G54FOP: Lecture 7 *The Untyped* λ *-Calculus I: Introduction*

Henrik Nilsson

University of Nottingham, UK

• • • • •

G54FOP: Lecture 7 – p.2/9

 Pure notion of effective computation procedure: all computation reduced to function definition and application.

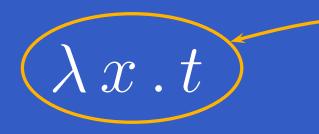
- Pure notion of effective computation procedure: all computation reduced to function definition and application.
- Invented in the 1920s by Alonzo Church.

- Pure notion of effective computation procedure: all computation reduced to function definition and application.
- Invented in the 1920s by Alonzo Church.
- Cf. other formalisations of the notion of effective computation; e.g., the Turing machine.

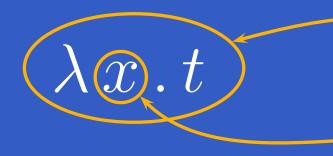
- Pure notion of effective computation procedure: all computation reduced to function definition and application.
- Invented in the 1920s by Alonzo Church.
- Cf. other formalisations of the notion of effective computation; e.g., the Turing machine.
- The λ-calculus and Turing Machines are equivalent in that they capture the exact same notion of what "computation" means.

 The Church-Turing Hypothesis: The λ-calculus, Turing Machines, etc. coincides with our intuitive understanding of what "computation" means.

- The Church-Turing Hypothesis: The λ-calculus, Turing Machines, etc. coincides with our intuitive understanding of what "computation" means.
- The λ-calculus is important because it is at once:
 - very simple, yet in essence a practically useful programming language
 - mathematically precise, allowing for formal reasoning.

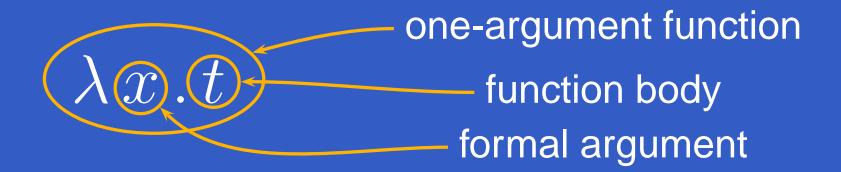


one-argument function



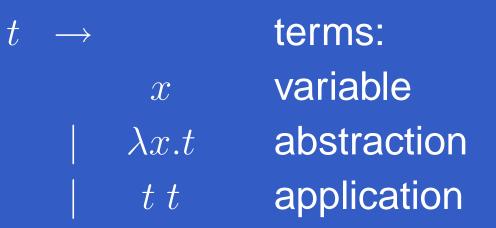
one-argument function

formal argument



 $\begin{array}{ccc} t & \rightarrow & \text{terms:} \\ & x & \text{variable} \\ & | & \lambda x.t & \text{abstraction} \\ & | & t t & \text{application} \end{array}$

 $\begin{array}{ccc} t & \rightarrow & \text{terms:} \\ & x & \text{variable} \\ & | & \lambda x.t & \text{abstraction} \\ & | & t t & \text{application} \end{array}$



Note:

• x is the syntactic category of variables. We will use actual names like x, y, z, u, v, w, ...

t

\rightarrow	terms:
x	variable
$\mid \lambda x.t$	abstraction
t t	application

- x is the syntactic category of variables. We will use actual names like x, y, z, u, v, w, ...
- λ -abstractions often named for convenience. E.g. $I \equiv \lambda x.x$.

1

\rightarrow	terms:
x	variable
$\mid \lambda x.t$	abstraction
t t	application

- x is the syntactic category of variables. We will use actual names like x, y, z, u, v, w, ...
- λ -abstractions often named for convenience. E.g. $I \equiv \lambda x.x$. Just an abbreviation!

\rightarrow	terms:
x	variable
$\mid \lambda x.t$	abstraction
t t	application

- x is the syntactic category of variables. We will use actual names like x, y, z, u, v, w, ...
- λ -abstractions often named for convenience. E.g. $I \equiv \lambda x.x$. Just an abbreviation! So e.g. $F \equiv \lambda x.(\dots F \dots)$ not valid def. Why?

• • • • •

G54FOP: Lecture 7 – p.6/9

۲

• An occurrence of x is bound if it occurs in the body t of a λ -abstraction $\lambda x.t$.

- An occurrence of x is bound if it occurs in the body t of a λ -abstraction $\lambda x.t$.
- A non-bound occurrence is free.

- An occurrence of x is bound if it occurs in the body t of a λ -abstraction $\lambda x.t$.
- A non-bound occurrence is free.
- A λ-term with no free variables is called closed. Otherwise open.

- An occurrence of x is bound if it occurs in the body t of a λ -abstraction $\lambda x.t$.
- A non-bound occurrence is free.
- A λ-term with no free variables is called closed. Otherwise open.
- A closed λ -term is called a combinator.

Exercise

In the following:

- Which variables are free and which are bound?
- Which terms are open and which are closed?
- (a) x (d) $\lambda x.\lambda y.x y$ (b) $\lambda x.x$ (e) $(\lambda x.x) x$ (c) $\lambda x.y$ (f) $\lambda x.\lambda y.(\lambda x.x y) (\lambda z.x y)$

Operational Semantics (1)

Sole means of computation: β -reduction or function application:

$$(\lambda x.t_1) t_2 \xrightarrow{\beta} [x \mapsto t_2]t_1$$

where

$$[x \mapsto t_2]t_1$$

means "term t_1 with all free occurrences of x(with respect to t_1) replaced by t_2 ."

Subtle problems concerning *name clashes* will be considered later.

Operational Semantics (2)

A term that can be β -reduced is called a $(\beta$ -)redex.

Exercise: Underline the redexes in

 $(\lambda x.x) ((\lambda x.x) (\lambda z.(\lambda x.x) z))$