
G54FOP: Lecture 7
The Untyped λ-Calculus I: Introduction

Henrik Nilsson

University of Nottingham, UK

G54FOP: Lecture 7 – p.1/9

The λ-Calculus: What is it? (1)

G54FOP: Lecture 7 – p.2/9

The λ-Calculus: What is it? (1)

• Pure notion of effective computation
procedure: all computation reduced to
function definition and application.

G54FOP: Lecture 7 – p.2/9

The λ-Calculus: What is it? (1)

• Pure notion of effective computation
procedure: all computation reduced to
function definition and application.

• Invented in the 1920s by Alonzo Church.

G54FOP: Lecture 7 – p.2/9

The λ-Calculus: What is it? (1)

• Pure notion of effective computation
procedure: all computation reduced to
function definition and application.

• Invented in the 1920s by Alonzo Church.
• Cf. other formalisations of the notion of

effective computation; e.g., the Turing
machine.

G54FOP: Lecture 7 – p.2/9

The λ-Calculus: What is it? (1)

• Pure notion of effective computation
procedure: all computation reduced to
function definition and application.

• Invented in the 1920s by Alonzo Church.
• Cf. other formalisations of the notion of

effective computation; e.g., the Turing
machine.

• The λ-calculus and Turing Machines are
equivalent in that they capture the exact same
notion of what “computation” means.

G54FOP: Lecture 7 – p.2/9

The λ-Calculus: What is it? (2)

• The Church-Turing Hypothesis: The
λ-calculus, Turing Machines, etc. coincides
with our intuitive understanding of what
“computation” means.

G54FOP: Lecture 7 – p.3/9

The λ-Calculus: What is it? (2)

• The Church-Turing Hypothesis: The
λ-calculus, Turing Machines, etc. coincides
with our intuitive understanding of what
“computation” means.

• The λ-calculus is important because it is at
once:
- very simple, yet in essence a practically

useful programming language
- mathematically precise, allowing for formal

reasoning.

G54FOP: Lecture 7 – p.3/9

Key Idea

λ-abstraction (or anonymous function):

λx . t

G54FOP: Lecture 7 – p.4/9

Key Idea

λ-abstraction (or anonymous function):

one-argument function

λx . t

G54FOP: Lecture 7 – p.4/9

Key Idea

λ-abstraction (or anonymous function):

one-argument function

λx . t
formal argument

G54FOP: Lecture 7 – p.4/9

Key Idea

λ-abstraction (or anonymous function):

one-argument function

λx . t function body
formal argument

G54FOP: Lecture 7 – p.4/9

Syntax

t → terms:
x variable

| λx.t abstraction
| t t application

G54FOP: Lecture 7 – p.5/9

Syntax

t → terms:
x variable

| λx.t abstraction
| t t application

Note:

G54FOP: Lecture 7 – p.5/9

Syntax

t → terms:
x variable

| λx.t abstraction
| t t application

Note:
• x is the syntactic category of variables. We

will use actual names like x, y, z, u, v, w, . . .

G54FOP: Lecture 7 – p.5/9

Syntax

t → terms:
x variable

| λx.t abstraction
| t t application

Note:
• x is the syntactic category of variables. We

will use actual names like x, y, z, u, v, w, . . .
• λ-abstractions often named for convenience.

E.g. I ≡ λx.x.

G54FOP: Lecture 7 – p.5/9

Syntax

t → terms:
x variable

| λx.t abstraction
| t t application

Note:
• x is the syntactic category of variables. We

will use actual names like x, y, z, u, v, w, . . .
• λ-abstractions often named for convenience.

E.g. I ≡ λx.x. Just an abbreviation!

G54FOP: Lecture 7 – p.5/9

Syntax

t → terms:
x variable

| λx.t abstraction
| t t application

Note:
• x is the syntactic category of variables. We

will use actual names like x, y, z, u, v, w, . . .
• λ-abstractions often named for convenience.

E.g. I ≡ λx.x. Just an abbreviation!
So e.g. F ≡ λx.(. . . F . . .) not valid def. Why?

G54FOP: Lecture 7 – p.5/9

Scope

G54FOP: Lecture 7 – p.6/9

Scope

• An occurrence of x is bound if it occurs in
the body t of a λ-abstraction λx.t.

G54FOP: Lecture 7 – p.6/9

Scope

• An occurrence of x is bound if it occurs in
the body t of a λ-abstraction λx.t.

• A non-bound occurrence is free.

G54FOP: Lecture 7 – p.6/9

Scope

• An occurrence of x is bound if it occurs in
the body t of a λ-abstraction λx.t.

• A non-bound occurrence is free.
• A λ-term with no free variables is called

closed. Otherwise open.

G54FOP: Lecture 7 – p.6/9

Scope

• An occurrence of x is bound if it occurs in
the body t of a λ-abstraction λx.t.

• A non-bound occurrence is free.
• A λ-term with no free variables is called

closed. Otherwise open.
• A closed λ-term is called a combinator.

G54FOP: Lecture 7 – p.6/9

Exercise

In the following:
• Which variables are free and which are

bound?
• Which terms are open and which are closed?

(a) x (d) λx.λy.x y

(b) λx.x (e) (λx.x) x

(c) λx.y (f) λx.λy.(λx.x y) (λz.x y)

G54FOP: Lecture 7 – p.7/9

Operational Semantics (1)

Sole means of computation: β-reduction or
function application:

(λx.t1) t2 →
β

[x 7→ t2]t1

where
[x 7→ t2]t1

means “term t1 with all free occurrences of x

(with respect to t1) replaced by t2.”

Subtle problems concerning name clashes will
be considered later.

G54FOP: Lecture 7 – p.8/9

Operational Semantics (2)

A term that can be β-reduced is called a
(β-)redex.

Exercise: Underline the redexes in

(λx.x) ((λx.x) (λz.(λx.x) z))

G54FOP: Lecture 7 – p.9/9

	The $lambda $-Calculus: What is it? (1)
	The $lambda $-Calculus: What is it? (2)
	Key Idea
	Syntax
	Scope
	Exercise
	Operational Semantics (1)
	Operational Semantics (2)

