

University of Nottingham, UK

## Key Idea

$\lambda$-abstraction (or anonymous function):


## Exercise

## In the following:

- Which variables are free and which are bound?
- Which terms are open and which are closed?
(a) $x$
(d) $\lambda x . \lambda y . x y$
(b) $\lambda x \cdot x$
(e) $(\lambda x \cdot x) x$
(c) $\lambda x \cdot y$
(f) $\lambda x . \lambda y .(\lambda x . x y)(\lambda z . x y)$


## The $\lambda$-Calculus: What is it? (1)

- Pure notion of effective computation procedure: all computation reduced to function definition and application.
- Invented in the 1920s by Alonzo Church.
- Cf. other formalisations of the notion of effective computation; e.g., the Turing machine.
- The $\lambda$-calculus and Turing Machines are equivalent in that they capture the exact same notion of what "computation" means.



## The $\lambda$-Calculus: What is it? (2)

- The Church-Turing Hypothesis: The $\lambda$-calculus, Turing Machines, etc. coincides with our intuitive understanding of what "computation" means.
- The $\lambda$-calculus is important because it is at once:
- very simple, yet in essence a practically useful programming language
- mathematically precise, allowing for formal reasoning.


## Scope

- An occurrence of $x$ is bound if it occurs in the body $t$ of a $\lambda$-abstraction $\lambda$ x.t.
- A non-bound occurrence is free.
- A $\lambda$-term with no free variables is called closed. Otherwise open.
- A closed $\lambda$-term is called a combinator.


## Operational Semantics (2)

A term that can be $\beta$-reduced is called a
( $\beta$-)redex.
Exercise: Underline the redexes in

$$
(\lambda x \cdot x)((\lambda x \cdot x)(\lambda z \cdot(\lambda x \cdot x) z))
$$

