G54FOP: Lecture 12 *Types and Type Systems I*

Henrik Nilsson

University of Nottingham, UK

Types and Type Systems (1)

Type systems are an example of *lightweight formal methods*:

- highly automated
- but with limited expressive power.
- A plausible definition (Pierce):

A type system is a tractable syntactic method for proving the absence of certain program behaviors by classifying phrases according to the kinds of values they compute.

This Lecture

- Types and type systems
- Language safety
- Achieving safety through types:
 - relating static and dynamic semantics
 - Safety = Progress + Preservation

Much of this lecture follows parts of the first few chapters of B. C. Pierce 2002 *Types and Programming Languages* closely.

Types and Type Systems (2)

Notes on the definition:

- Static (= compile time) checking implied since the goal is to prove absence of certain errors.
- Done by *classifying* syntactic phrases (or *terms*) according to the *kinds* of value they compute: a type system computes a *static approximation* of the run-time behaviour.

G54FOP: Lecture 12 - p.3/34

G54FOP: Lecture 12 - p.1/34

G54FOP: Lecture 12 - p.2/34

Types and Type Systems (3)

Example: if known that two program fragments exp_1 and exp_2 compute integers (*classification*), then it is safe to add those numbers together (*absence of errors*):

 $exp_1 + exp_2$

Also known that the result is an integer. While not known exactly which integers are involved, at least known they are integers and nothing else (*static approximation*).

G54FOP: Lecture 12 - p.5/34

G54FOP: Lecture 12 - p.7/34

Types and Type Systems (5)

 A type system is necessarily conservative: some well-behaved programs will be rejected.

For example, typically

if $complex \ test$ then S else $type \ error$

will be rejected as ill-typed, even if *complex test* actually always evaluates to true, since that cannot be known statically in general.

Types and Type Systems (4)

 "Dynamically typed" languages do not have a type system according to this definition; they should really be called *dynamically checked*.

Example. In a dynamically checked language, $exp_1 + exp_2$ would be evaluated as follows:

- Evaluate exp_1 and exp_2
- Add results together in a manner depending on their types (integer addition, floating point addition, ...), or signal error if not possible.

G54FOP: Lecture 12 - p.6/34

G54FOP: Lecture 12 - p.8/34

Types and Type Systems (6)

 A type system checks for *certain* kinds of bad program behaviour, or *run-time errors*.
 Exactly which depends on the type system and the language design.

For example: current main-stream type systems typically

do check that arithmetic operations only are done on numbers

do not check that the second operand of division is not zero, that array indices are within bounds.

Types and Type Systems (7)

 The safety or soundness of a type system must be judged with respect to its own set of run-time errors.

Language Safety (2)

- Language safety not the same as static typing: safety can be achieved through static typing and/or dynamic run-time checks.
- Scheme is a dynamically checked safe language.
- Even statically typed languages usually use some dynamic checks; e.g.:
 - checking of array bounds
 - down-casting (e.g. Java)
 - checking for division bt zero
 - pattern-matching failure

Language Safety (1)

Language safety is a contentious notion. A possible definition (Pierce):

A safe language is one that protects its own abstractions.

For example: a Java object should behave as an object; e.g. it would be bad if it was destroyed by creation of some *other* object.

Other examples: lexical scope rules, visibility attributes (public, protected, ...).

Language Safety (3)

Some examples of statically and dynamically checked safe and unsafe high-level languages:

	Statically chkd	Dynamically chkd
Safe	ML, Haskell, Java	Lisp, Scheme, Perl, Python, Postscript
Unsafe	C, C++	Certain Basic dialects

G54FOP: Lecture 12 - p.11/34

G54FOP: Lecture 12 - p.9/34

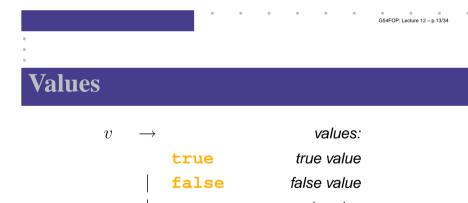
G54FOP: Lecture 12 - p.10/34

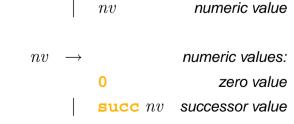
Static and Dynamic Semantics

In summary:

- A type system statically proves properties about the dynamic behaviour of a programs.
- To make precise exactly what these properties are, and formally prove that a type system achieves its goals, both the
 - static semantics
 - dynamic semantics

must first be formalized.



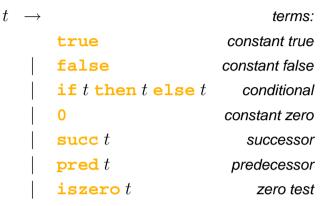


G54FOP: Lecture 12 - p 15/34

Recall: all values are *normal forms*.

Example Language: Abstract Syntax

Example language. (Will be extended later.)



Dynamic Semantics (1)

We will define the dynamic semantics *operationally* by giving a (small step) evaluation relation:

 $t \longrightarrow t'$ Read: t evaluates to t' in one step

G54FOP: Lecture 12 - p.14/34

G54FOP: Lecture 12 - p.16/34

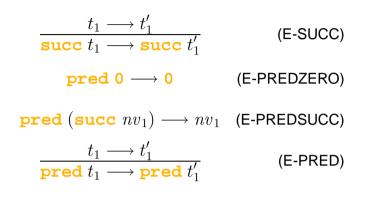
if true then t_2 **else** $t_3 \longrightarrow t_2$ (E-IFTRUE)

if false then t_2 **else** $t_3 \longrightarrow t_3$ (E-IFFALSE)

$$\frac{t_1 \longrightarrow t'_1}{\texttt{if } t_1 \texttt{then } t_2 \texttt{else } t_3} \tag{E-IF}$$

$$\longrightarrow \texttt{if } t'_1 \texttt{then } t_2 \texttt{else } t_3$$

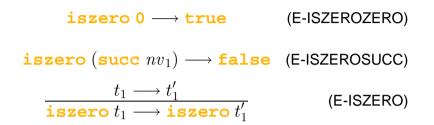
Dynamic Semantics (2)



6 654EOP Lecture 12 – p 17/34

654FOP: Lecture 12 – p. 19/34

Dynamic Semantics (3)



G54EOP: Lecture 12 – p 18/34

654EOP: Lecture 12 – p.20/34

Stuck Terms

- Recall that values are normal forms and cannot be evaluated further; for example:
 - true
 - succ (succ 0)
- However, all normal forms are not values! Can you find an example?
 - if 0 then pred 0 else 0

Normal forms that are not values are called *stuck terms*.

Stuckness and Run-Time Errors

- Why stuck?
 - A stuck term is *nonsensical* according to the dynamic semantics.
 - We are attempting to *break the abstractions* of the language.
- We let the notion of getting stuck *model run-time errors*.
- The goal of a type system is to rule out all ill-defined programs, thus guaranteeing that a "good', i.e., well-typed, program never gets stuck!

Aside: Curry vs. Church Style

This is the "Curry-style" approach: the dynamic semantics comes before the static semantics.

Alternatively, one can start with the static semantics, and then only consider the dynamic semantics of well-typed terms: the "Church-style" approach.

G54FOP: Lecture 12 - p.21/34

G54FOP: Lecture 12 - p.23/34

Types

At this point, there are only two types, booleans and the natural numbers:

T	\rightarrow		types:
		Bool	type of booleans
		Nat	type of natural numbers

Typing Rules

true:Bool	(T-TRUE)	
false:Bool	(T-FALSE)	
$\frac{t_1:\texttt{Bool} t_2:T t_3:T}{\texttt{if}\ t_1\ \texttt{then}\ t_2\ \texttt{else}\ t_3:T}$	(T-IF)	
0:Nat	(T-ZERO)	
$rac{t_1: extsf{Nat}}{ extsf{succ} \ t_1: extsf{Nat}}$	(T-SUCC)	
$rac{t_1: \mathtt{Nat}}{\mathtt{pred} \ t_1: \mathtt{Nat}}$	(T-PRED)	
$\displaystyle rac{t_1: extsf{Nat}}{ extsf{iszero} t_1: extsf{Bool}}$	(T-ISZERO)	

Safety = Progress + Preservation (1)

G54FOP: Lecture 12 - p.22/34

G54FOP: Lecture 12 - p.24/34

The most basic property of a type system: *safety*, or *"well typed programs do not go wrong"*, where "wrong" means entering a "stuck state".

This breaks down into two parts:

- Progress: A well-typed term is not stuck.
- Preservation: If a well-typed term takes a step of evaluation, then the resulting term is also well-typed. (Aka Subject Reduction)

Together, these properties say that a well-typed term can never reach a stuck state during evaluation.

Safety = Progress + Preservation (2)

Formally:

• THEOREM [PROGRESS]: Suppose that t is a well-typed term (i.e., t : T), then either t is a value or else there is some t' with $t \longrightarrow t'$.

PROOF: By induction on a derivation of t : T.

• THEOREM [PRESERVATION]: If t : T and $t \longrightarrow t'$ then t' : T.

PROOF: By induction on a derivation of t : T.

G54FOP: Lecture 12 - p.25/34

G54FOP: Lecture 12 - p.27/34

(Strong form: exact type T preserved.)

Progress: A Proof Fragment (2)

A typical case when proving Progress by induction on a derivation of t : T.

Case T-IF: $t = if t_1 then t_2 else t_3$ $t_1 : Bool t_2 : T t_3 : T$

By ind. hyp, either t_1 is a value, or else there is some t'_1 such that $t_1 \longrightarrow t'_1$. If t_1 is a value, then it must be either **true** or **false**, in which case either E-IFTRUE or E-IFFALSE applies to t. On the other hand, if $t_1 \longrightarrow t'_1$, then by E-IF, $t \longrightarrow if t'_1$ then t_2 else t_3 .

Progress: A Proof Fragment (1)

The relevant *typing* and *evaluation* rules for the case T-IF:

$$\frac{t_1: \texttt{Bool} \quad t_2: T \quad t_3: T}{\texttt{if} \ t_1 \ \texttt{then} \ t_2 \ \texttt{else} \ t_3: T} \tag{T-IF}$$

if true then t_2 **else** $t_3 \longrightarrow t_2$ (E-IFTRUE)

if false then t_2 else $t_3 \longrightarrow t_3$ (E-IFFALSE)

$$\begin{array}{c} t_1 \longrightarrow t'_1 \\ \hline \texttt{if} t_1 \texttt{then} t_2 \texttt{else} t_3 \\ \longrightarrow \texttt{if} t'_1 \texttt{then} t_2 \texttt{else} t_3 \end{array} \tag{E-IF}$$

G54FOP: Lecture 12 - p.26/34

G54EOP: Lecture 12 - p 28/34

Preservation: A **Proof** Fragment (1)

A typical case when proving Preservation by induction on a derivation of t : T.

Case T-IF: $t = if t_1 then t_2 else t_3$ $t_1 : Bool t_2 : T t_3 : T$

Evaluation can be made by one of the rules E-IFTRUE, E-IFFALSE, E-IF.

If evaluation is by any of the two former, then the result is either t_2 or t_3 . But both have type T, just like t, so the type is manifestly preserved.

Preservation: A Proof Fragment (2)

Case T-IF: $t = if t_1 then t_2 else t_3$ $t_1 : Bool t_2 : T t_3 : T$

If evaluation is by rule E-IF, then we know $t_1 \longrightarrow t'_1$. Thus, by the induction hypothesis, we know t'_1 : Bool. And then we can conclude by T-IF that if t'_1 then t_2 else t_3 : T, so the type is preserved also in this case.

G54FOP: Lecture 12 - p.29/34

G54FOP: Lecture 12 - p.31/34

Homework

- 1. Prove Progress for the case T-TRUE.
- 2. Prove Preservation for the case T-TRUE.
- 3. Prove Progress for the case T-ISZERO.
- 4. Prove Preservation for the case T-ISZERO.

Exceptions (1)

What about terms like

- division by zero
- head of empty list

that usually are considered well-typed?

If the type system does not rule them out, we need to differentiate those from stuck terms, or we can no longer claim that "well-typed programs do not go wrong"!

Exceptions (2)

Idea: allow *exceptions* to be raised, and make it well-defined what happens when exceptions are raised.

G54FOP: Lecture 12 - p.30/34

G54FOP: Lecture 12 - p.32/34

For example:

- introduce a term error
- introduce evaluation rules like

head [] \longrightarrow error

• typing rule: **error** : T

Exceptions (3)

 introduce propagation rules to ensure that the entire program evaluates to error once the exception has been raised (unless there is some exception handling mechanism), e.g.:

$\mathbf{pred}\;\mathbf{error}\longrightarrow\mathbf{error}$

 change the Progress theorem slightly to allow for exceptions:

THEOREM [PROGRESS]: Suppose that t is a well-typed term (i.e., t : T), then either t is a value **or error**, or else there is some t' with $t \longrightarrow t'$.

G54FOP: Lecture 12 - p.33/34

Aside: error is not a value

For technical reasons, to avoid overlap between evaluation rules that propagate error and the normal ones, it can be preferable to not consider error a value.

E.g., for function application we might have

$$\lambda x \, {\scriptstyle \bullet} \, t) \; v \longrightarrow [x \mapsto v] t$$

which would overlap with

$v \operatorname{error} \longrightarrow \operatorname{error}$

G54FOP: Lecture 12 - p.34/34

if error were considered a value.