
G54FOP: Lecture 12
Types and Type Systems I

Henrik Nilsson

University of Nottingham, UK

G54FOP: Lecture 12 – p.1/34

This Lecture

• Types and type systems
• Language safety
• Achieving safety through types:

- relating static and dynamic semantics
- Safety = Progress + Preservation

Much of this lecture follows parts of the first few
chapters of B. C. Pierce 2002 Types and
Programming Languages closely.

G54FOP: Lecture 12 – p.2/34

Types and Type Systems (1)

Type systems are an example of lightweight
formal methods :

• highly automated
• but with limited expressive power.

A plausible definition (Pierce):

A type system is a tractable syntactic
method for proving the absence of certain
program behaviors by classifying phrases
according to the kinds of values they
compute.

G54FOP: Lecture 12 – p.3/34

Types and Type Systems (2)

Notes on the definition:
• Static (= compile time) checking implied

since the goal is to prove absence of certain
errors.

• Done by classifying syntactic phrases (or
terms ) according to the kinds of value they
compute: a type system computes a static
approximation of the run-time behaviour.

G54FOP: Lecture 12 – p.4/34



Types and Type Systems (3)

Example: if known that two program fragments
exp1 and exp2 compute integers (classification ),
then it is safe to add those numbers together
(absence of errors ):

exp1 + exp2

Also known that the result is an integer. While
not known exactly which integers are involved, at
least known they are integers and nothing else
(static approximation ).

G54FOP: Lecture 12 – p.5/34

Types and Type Systems (4)

• “Dynamically typed” languages do not have a
type system according to this definition; they
should really be called dynamically checked .

Example. In a dynamically checked language,
exp1 + exp2 would be evaluated as follows:

• Evaluate exp1 and exp2

• Add results together in a manner depending
on their types (integer addition, floating point
addition, . . . ), or signal error if not possible.

G54FOP: Lecture 12 – p.6/34

Types and Type Systems (5)

• A type system is necessarily conservative :
some well-behaved programs will be rejected.

For example, typically

if complex test then S else type error

will be rejected as ill-typed, even if complex test

actually always evaluates to true, since that can-

not be known statically in general.

G54FOP: Lecture 12 – p.7/34

Types and Type Systems (6)

• A type system checks for certain kinds of bad
program behaviour, or run-time errors .
Exactly which depends on the type system
and the language design.

For example: current main-stream type systems
typically

do check that arithmetic operations only
are done on numbers
do not check that the second operand of
division is not zero, that array indices are
within bounds.

G54FOP: Lecture 12 – p.8/34



Types and Type Systems (7)

• The safety or soundness of a type system
must be judged with respect to its own set of
run-time errors.

G54FOP: Lecture 12 – p.9/34

Language Safety (1)

Language safety is a contentious notion. A
possible definition (Pierce):

A safe language is one that protects its
own abstractions.

For example: a Java object should behave as an
object; e.g. it would be bad if it was destroyed by
creation of some other object.

Other examples: lexical scope rules, visibility at-

tributes (public, protected, . . . ).

G54FOP: Lecture 12 – p.10/34

Language Safety (2)

• Language safety not the same as static
typing: safety can be achieved through static
typing and/or dynamic run-time checks.

• Scheme is a dynamically checked safe language.
• Even statically typed languages usually use

some dynamic checks; e.g.:
- checking of array bounds
- down-casting (e.g. Java)
- checking for division bt zero
- pattern-matching failure

G54FOP: Lecture 12 – p.11/34

Language Safety (3)

Some examples of statically and dynamically
checked safe and unsafe high-level languages:

Statically chkd Dynamically chkd

Safe ML, Haskell,
Java

Lisp,
Scheme,
Perl, Python,
Postscript

Unsafe C, C++ Certain Basic
dialects

G54FOP: Lecture 12 – p.12/34



Static and Dynamic Semantics

In summary:

• A type system statically proves properties
about the dynamic behaviour of a programs.

• To make precise exactly what these
properties are, and formally prove that a type
system achieves its goals, both the
- static semantics
- dynamic semantics

must first be formalized.

G54FOP: Lecture 12 – p.13/34

Example Language: Abstract Syntax

Example language. (Will be extended later.)

t → terms:

true constant true

| false constant false

| if t then t else t conditional

| 0 constant zero

| succ t successor

| pred t predecessor

| iszero t zero test

G54FOP: Lecture 12 – p.14/34

Values

v → values:

true true value

| false false value

| nv numeric value

nv → numeric values:

0 zero value

| succ nv successor value

Recall: all values are normal forms .

G54FOP: Lecture 12 – p.15/34

Dynamic Semantics (1)

We will define the dynamic semantics operationally
by giving a (small step) evaluation relation:

t −→ t
′ Read: t evaluates to t

′ in one step

if true then t2 else t3 −→ t2 (E-IFTRUE)

if false then t2 else t3 −→ t3 (E-IFFALSE)

t1 −→ t
′
1

if t1 then t2 else t3

−→ if t
′
1
then t2 else t3

(E-IF)

G54FOP: Lecture 12 – p.16/34



Dynamic Semantics (2)

t1 −→ t
′
1

succ t1 −→ succ t
′
1

(E-SUCC)

pred 0 −→ 0 (E-PREDZERO)

pred (succ nv 1) −→ nv 1 (E-PREDSUCC)

t1 −→ t
′
1

pred t1 −→ pred t
′
1

(E-PRED)

G54FOP: Lecture 12 – p.17/34

Dynamic Semantics (3)

iszero 0 −→ true (E-ISZEROZERO)

iszero (succ nv 1) −→ false (E-ISZEROSUCC)

t1 −→ t
′
1

iszero t1 −→ iszero t
′
1

(E-ISZERO)

G54FOP: Lecture 12 – p.18/34

Stuck Terms

• Recall that values are normal forms and
cannot be evaluated further; for example:
- true
- succ (succ 0)

• However, all normal forms are not values!
Can you find an example?
if 0 then pred 0 else 0

Normal forms that are not values are called
stuck terms .

G54FOP: Lecture 12 – p.19/34

Stuckness and Run-Time Errors
• Why stuck?

- A stuck term is nonsensical according
to the dynamic semantics.

- We are attempting to break the
abstractions of the language.

• We let the notion of getting stuck model
run-time errors .

• The goal of a type system is to rule out all
ill-defined programs, thus guaranteeing that
a “good’, i.e., well-typed , program never
gets stuck !

G54FOP: Lecture 12 – p.20/34



Aside: Curry vs. Church Style

This is the “Curry-style” approach: the dynamic
semantics comes before the static semantics.

Alternatively, one can start with the static
semantics, and then only consider the dynamic
semantics of well-typed terms: the “Church-style”
approach.

G54FOP: Lecture 12 – p.21/34

Types

At this point, there are only two types, booleans
and the natural numbers:

T → types:

Bool type of booleans

| Nat type of natural numbers

G54FOP: Lecture 12 – p.22/34

Typing Rules

true : Bool (T-TRUE)

false : Bool (T-FALSE)

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
(T-IF)

0 : Nat (T-ZERO)

t1 : Nat
succ t1 : Nat (T-SUCC)

t1 : Nat
pred t1 : Nat (T-PRED)

t1 : Nat
iszero t1 : Bool (T-ISZERO)

G54FOP: Lecture 12 – p.23/34

Safety = Progress + Preservation (1)

The most basic property of a type system: safety ,
or “well typed programs do not go wrong” ,
where “wrong” means entering a “stuck state”.

This breaks down into two parts:
• Progress: A well-typed term is not stuck.
• Preservation: If a well-typed term takes a

step of evaluation, then the resulting term is
also well-typed. (Aka Subject Reduction )

Together, these properties say that a well-typed
term can never reach a stuck state during evaluation.

G54FOP: Lecture 12 – p.24/34



Safety = Progress + Preservation (2)

Formally:

• THEOREM [PROGRESS]: Suppose that t is
a well-typed term (i.e., t : T ), then either t is a
value or else there is some t

′ with t −→ t
′.

PROOF: By induction on a derivation of t : T .
• THEOREM [PRESERVATION]: If t : T and

t −→ t
′ then t

′ : T .

PROOF: By induction on a derivation of t : T .

(Strong form: exact type T preserved.)

G54FOP: Lecture 12 – p.25/34

Progress: A Proof Fragment (1)

The relevant typing and evaluation rules for the
case T-IF:

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
(T-IF)

if true then t2 else t3 −→ t2 (E-IFTRUE)

if false then t2 else t3 −→ t3 (E-IFFALSE)

t1 −→ t
′
1

if t1 then t2 else t3

−→ if t
′
1
then t2 else t3

(E-IF)

G54FOP: Lecture 12 – p.26/34

Progress: A Proof Fragment (2)

A typical case when proving Progress by
induction on a derivation of t : T .

Case T-IF: t = if t1 then t2 else t3

t1 : Bool t2 : T t3 : T

By ind. hyp, either t1 is a value, or else there is
some t

′
1

such that t1 −→ t
′
1
. If t1 is a value, then

it must be either true or false, in which case
either E-IFTRUE or E-IFFALSE applies to t. On
the other hand, if t1 −→ t

′
1
, then by E-IF,

t −→ if t
′
1
then t2 else t3.

G54FOP: Lecture 12 – p.27/34

Preservation: A Proof Fragment (1)

A typical case when proving Preservation by
induction on a derivation of t : T .

Case T-IF: t = if t1 then t2 else t3

t1 : Bool t2 : T t3 : T

Evaluation can be made by one of the rules
E-IFTRUE, E-IFFALSE, E-IF.

If evaluation is by any of the two former, then the
result is either t2 or t3. But both have type T , just
like t, so the type is manifestly preserved.

G54FOP: Lecture 12 – p.28/34



Preservation: A Proof Fragment (2)

Case T-IF: t = if t1 then t2 else t3

t1 : Bool t2 : T t3 : T

If evaluation is by rule E-IF, then we know
t1 −→ t

′
1
. Thus, by the induction hypothesis, we

know t
′
1

: Bool. And then we can conclude by
T-IF that if t

′
1
then t2 else t3 : T , so the type is

preserved also in this case.

G54FOP: Lecture 12 – p.29/34

Homework

1. Prove Progress for the case T-TRUE.

2. Prove Preservation for the case T-TRUE.

3. Prove Progress for the case T-ISZERO.

4. Prove Preservation for the case T-ISZERO.

G54FOP: Lecture 12 – p.30/34

Exceptions (1)

What about terms like
• division by zero
• head of empty list

that usually are considered well-typed?

If the type system does not rule them out, we
need to differentiate those from stuck terms, or
we can no longer claim that “well-typed programs
do not go wrong”!

G54FOP: Lecture 12 – p.31/34

Exceptions (2)

Idea: allow exceptions to be raised, and make it
well-defined what happens when exceptions are
raised.

For example:
• introduce a term error

• introduce evaluation rules like

head [] −→ error

• typing rule: error : T

G54FOP: Lecture 12 – p.32/34



Exceptions (3)
• introduce propagation rules to ensure that the

entire program evaluates to error once the
exception has been raised (unless there is
some exception handling mechanism), e.g.:

pred error −→ error

• change the Progress theorem slightly to allow
for exceptions:

THEOREM [PROGRESS]: Suppose that
t is a well-typed term (i.e., t : T ), then
either t is a value or error, or else
there is some t

′ with t −→ t
′.

G54FOP: Lecture 12 – p.33/34

Aside: error is not a value

For technical reasons, to avoid overlap between
evaluation rules that propagate error and the
normal ones, it can be preferable to not consider
error a value.

E.g., for function application we might have

(λx.t) v −→ [x 7→ v]t

which would overlap with

v error −→ error

if error were considered a value.
G54FOP: Lecture 12 – p.34/34


	This Lecture
	Types and Type Systems (1)
	Types and Type Systems (2)
	Types and Type Systems (3)
	Types and Type Systems (4)
	Types and Type Systems (5)
	Types and Type Systems (6)
	Types and Type Systems (7)
	Language Safety (1)
	Language Safety (2)
	Language Safety (3)
	Static and Dynamic Semantics
	Example Language: Abstract Syntax
	Values
	Dynamic Semantics (1)
	Dynamic Semantics (2)
	Dynamic Semantics (3)
	Stuck Terms
	Stuckness and Run-Time Errors
	Aside: Curry vs. Church Style
	Types
	Typing Rules
	Safety = Progress + Preservation (1)
	Safety = Progress + Preservation (2)
	Progress: A Proof Fragment (1)
	Progress: A Proof Fragment (2)
	Preservation: A Proof Fragment (1)
	Preservation: A Proof Fragment (2)
	Homework
	Exceptions (1)
	Exceptions (2)
	Exceptions (3)
	Aside: 	erm {error} is not a value

