
G54FOP: Lecture 6
Operational Semantics III: State

Henrik Nilsson

University of Nottingham, UK

G54FOP: Lecture 6 – p.1/8

Small Expression Language: Terms

t → terms:

true constant true

| false constant false

| if t then t else t conditional

| 0 constant zero

| succ t successor

| pred t predecessor

| iszero t zero test

G54FOP: Lecture 6 – p.2/8

Small Expression Language: Values

v → values:

true constant true

| false constant false

| nv numeric value

nv → numeric values:

0 zero value

| succ nv successor value

G54FOP: Lecture 6 – p.3/8

Introducing State: Key Ideas

• µ: Store (state, memory); can be read/updated.
• Evaluation relation relates terms and stores

to new terms and stores:

t | µ −→ t′ | µ′

• l ∈ L: Uninterpreted set of locations
(addresses) with equality.

• µ ∈ L → v: Store: map from location to value.
• µ(l): Lookup value at location l.

• [l 7→ v]µ: Update; like µ except ([l 7→ v]µ)(l) = v

G54FOP: Lecture 6 – p.4/8



Small Imperative Language (1)

New terms; extends the terms of Small
Expression Language:

t → terms:

. . .

| unit constant unit

| new t allocation

| ! t dereferencing

| t := t assignment

| l store location

| t ; t sequencing

G54FOP: Lecture 6 – p.5/8

Small Imperative Language (2)

New values; extends the values of Small
Expression Language:

v → values:

. . .

| unit unit value

| l store location

Note: Still an expression language in that every
term is an expression that evaluates to a value,
even if some expressions have side effects. No
separate category of commands.

G54FOP: Lecture 6 – p.6/8

Homework Lecture 6 (1)

1. Consider the Small Imperative Language.
Add a loop construct:

t → terms:

. . .

| while t do t while loop

Provide evaluation rule(s) for this construct,
assuming the usual semantics of a while
loop: repetition of loop body zero or more
times as long as loop condition is true.

Hint: Make use of what you have!
G54FOP: Lecture 6 – p.7/8

Homework Lecture 6 (2)
2. As mentioned, our language is still an expression

language where expressions may have side
effects. Design a new language (syntax and
op. sem.) by separating the terms into
• expressions: do not have side effects
• commands: have side effects

and making any other changes you see fit.
Don’t worry too much if the resulting language
isn’t “useful” (the Small Imperative Language
isn’t really). Can the evaluation rules for
expressions somehow be simplified by exploiting
that expressions do not have side effects?

G54FOP: Lecture 6 – p.8/8


	Small Expression Language: Terms
	Small Expression Language: Values
	Introducing State: Key Ideas
	Small Imperative Language (1)
	Small Imperative Language (2)
	Homework Lecture 6 (1)
	Homework Lecture 6 (2)

