
G54FOP: Lecture 11
Untyped λ-calculus: Operational Semantics

and Reduction Orders

Henrik Nilsson

University of Nottingham, UK

G54FOP: Lecture 11 – p.1/21

Name Capture

Recall that
[x 7→ t]F

means “substitute t for free occurrences of x in F .

[x 7→ y](λx.x) =

[x 7→ y](λy.x)

G54FOP: Lecture 11 – p.2/21

Substitution Caveats

We have seen that there are some caveats with
substitution:

• Must only substitute for free variables:

[x 7→ t](λx.x) 6= λx.t

• Must avoid name capture :

[x 7→ y](λy.x) 6= λy.y

“Substitution” almost always means
capture-avoiding substitution .

G54FOP: Lecture 11 – p.3/21

Capture-Avoiding Substitution (1)

[x 7→ s]y =

s, if x ≡ y

y, if x 6≡ y

[x 7→ s](t1 t2) = ([x 7→ s]t1) ([x 7→ s]t2)

[x 7→ s](λy.t) =

λy.t, if x ≡ y

λy.[x 7→ s]t, if x 6≡ y ∧ y /∈ FV(s)

λz.[x 7→ s]([y 7→ z]t), if x 6≡ y ∧ y ∈ FV(s),

where z is fresh

where s, t and indexed variants denote lambda-terms; x,
y, and z denote variables; FV(t) denotes the free variables
of term t; and ≡ denotes syntactic equality.

G54FOP: Lecture 11 – p.4/21

Capture-Avoiding Substitution (2)

The condition “z is fresh” can be relaxed:

z 6≡ x ∧ z /∈ FV (s) ∧ z /∈ FV (t)

is enough.

G54FOP: Lecture 11 – p.5/21

Capture-Avoiding Substitution (3)
A slight variation:

[x 7→ s]y =

s, if x ≡ y

y, if x 6≡ y

[x 7→ s](t1 t2) = ([x 7→ s]t1) ([x 7→ s]t2)

[x 7→ s](λy.t) =

λy.t, if x ≡ y

λy.[x 7→ s]t, if x 6≡ y ∧ y /∈ FV(s)

[x 7→ s](λz.[y 7→ z]t), if x 6≡ y ∧ y ∈ FV(s),

where z /∈ FV(s)

∧ z /∈ FV(t)

Homework: Why isn’t z 6≡ x needed in this case?
G54FOP: Lecture 11 – p.6/21

α- and η-conversion

• Renaming bound variables is known as
α-conversion . E.g.

(λx.x) ↔
α

(λy.y)

• Note that (λx.F x) G →
β

F G if x not free in F .

This justifies η-conversion :

λx.F x ↔
η

F if x /∈ FV(F)

G54FOP: Lecture 11 – p.7/21

Capture-Avoiding Substitution (4)

If we adopt the convention that terms that differ only in the
names of bound variables are interchangeable in all
contexts, then the following partial definition can be used
as long as it is understood that an α-conversion has to be
carried out if no case applies:

[x 7→ s]y =

s, if x ≡ y

y, if x 6≡ y

[x 7→ s](t1 t2) = ([x 7→ s]t1) ([x 7→ s]t1)

[x 7→ s](λy.t) = λy.[x 7→ s]t, if x 6≡ y ∧ y /∈ FV(s)

G54FOP: Lecture 11 – p.8/21

Op. Semantics: Call-By-Value (1)

Abstract syntax:

t → terms:

x variable

| λx.t abstraction

| t t application

Values:
v → values:

λx.t abstraction value

G54FOP: Lecture 11 – p.9/21

Op. Semantics: Call-By-Value (2)

Call-by-value operational semantics:

t1 −→ t′
1

t1 t2 −→ t′
1
t2

(E-APP1)

t2 −→ t′
2

v1 t2 −→ v1 t′
2

(E-APP2)

(λx.t) v −→ [x 7→ v]t (E-APPABS)

G54FOP: Lecture 11 – p.10/21

Op. Semantics: Full β-reduction

Operational semantics for full β-reduction
(non-deterministic). Syntax as before, but the
syntactic category of values not used:

t1 −→ t′
1

t1 t2 −→ t′
1
t2

(E-APP1)

t2 −→ t′
2

t1 t2 −→ t1 t′
2

(E-APP2)

(λx.t1) t2 −→ [x 7→ t2]t1 (E-APPABS)

G54FOP: Lecture 11 – p.11/21

Op. Semantics: Normal-Order

Normal-order operational semantics is somewhat
awkward to specify. Like full β-reduction, except
left-most, outermost redex first.

G54FOP: Lecture 11 – p.12/21

Op. Semantics: Call-By-Name

Call-by-name like normal order, but no evaluation
under λ:

t1 −→ t′
1

t1 t2 −→ t′
1
t2

(E-APP1)

(λx.t1) t2 −→ [x 7→ t2]t1 (E-APPABS)

Note: Argument not evaluated “prior to call”!

G54FOP: Lecture 11 – p.13/21

Call-By-Value vs. Call-By-Name (1)

Exercises:

1. Evaluate the following term both by
call-by-name and call-by-value:

(λx.λy.y) ((λz.z z) (λz.z z))

2. For some term t and some value v, suppose
t

∗
→
β

v in, say 100 steps. Consider (λx.x x) t

under both call-by-value and call-by-name.
How many steps of evaluation in the two
cases? (Roughly)

G54FOP: Lecture 11 – p.14/21

Call-By-Value vs. Call-By-Name (2)

Questions:
• Do we get the same result (modulo termination

issues) regardless of evaluation order?
• Which order is “better”?

G54FOP: Lecture 11 – p.15/21

The Church-Rosser Theorems (1)

Church-Rosser Theorem I:

For all λ-calculus terms t, t1, and t2 such
that t

∗
→
β

t1 and t
∗
→
β

t2, there exists a term

t3 such that t1
∗
→
β

t3 and t2
∗
→
β

t3.

That is, β-reduction is confluent .

This is also known as the “diamond property”.

G54FOP: Lecture 11 – p.16/21

The Church-Rosser Theorems (2)

Church-Rosser Theorem II:

If t1
∗
→
β

t2 and t2 is a normal form (no

redexes), then t1 will reduce to t2 under
normal-order reduction.

G54FOP: Lecture 11 – p.17/21

Which Reduction Order? (1)

So, which reduction order is “best”?
• Depends on the application. Sometimes

reduction under λ needed, sometimes not.
• Normal-order reduction has the best possible

termination properties: if a term has a normal
form, normal-order reduction will find it.

G54FOP: Lecture 11 – p.18/21

Which Reduction Order? (2)

• In terms of reduction steps (fewer is more
efficient), none is strictly better than the other.
E.g.:
- Call-by-value may run forever on a term

where normal-order would terminate.
- Normal-order often duplicates redexes (by

substitution of reducible expressions for
variables), thereby possibly duplicating
work, something that call-by-value avoids.

G54FOP: Lecture 11 – p.19/21

Lazy Evaluation (1)

Lazy evaluation is an implementation
technique that seeks to combine the
advantages of the various orders by:

• evaluate on demand only, but
• evaluate any one redex at most once

(avoiding duplication of work)

Idea: Graph Reduction to avoid duplication by
explicit sharing of redexes.

G54FOP: Lecture 11 – p.20/21

Lazy Evaluation (2)

Result: normal-order/call-by-need semantics, but
efficiency closer to call-by-value (when
call-by-value doesn’t do unnecessary work).
However, there are inherent implementation
overheads of lazy evaluation.

Lazy evaluation is used in languages like Haskell.

G54FOP: Lecture 11 – p.21/21

	Name Capture
	Substitution Caveats
	Capture-Avoiding Substitution (1)
	Capture-Avoiding Substitution (2)
	Capture-Avoiding Substitution (3)
	$alpha $- and $eta $-conversion
	Capture-Avoiding Substitution (4)
	Op. Semantics: Call-By-Value (1)
	Op. Semantics: Call-By-Value (2)
	Op. Semantics: Full $�eta $-reduction
	Op. Semantics: Normal-Order
	Op. Semantics: Call-By-Name
	Call-By-Value vs. Call-By-Name (1)
	Call-By-Value vs. Call-By-Name (2)
	The Church-Rosser Theorems (1)
	The Church-Rosser Theorems (2)
	Which Reduction Order? (1)
	Which Reduction Order? (2)
	Lazy Evaluation (1)
	Lazy Evaluation (2)

