
G54FOP: Lecture 13
Types and Type Systems II

Henrik Nilsson

University of Nottingham, UK

G54FOP: Lecture 13 – p.1/26

This Lecture

Extensions:
• typing let-expressions
• typing functions

Much of this lecture follows parts of the first few
chapters of B. C. Pierce 2002 Types and
Programming Languages closely.

G54FOP: Lecture 13 – p.2/26

Recap: Example Language (1)

Abstract syntax:

t → terms:

true constant true

| false constant false

| if t then t else t conditional

| 0 constant zero

| succ t successor

| pred t predecessor

| iszero t zero test

G54FOP: Lecture 13 – p.3/26

Recap: Example Language (2)

Values:
v → values:

true true value

| false false value

| nv numeric value

nv → numeric values:

0 zero value

| succ nv successor value

G54FOP: Lecture 13 – p.4/26

Recap: Example Language (3)

Dynamic semantics:

t −→ t′ Read: t evaluates to t′ in one step

if true then t2 else t3 −→ t2 (E-IFTRUE)

if false then t2 else t3 −→ t3

t1 −→ t′
1

if t1 then t2 else t3
−→ if t′

1
then t2 else t3

(E-IF)

G54FOP: Lecture 13 – p.5/26

Recap: Example Language (4)

t1 −→ t′
1

succ t1 −→ succ t′
1

(E-SUCC)

pred 0 −→ 0 (E-PREDZERO)

pred (succ nv 1) −→ nv 1 (E-PREDSUCC)

t1 −→ t′
1

pred t1 −→ pred t′
1

(E-PRED)

G54FOP: Lecture 13 – p.6/26

Recap: Example Language (5)

iszero 0 −→ true (E-ISZEROZERO)

iszero (succ nv 1) −→ false (E-ISZEROSUCC)

t1 −→ t′
1

iszero t1 −→ iszero t′
1

(E-ISZERO)

G54FOP: Lecture 13 – p.7/26

Recap: Example Language (6)

Types and typing rules::

T → types:

Bool type of booleans

| Nat type of natural numbers

G54FOP: Lecture 13 – p.8/26

Recap: Example Language (7)

true : Bool (T-TRUE)

false : Bool (T-FALSE)

t1 : Bool t2 : T t3 : T
if t1 then t2 else t3 : T

0 : Nat (T-ZERO)

t1 : Nat
succ t1 : Nat (T-SUCC)

t1 : Nat
pred t1 : Nat (T-PRED)

t1 : Nat
iszero t1 : Bool (T-ISZERO)

G54FOP: Lecture 13 – p.9/26

Extension: Let Bindings (1)

Syntactic extension:

t → . . . terms:

| x variable

| let x = t in t let binding

New evaluation rules:
let x = v1 in t2 −→ [x 7→ v1] t2 (E-LETV)

t1 −→ t′
1

let x = t1 in t2 −→ let x = t′
1
in t2

(E-LET)

G54FOP: Lecture 13 – p.10/26

Extension: Let Bindings (2)

We now need a typing context or type
environment to keep track of types of variables.

The typing relation thus become a ternary
relation:

Γ ⊢ t : T

Read: term t has type T in type environment Γ.

G54FOP: Lecture 13 – p.11/26

Extension: Let Bindings (3)

Context-related notation:
• Empty context:

∅

• Extending a context:

Γ, x : T

New declaration understood to replace any
earlier declaration for variable with same name.

• Stating that type of a variable is given by context:

x : T ∈ Γ or Γ(x) = T
G54FOP: Lecture 13 – p.12/26

Extension: Let Bindings (4)

Updated typing rules:

Γ ⊢ true : Bool (T-TRUE)

Γ ⊢ false : Bool (T-FALSE)

Γ ⊢ t1 : Bool Γ ⊢ t2 : T Γ ⊢ t3 : T
Γ ⊢ if t1 then t2 else t3 : T

(T-IF)

G54FOP: Lecture 13 – p.13/26

Extension: Let Bindings (5)

Updated typing rules:

Γ ⊢ 0 : Nat (T-ZERO)

Γ ⊢ t1 : Nat
Γ ⊢ succ t1 : Nat (T-SUCC)

Γ ⊢ t1 : Nat
Γ ⊢ pred t1 : Nat (T-PRED)

Γ ⊢ t1 : Nat
Γ ⊢ iszero t1 : Bool (T-ISZERO)

G54FOP: Lecture 13 – p.14/26

Extension: Let Bindings (6)

New typing rules:

x : T ∈ Γ
Γ ⊢ x : T

(T-VAR)

G54FOP: Lecture 13 – p.15/26

Extension: Let Bindings (6)

New typing rules:

x : T ∈ Γ
Γ ⊢ x : T

(T-VAR)

Γ ⊢ t1 : T1 Γ, x : T1 ⊢ t2 : T2

Γ ⊢ let x = t1 in t2 : T2

(T-LET)

G54FOP: Lecture 13 – p.15/26

Exercise

Derive:

∅ ⊢ let x = (let y = 0 in y) in succ x : Nat

G54FOP: Lecture 13 – p.16/26

Extension: Functions (1)

Syntactic extension:

t → . . . terms:

| λx:T.t abstraction

| t t application

v → . . . values:

| λx:T.t abstraction value

T → . . . types:

| T→T type of functions

G54FOP: Lecture 13 – p.17/26

Extension: Functions (2)

New evaluation rules:
t1 −→ t′

1

t1 t2 −→ t′
1
t2

(E-APP1)

t2 −→ t′
2

v1 t2 −→ v1 t′
2

(E-APP2)

(λx:T11.t12) v2 −→ [x 7→ v2] t12 (E-APPABS)

Note:
• left to right evaluation order: first the function

(E-APP1), then the argument (E-APP2)
• call-by-value: the argument fully evaluated

before function “invoked” (E-APPABS).
G54FOP: Lecture 13 – p.18/26

Extension: Functions (3)

New typing rules:

Γ, x : T1 ⊢ t2 : T2

Γ ⊢ λx:T1.t2 : T1→T2

(T-ABS)

G54FOP: Lecture 13 – p.19/26

Extension: Functions (3)

New typing rules:

Γ, x : T1 ⊢ t2 : T2

Γ ⊢ λx:T1.t2 : T1→T2

(T-ABS)

Γ ⊢ t1 : T11→T12 Γ ⊢ t2 : T11

Γ ⊢ t1 t2 : T12

(T-APP)

G54FOP: Lecture 13 – p.19/26

Homework

Derive:

Γ1 ⊢ (λf:Nat→Nat.f 0) double : Nat

given
Γ1 = ∅,double : Nat→Nat

G54FOP: Lecture 13 – p.20/26

The Simply Typed λ-Calculus (1)

The “function fragment” of our language is known
as the (pure) simply typed λ-Calculus (λ→):

T → types:

| B fixed set of base types

| T→T type of functions

t → terms:

| x variable

| c constant (optional)

| λx:T.t abstraction

| t t application

G54FOP: Lecture 13 – p.21/26

The Simply Typed λ-Calculus (2)

x : T ∈ Γ
Γ ⊢ x : T

(T-VAR)

c is a constant of type T
Γ ⊢ c : T

(T-CONST-c)

Γ, x : T1 ⊢ t2 : T2

Γ ⊢ λx:T1.t2 : T1→T2

(T-ABS)

Γ ⊢ t1 : T11→T12 Γ ⊢ t2 : T11

Γ ⊢ t1 t2 : T12

(T-APP)

G54FOP: Lecture 13 – p.22/26

The Simply Typed λ-Calculus (3)
• At least one base type needed, or not

possible to construct finite types.

G54FOP: Lecture 13 – p.23/26

The Simply Typed λ-Calculus (3)
• At least one base type needed, or not

possible to construct finite types.
• Frequently, B is taken to consist of only one

type, o, “the type of propositions”, without any
term constants.

G54FOP: Lecture 13 – p.23/26

The Simply Typed λ-Calculus (3)
• At least one base type needed, or not

possible to construct finite types.
• Frequently, B is taken to consist of only one

type, o, “the type of propositions”, without any
term constants.

• The simply typed lambda calculus is strongly
normalizing: well-typed terms always reduce
to a value (regardless of reduction order).

G54FOP: Lecture 13 – p.23/26

The Simply Typed λ-Calculus (3)
• At least one base type needed, or not

possible to construct finite types.
• Frequently, B is taken to consist of only one

type, o, “the type of propositions”, without any
term constants.

• The simply typed lambda calculus is strongly
normalizing: well-typed terms always reduce
to a value (regardless of reduction order).

• Why? Because self application as used in
the definition of e.g. Y or ω ≡ λx.x x cannot
be typed. Thus no way to express recursion.

G54FOP: Lecture 13 – p.23/26

The Simply Typed λ-Calculus (3)

• To see this, note that to type x x, we need both

x : T1→T2

x : T1

for some types T1 and T2; i.e., T1 = T1→T2.
But there is no (finite) solution to this equation.

G54FOP: Lecture 13 – p.24/26

The Simply Typed λ-Calculus (3)

• To see this, note that to type x x, we need both

x : T1→T2

x : T1

for some types T1 and T2; i.e., T1 = T1→T2.
But there is no (finite) solution to this equation.

• However, general recursion can be regained
by adding a special fixed-point operator
(parametrised on type α):

fixα : (α→α)→α

G54FOP: Lecture 13 – p.24/26

Aside: Strong and Weak Normalization

• Strong normalization: Reduction always
terminates for all terms, regardless of
reduction order.

• Weak normalization: There is at least one
terminating reduction sequence for each
term.

G54FOP: Lecture 13 – p.25/26

The Simply Typed λ-Calculus (4)

Q: Why are the constants “optional”?

G54FOP: Lecture 13 – p.26/26

The Simply Typed λ-Calculus (4)

Q: Why are the constants “optional”?

A: As we have seen, constants like true,
false, 0, and associated functions can be
encoded in the base calculus. However:

G54FOP: Lecture 13 – p.26/26

The Simply Typed λ-Calculus (4)

Q: Why are the constants “optional”?

A: As we have seen, constants like true,
false, 0, and associated functions can be
encoded in the base calculus. However:

• It is often convenient to add constants
explicitly, even if λ-definable, along with
δ-reduction rules that describe their
behaviour.

G54FOP: Lecture 13 – p.26/26

The Simply Typed λ-Calculus (4)

Q: Why are the constants “optional”?

A: As we have seen, constants like true,
false, 0, and associated functions can be
encoded in the base calculus. However:

• It is often convenient to add constants
explicitly, even if λ-definable, along with
δ-reduction rules that describe their
behaviour.

• It is sometimes necessary to add constants
that cannot be encoded, e.g. fixed-point
combinators.

G54FOP: Lecture 13 – p.26/26

	This Lecture
	Recap: Example Language (1)
	Recap: Example Language (2)
	Recap: Example Language (3)
	Recap: Example Language (4)
	Recap: Example Language (5)
	Recap: Example Language (6)
	Recap: Example Language (7)
	Extension: Let Bindings (1)
	Extension: Let Bindings (2)
	Extension: Let Bindings (3)
	Extension: Let Bindings (4)
	Extension: Let Bindings (5)
	Extension: Let Bindings (6)
	Exercise
	Extension: Functions (1)
	Extension: Functions (2)
	Extension: Functions (3)
	Homework
	The Simply Typed $lambda $-Calculus (1)
	The Simply Typed $lambda $-Calculus (2)
	The Simply Typed $lambda $-Calculus (3)
	The Simply Typed $lambda $-Calculus (3)
	Aside: Strong and Weak Normalization
	The Simply Typed $lambda $-Calculus (4)

