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procedure: all computation reduced to
function definition and application.

• Invented in the 1920s by Alonzo Church.
• Cf. other formalisations of the notion of
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machine.
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The λ-Calculus: What is it? (1)

• Pure notion of effective computation
procedure: all computation reduced to
function definition and application.

• Invented in the 1920s by Alonzo Church.
• Cf. other formalisations of the notion of

effective computation; e.g., the Turing
machine.

• The λ-calculus and Turing Machines are
equivalent in that they capture the exact same
notion of what “computation” means.
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The λ-Calculus: What is it? (2)

• The Church-Turing Hypothesis: The
λ-calculus, Turing Machines, etc. coincides
with our intuitive understanding of what
“computation” means.
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The λ-Calculus: What is it? (2)

• The Church-Turing Hypothesis: The
λ-calculus, Turing Machines, etc. coincides
with our intuitive understanding of what
“computation” means.

• The λ-calculus is important because it is at
once:
- very simple, yet in essence a practically

useful programming language
- mathematically precise, allowing for formal

reasoning.
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Key Idea

λ-abstraction (or anonymous function):

λx . t
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Key Idea

λ-abstraction (or anonymous function):

one-argument function
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Key Idea

λ-abstraction (or anonymous function):

one-argument function

λx . t function body
formal argument
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Syntax

t → terms:
x variable

| λx.t abstraction
| t t application
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Syntax

t → terms:
x variable

| λx.t abstraction
| t t application

Note:
• x is the syntactic category of variables. We

will use actual names like x, y, z, u, v, w, . . .
• λ-abstractions often named for convenience.

E.g. I ≡ λx.x. Just an abbreviation!
So e.g. F ≡ λx.(. . . F . . .) not valid def. Why?
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Scope
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Scope

• An occurrence of x is bound if it occurs in
the body t of a λ-abstraction λx.t.
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Scope

• An occurrence of x is bound if it occurs in
the body t of a λ-abstraction λx.t.

• A non-bound occurrence is free.
• A λ-term with no free variables is called

closed. Otherwise open.
• A closed λ-term is called a combinator.
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Exercise

In the following:
• Which variables are free and which are

bound?
• Which terms are open and which are closed?

(a) x (d) λx.λy.x y

(b) λx.x (e) (λx.x) x

(c) λx.y (f) λx.λy.(λx.x y) (λz.x y)
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Operational Semantics (1)

Sole means of computation: β-reduction or
function application:

(λx.t1) t2 →
β

[x 7→ t2]t1

where
[x 7→ t2]t1

means “term t1 with all free occurrences of x

(with respect to t1) replaced by t2.”

Subtle problems concerning name clashes will
be considered later.
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Operational Semantics (2)

A term that can be β-reduced is called a
(β-)redex.

Exercise: Underline the redexes in

(λx.x) ((λx.x) (λz.(λx.x) z))
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