G54FOP: Lecture 7 The Untyped λ -Calculus I: Introduction

Henrik Nilsson

University of Nottingham, UK

The λ -Calculus: What is it? (2)

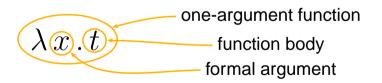
- The Church-Turing Hypothesis: The λ-calculus, Turing Machines, etc. coincides with our intuitive understanding of what "computation" means.
- The λ-calculus is important because it is at once:
 - very simple, yet in essence a practically useful programming language
 - mathematically precise, allowing for formal reasoning.

The λ -Calculus: What is it? (1)

- Pure notion of effective computation procedure: *all* computation reduced to function definition and application.
- Invented in the 1920s by Alonzo Church.
- Cf. other formalisations of the notion of effective computation; e.g., the Turing machine.
- The λ-calculus and Turing Machines are equivalent in that they capture the exact same notion of what "computation" means.

Key Idea

 λ -abstraction (or anonymous function):



G54FOP: Lecture 7 - p.1/9

G54FOP: Lecture 7 - p.2/9

Syntax

 $\begin{array}{cccc} t & \to & \ terms: & \\ & x & \ variable & \\ & \mid & \lambda x.t & \ abstraction & \\ & \mid & t t & \ application \end{array}$

Note:

- *x* is the syntactic category of variables. We will use actual names like *x*, *y*, *z*, *u*, *v*, *w*, ...
- λ -abstractions often named for convenience. E.g. $I \equiv \lambda x.x$. Just an abbreviation! So e.g. $F \equiv \lambda x.(\dots F \dots)$ not valid def. Why?

G54FOP: Lecture 7 - p.5/9

G54FOP: Lecture 7 - p.7/9

Exercise

In the following:

- Which variables are free and which are bound?
- · Which terms are open and which are closed?
- (a) x (d) $\lambda x.\lambda y.x y$
- (b) $\lambda x.x$ (e) $(\lambda x.x) x$
- (c) $\lambda x.y$ (f) $\lambda x.\lambda y.(\lambda x.x y) (\lambda z.x y)$

Scope

- An occurrence of x is bound if it occurs in the body t of a λ-abstraction λx.t.
- A non-bound occurrence is free.
- A λ-term with *no free* variables is called *closed*. Otherwise *open*.
- A closed λ -term is called a *combinator*.

Operational Semantics (1)

Sole means of computation: β -reduction or function application:

$$(\lambda x.t_1) t_2 \xrightarrow{\beta} [x \mapsto t_2]t_1$$

G54FOP: Lecture 7 - p.6/9

G54FOP: Lecture 7 - p.8/9

where

$$[x \mapsto t_2]t_1$$

means "term t_1 with all *free* occurrences of x (with respect to t_1) replaced by t_2 ."

Subtle problems concerning *name clashes* will be considered later.

Operational Semantics (2)

A term that can be β -reduced is called a $(\beta$ -)redex.

Exercise: Underline the redexes in

 $(\lambda x.x) ((\lambda x.x) (\lambda z.(\lambda x.x) z))$

