FOP: Lecture 3
 Programming Language Semantics: Introduction

Henrik Nilsson

University of Nottingham, UK

Why Does PL Semantics Matter? (1)

Why Does PL Semantics Matter? (1)

- Documentation
- Programmers ("What does X mean? Did the compiler get it right?")
- Implementers ("How to implement X?")

Why Does PL Semantics Matter? (1)

- Documentation
- Programmers ("What does X mean? Did the compiler get it right?")
- Implementers ("How to implement X?")
- Formal Reasoning
- Proofs about programs
- Proofs about programming languages (E.g. "Well-typed programs do not go wrong")
- Proofs about tools
(E.g. compiler correctness).

Why Does PL Semantics Matter? (2)

- Language Design
- Semantic simplicity is a good guiding principle
- Ensure desirable meta-theoretical properties hold (like "well-typed programs do not go wrong")

Why Does PL Semantics Matter? (2)

- Language Design
- Semantic simplicity is a good guiding principle
- Ensure desirable meta-theoretical properties hold (like "well-typed programs do not go wrong")
- Education
- Learning new languages
- Comparing languages

Why Does PL Semantics Matter? (2)

- Language Design
- Semantic simplicity is a good guiding principle
- Ensure desirable meta-theoretical properties hold (like "well-typed programs do not go wrong")
- Education
- Learning new languages
- Comparing languages
- Research

Static vs. Dynamic Semantics (1)

- Static Semantics: "compile-time" meaning
- Scope rules
- Type rules

Static vs. Dynamic Semantics (1)

- Static Semantics: "compile-time" meaning
- Scope rules
- Type rules

Example: the meaning of $1+2$ is an integer value (its type is Integer)

Static vs. Dynamic Semantics (1)

- Static Semantics: "compile-time" meaning
- Scope rules
- Type rules

Example: the meaning of $1+2$ is an integer value (its type is Integer)

- Dynamic Semantics: "run-time" meaning
- Exactly what value does a term evaluate to?
- What are the effects of a computation?

Static vs. Dynamic Semantics (1)

- Static Semantics: "compile-time" meaning
- Scope rules
- Type rules

Example: the meaning of $1+2$ is an integer value (its type is Integer)

- Dynamic Semantics: "run-time" meaning
- Exactly what value does a term evaluate to?
- What are the effects of a computation?

Example: the meaning of $1+2$ is the integer 3 .

Static vs. Dynamic Semantics (2)

Distinction between static and dynamic semantics not always clear cut. E.g.

- Multi-staged languages ("more than one run-time")
- Dependently typed languages (computation at the type level)

Styles of Semantics (1)

Main examples:

Styles of Semantics (1)

Main examples:

- Operational Semantics: Meaning given by Abstract Machine, often a Transition Function mapping a state to a "more evaluated" state.

Styles of Semantics (1)

Main examples:

- Operational Semantics: Meaning given by Abstract Machine, often a Transition Function mapping a state to a "more evaluated" state.
Kinds:
- small-step semantics: each step is atomic; more machine like

Styles of Semantics (1)

Main examples:

- Operational Semantics: Meaning given by Abstract Machine, often a Transition Function mapping a state to a "more evaluated" state.

Kinds:

- small-step semantics: each step is atomic; more machine like
- structural operational semantics (SOS): compound, but still simple, steps

Styles of Semantics (1)

Main examples:

- Operational Semantics: Meaning given by Abstract Machine, often a Transition Function mapping a state to a "more evaluated" state.

Kinds:

- small-step semantics: each step is atomic; more machine like
- structural operational semantics (SOS): compound, but still simple, steps
- big-step or natural semantics: Single, compound step evaluates term to final value.

Styles of Semantics (2)

- small-step semantics:

$$
t \rightarrow t^{(1)} \rightarrow t^{(2)} \rightarrow \ldots \rightarrow v
$$

- structural operational semantics:

$$
t \xrightarrow{\nabla} t^{(1)} \xrightarrow{\nabla} t^{(2)} \xrightarrow{\nabla} \ldots \xrightarrow{\nabla} v
$$

- big-step or natural semantics:

$$
t \xrightarrow{\nabla} v
$$

where ∇ suggests a proof (tree) justifying the step.

Example: Small Step Semantics (1)

Consider a simple machine for evaluating arithmetic expressions. Its state is denoted

$$
(\bar{t}, \bar{v})
$$

where

- \bar{t} is a sequence of expressions (including values) and operators
- \bar{v} is a stack (sequence) of values

Example: Small-Step Semantics (2)

Idea of the machine. Given state (\bar{t}, \bar{v}) :

Example: Small-Step Semantics (2)

Idea of the machine. Given state (\bar{t}, \bar{v}) :

- If \bar{t} is empty, we're done; whatever is on the value stack \bar{v} is the result.

Example: Small-Step Semantics (2)

Idea of the machine. Given state (\bar{t}, \bar{v}) :

- If \bar{t} is empty, we're done; whatever is on the value stack \bar{v} is the result.
- If head of \bar{t} is a value, push it onto \bar{v}.

Example: Small-Step Semantics (2)

Idea of the machine. Given state (\bar{t}, \bar{v}) :

- If \bar{t} is empty, we're done; whatever is on the value stack \bar{v} is the result.
- If head of \bar{t} is a value, push it onto \bar{v}.
- If head of \bar{t} is an expression, prepend the individual subexpressions and the operator to the tail of $\overline{\text {. }}$.

Example: Small-Step Semantics (2)

Idea of the machine. Given state (\bar{t}, \bar{v}) :

- If \bar{t} is empty, we're done; whatever is on the value stack \bar{v} is the result.
- If head of \bar{t} is a value, push it onto \bar{v}.
- If head of \bar{t} is an expression, prepend the individual subexpressions and the operator to the tail of \bar{t}.
- If head of \bar{t} is an operator, apply it to appropriate number of arguments on top of the value stack and replace them with the result.

Example: Small-Step Semantics (3)

An evaluation might proceed as follows:

$$
(\langle 1+(2-3)\rangle,\langle \rangle)
$$

Example: Small-Step Semantics (3)

An evaluation might proceed as follows:

$$
(\langle 1+(2-3)\rangle,\langle \rangle) \rightarrow(\langle 2-3,1,+\rangle,\langle \rangle)
$$

Example: Small-Step Semantics (3)

An evaluation might proceed as follows:

$$
\begin{aligned}
(\langle 1+(2-3)\rangle,\langle \rangle) & \rightarrow(\langle 2-3,1,+\rangle,\langle \rangle) \\
& \rightarrow(\langle 3,2,-, 1,+\rangle,\langle \rangle)
\end{aligned}
$$

Example: Small-Step Semantics (3)

An evaluation might proceed as follows:

$$
\begin{aligned}
(\langle 1+(2-3)\rangle,\langle \rangle) & \rightarrow(\langle 2-3,1,+\rangle,\langle \rangle) \\
& \rightarrow(\langle 3,2,-, 1,+\rangle,\langle \rangle) \\
& \rightarrow(\langle 2,-, 1,+\rangle,\langle 3\rangle)
\end{aligned}
$$

Example: Small-Step Semantics (3)

An evaluation might proceed as follows:

$$
\begin{aligned}
(\langle 1+(2-3)\rangle,\langle \rangle) & \rightarrow(\langle 2-3,1,+\rangle,\langle \rangle) \\
& \rightarrow(\langle 3,2,-, 1,+\rangle,\langle \rangle) \\
& \rightarrow(\langle 2,-, 1,+\rangle,\langle 3\rangle) \\
& \rightarrow(\langle-, 1,+\rangle,\langle 2,3\rangle)
\end{aligned}
$$

Example: Small-Step Semantics (3)

An evaluation might proceed as follows:

$$
\begin{aligned}
(\langle 1+(2-3)\rangle,\langle \rangle) & \rightarrow(\langle 2-3,1,+\rangle,\langle \rangle) \\
& \rightarrow(\langle 3,2,-, 1,+\rangle,\langle \rangle) \\
& \rightarrow(\langle 2,-, 1,+\rangle,\langle 3\rangle) \\
& \rightarrow(\langle-, 1,+\rangle,\langle 2,3\rangle) \\
& \rightarrow(\langle 1,+\rangle,\langle-1\rangle)
\end{aligned}
$$

Example: Small-Step Semantics (3)

An evaluation might proceed as follows:

$$
\begin{aligned}
(\langle 1+(2-3)\rangle,\langle \rangle) & \rightarrow(\langle 2-3,1,+\rangle,\langle \rangle) \\
& \rightarrow(\langle 3,2,-, 1,+\rangle,\langle \rangle) \\
& \rightarrow(\langle 2,-, 1,+\rangle,\langle 3\rangle) \\
& \rightarrow(\langle-, 1,+\rangle,\langle 2,3\rangle) \\
& \rightarrow(\langle 1,+\rangle,\langle-1\rangle) \\
& \rightarrow(\langle+\rangle,\langle 1,-1\rangle)
\end{aligned}
$$

Example: Small-Step Semantics (3)

An evaluation might proceed as follows:

$$
\begin{aligned}
(\langle 1+(2-3)\rangle,\langle \rangle) & \rightarrow(\langle 2-3,1,+\rangle,\langle \rangle) \\
& \rightarrow(\langle 3,2,-, 1,+\rangle,\langle \rangle) \\
& \rightarrow(\langle 2,-, 1,+\rangle,\langle 3\rangle) \\
& \rightarrow(\langle-, 1,+\rangle,\langle 2,3\rangle) \\
& \rightarrow(\langle 1,+\rangle,\langle-1\rangle) \\
& \rightarrow(\langle+\rangle,\langle 1,-1\rangle) \\
& \rightarrow(\rangle,\langle 0\rangle)
\end{aligned}
$$

Example: Small-Step Semantics (3)

An evaluation might proceed as follows:

$$
\begin{aligned}
(\langle 1+(2-3)\rangle,\langle \rangle) & \rightarrow(\langle 2-3,1,+\rangle,\langle \rangle) \\
& \rightarrow(\langle 3,2,-, 1,+\rangle,\langle \rangle) \\
& \rightarrow(\langle 2,-, 1,+\rangle,\langle 3\rangle) \\
& \rightarrow(\langle-, 1,+\rangle,\langle 2,3\rangle) \\
& \rightarrow(\langle 1,+\rangle,\langle-1\rangle) \\
& \rightarrow(\langle+\rangle,\langle 1,-1\rangle) \\
& \rightarrow(\rangle,\langle 0\rangle)
\end{aligned}
$$

Exercise: Evaluate $(\langle(5-3) *(1+2)\rangle,\langle \rangle)$

Example: Small-Step Semantics (4)

Note:

Example: Small-Step Semantics (4)

Note:

- Each step describes a small, essentially mechanical, syntactic transformation of the machine state; i.e., a very operational view of computation.

Example: Small-Step Semantics (4)

Note:

- Each step describes a small, essentially mechanical, syntactic transformation of the machine state; i.e., a very operational view of computation.
- Our description was informal. We will discuss at length how to formalise operational semantics in a mathematically precise way, typically using inference rules.

Styles of Semantics (3)

- Denotational Semantics: More abstract view:
- meaning of a term is a mathematical object (like a number (e.g. \mathbb{N} or \mathbb{Z}) or function (e.g. $\mathbb{Z} \rightarrow \mathbb{Z}$);
- an interpretation function maps terms ((abstract) syntax) to their meaning (semantics).

Example: Denotational Semantics (1)

Given the abstract syntax for expressions:

e	\rightarrow	
	\mathbb{Z}	expressions:
	$e+e$	integer literals
	$e-e$	addlition
	$e \star e$	subtraction

Example: Denotational Semantics (2)

the denotational semantics (the interpretation function mapping the (abstract) syntax of an expression to its meaning) might be specified as:

$$
\begin{aligned}
\llbracket \cdot \rrbracket & : e \rightarrow \mathbb{Z} \\
\llbracket n \rrbracket & =n \\
\llbracket e_{1}+e_{2} \rrbracket & =\llbracket e_{1} \rrbracket+\llbracket e_{2} \rrbracket \\
\llbracket e_{1}-e_{2} \rrbracket & =\llbracket e_{1} \rrbracket-\llbracket e_{2} \rrbracket \\
\llbracket e_{1} * e_{2} \rrbracket & =\llbracket e_{1} \rrbracket \times \llbracket e_{2} \rrbracket
\end{aligned}
$$

Example: Denotational Semantics (2)

the denotational semantics (the interpretation function mapping the (abstract) syntax of an expression to its meaning) might be specified as:

$$
\begin{aligned}
\llbracket \cdot \rrbracket & : e \rightarrow \mathbb{Z} \\
\llbracket n \rrbracket & =n \\
\llbracket e_{1}+e_{2} \rrbracket & =\llbracket e_{1} \rrbracket+\llbracket e_{2} \rrbracket \\
\llbracket e_{1}-e_{2} \rrbracket & =\llbracket e_{1} \rrbracket-\llbracket e_{2} \rrbracket \\
\llbracket e_{1} * e_{2} \rrbracket & =\llbracket e_{1} \rrbracket \times \llbracket e_{2} \rrbracket
\end{aligned}
$$

Not vacuous: e.g., note the difference between + , syntax, and + , the ordinary function plus.

Example: Denotational Semantics (3)

Exercise. Given:

$$
\begin{aligned}
\llbracket \cdot \rrbracket & : e \rightarrow \mathbb{Z} \\
\llbracket n \rrbracket & =n \\
\llbracket e_{1}+e_{2} \rrbracket & =\llbracket e_{1} \rrbracket+\llbracket e_{2} \rrbracket \\
\llbracket e_{1}-e_{2} \rrbracket & =\llbracket e_{1} \rrbracket-\llbracket e_{2} \rrbracket \\
\llbracket e_{1} * e_{2} \rrbracket & =\llbracket e_{1} \rrbracket \times \llbracket e_{2} \rrbracket
\end{aligned}
$$

Calculate the denotation (meaning) of:

$$
1+(2-3)
$$

Example: Denotational Semantics (3)

Exercise. Given:

$$
\begin{aligned}
\llbracket \cdot \rrbracket & : e \rightarrow \mathbb{Z} \\
\llbracket n \rrbracket & =n \\
\llbracket e_{1}+e_{2} \rrbracket & =\llbracket e_{1} \rrbracket+\llbracket e_{2} \rrbracket \\
\llbracket e_{1}-e_{2} \rrbracket & =\llbracket e_{1} \rrbracket-\llbracket e_{2} \rrbracket \\
\llbracket e_{1} * e_{2} \rrbracket & =\llbracket e_{1} \rrbracket \times \llbracket e_{2} \rrbracket
\end{aligned}
$$

Calculate the denotation (meaning) of:

$$
1+(2-3)
$$

Styles of Semantics (4)

- Axiomatic Semantics: More abstract still:
- An operational or denotational semantics implies certain properties or laws.
- An axiomatic semantics takes such laws as the starting point: the laws defines the semantics and the meaning is just what can be proved.
- Closely related to Hoare logic.

Example: Axiomatic Semantics (1)

The meaning of a command c is given by specifying a precondition and a postcondition:

$$
\{P R E\} c\{P O S T\}
$$

This says: If $P R E$ holds for a program state, then executing c in that state will terminate and POST will hold in the resulting state.

Example: Axiomatic Semantics (2)

For example, the meaning of assignment is given by:

$$
\{P[v \mapsto e]\} v:=e\{P\}
$$

Example: Axiomatic Semantics (2)

For example, the meaning of assignment is given by:

$$
\{P[v \mapsto e]\} v:=e\{P\}
$$

This says: For any predicate P whatsoever that holds in a program state when e is substituted for free occurrences of v, it is the case that P holds in the state resulting after the assignment.

Example: Axiomatic Semantics (2)

For example, the meaning of assignment is given by:

$$
\{P[v \mapsto e]\} v:=e\{P\}
$$

This says: For any predicate P whatsoever that holds in a program state when e is substituted for free occurrences of v, it is the case that P holds in the state resulting after the assignment.

Note: Nothing is said about how execution is carried out, but the focus is on what its effect is.

Example: Axiomatic Semantics (3)

We can now prove e.g.

$$
\{x=7\} x:=x+1\{x=8\}
$$

(often easier to work backwards from postcondition):

Example: Axiomatic Semantics (3)

We can now prove e.g.

$$
\{x=7\} x:=x+1\{x=8\}
$$

(often easier to work backwards from postcondition): $\{\mathrm{x}=8\} \quad$ postcondition

Example: Axiomatic Semantics (3)

We can now prove e.g.

$$
\{x=7\} x:=x+1\{x=8\}
$$

(often easier to work backwards from postcondition):
$\{\mathrm{x}=8\} \quad$ postcondition
$\{x+1=8\}$ substituting $x+1$ for x

Example: Axiomatic Semantics (3)

We can now prove e.g.

$$
\{x=7\} x:=x+1\{x=8\}
$$

(often easier to work backwards from postcondition):
$\{x=8\} \quad$ postcondition
$\{x+1=8\}$ substituting $x+1$ for x $\{x=8-1\}$ arithmetic

Example: Axiomatic Semantics (3)

We can now prove e.g.

$$
\{x=7\} x:=x+1\{x=8\}
$$

(often easier to work backwards from postcondition):
$\{x=8\} \quad$ postcondition
$\{x+1=8\}$ substituting $x+1$ for x
$\{x=8-1\} \quad$ arithmetic
$\{\mathbf{x}=7\} \quad$ simplification yields precondition

Example: Axiomatic Semantics (4)

Works for any predicate. Consider proving:

$$
\{x \geq 0\} x:=x+1\{x>0\}
$$

Example: Axiomatic Semantics (4)

Works for any predicate. Consider proving:

$$
\{x \geq 0\} x:=x+1\{x>0\}
$$

$\{x>0\} \quad$ postcondition

Example: Axiomatic Semantics (4)

Works for any predicate. Consider proving:

$$
\{x \geq 0\} x:=x+1\{x>0\}
$$

$\{x>0\} \quad$ postcondition
$\{x+1>0\}$ substituting $x+1$ for x

Example: Axiomatic Semantics (4)

Works for any predicate. Consider proving:

$$
\{x \geq 0\} x:=x+1\{x>0\}
$$

$\{x>0\} \quad$ postcondition
$\{x+1>0\}$ substituting $x+1$ for x
$\{x+1 \geq 1\} \quad n>0 \equiv n \geq 1$ for any integer n

Example: Axiomatic Semantics (4)

Works for any predicate. Consider proving:

$$
\{x \geq 0\} x:=x+1\{x>0\}
$$

$\{x>0\} \quad$ postcondition
$\{x+1>0\}$ substituting $x+1$ for x
$\{x+1 \geq 1\} \quad n>0 \equiv n \geq 1$ for any integer n $\{x \geq 1-1\}$ arithmetic

Example: Axiomatic Semantics (4)

Works for any predicate. Consider proving:

$$
\{x \geq 0\} x:=x+1\{x>0\}
$$

$\{x>0\} \quad$ postcondition
$\{x+1>0\}$ substituting $x+1$ for x
$\{x+1 \geq 1\} \quad n>0 \equiv n \geq 1$ for any integer n
$\{x \geq 1-1\}$ arithmetic
$\{x \geq 0\} \quad$ simplification yields precondition

Example: Axiomatic Semantics (5)

Exercise. Prove:
$\{i=6 \wedge j=7\} i:=i * j\{i=42 \wedge j=7\}$

