G54FOP: Lecture 13
Types and Type Systems | |

Henrik Nilsson

University of Nottingham, UK

ThisLecture

Extensions:
typing let-expressions
typing functions

Much of this lecture follows parts of the first few
chapters of B. C. Pierce 2002 Types and
Programming Languages closely.

Recap: Example Language (1)

Abstract syntax:

t — terms:
true constant true
fal se constant false
| f tthentel set conditional
0 constant zero
SUcct successor
predt predecessor
| Szerot zero test

G54FOP: Lecture 13 — p.3/26

.Recap: Example Language (2)

Values:

nv

true
fal se

nv

SUCC nv

values:
true value

false value

numeric value

numeric values:
zero value

successor value

ure 13 — p.4/26

Recap: Example Language (3)

Dynamic semantics:

A Read: t evaluates to ¢’ in one step

|f truethent, el sets — t3 (E-IFTRUE)

| f fal sethent,el set; — t3

th — 1]
| f {1t hent, el se is
— 1 f t{ thenty el sets

(E-IF)

Recap: Example Language (4)

t — t;
7 (E-SUCC)
succ t; — succ t;
pred0 — 0 (E-PREDZERO)

pred (succ nvy) — nv; (E-PREDSUCC)

t — t;
predt; — pred ¢

(E-PRED)

Recap: Example Language (5)

| szero 0 — true (E-ISZEROZERO)

| szer o (succ nv;) — fal se (E-ISZEROSUCC)

t — 1
i szerot; — i szerot

(E-ISZERO)

ure 13 — p.7/26

Recap: Example L anguage (6)

Types and typing rules::
T — types:
Bool type of booleans
| Nat type of natural numbers

Recap: Example Language (7)

true : Bool (T-TRUE)

fal se : Bool (T-FALSE)

t1 : Bool to: 1" tg: 1
1T tytheniyelseity: T

O : Nat y4=131e)
t1 : Nat

succ t; : Nat (T-SUCC)
t1 : Nat

pred ¢; : Nat (EARED)
by - Nat (T-ISZERO)

| Szer o0 t1 : Bool

ure 13 — p.9/26

Extension: Let Bindings (1)

Syntactic extension:
A terms:

| x variable
| let x=tint lethinding

New evaluation rules:
let x=wvi 1Nty — [z —]ty (E-LETV)

t, — 1
let z=t1inty—let z=t]int

(E-LET)

G54FOP: Lecture 13 — p.10/26

Extension: Let Bindings (2)

We now need a typing context or type
environment to keep track of types of variables.

The typing relation thus become a ternary
relation:

I'=t:T

Read: term t has type 7' in type environment I.

Extension: Let Bindings (3)

Context-related notation:
Empty context:

Extending a context:
I' o : T

New declaration understood to replace any
earlier declaration for variable with same name.

Stating that type of a variable is given by context:

r:Tel or I'x)=T

Extension: Let Bindings (4)

Updated typing rules:
['true : Bool (T-TRUE)

I'fal se: Bool (T-FALSE)

I' -t : Bool I'Fito: T T'Htg: T
I'Fi1f it ithentyelseis: T

(T-IF)

Extension: Let Bindings (5)

Updated typing rules:

[' -0 : Nat (T-ZERO)
[' - ¢; : Nat

I'F succ ¢; ;: Nat (FEUEt)
['F ¢ty : Nat

I'F predt; : Nat (PFRED)
[' - ¢; : Nat

I'H1szerot;:Bool UHSZEIRO)

Extension: Let Bindings (6)

New typing rules:

rx: 1T el
I'Fx:T

(T-VAR)

Extension: Let Bindings (6)

New typing rules:
x:1 el
I'Fax: T

F|—t12T1 F,Q?ZT1|—t22T2
['1 et Zl?:tliﬂtQZTQ

(T-VAR)

(T-LET)

Exercise

Derive:

PHlet x=(let y=0iny)insucc x : Nat

Extension: Functions (1)

Syntactic extension:

A terms:
| A Tt abstraction
|ttt application

voo— ... values:

| Axz:T.t abstraction value

T — ... types:
| T—-T type of functions

G54FOP: Lecture 13 — p.17/26

Extension: Functions (2)

New evaluation rules:

t — 1
E-APP1
1ty —] o ()
/
Ly Ly (E-APP2)

U1 t2 — U1 tl2
()\Qj: Tiq. tlg) Vg — [QZ — Ug] t12 (E-APPABS)

Ne](h
left to right evaluation order: first the function
(E-APP1), then the argument (E-APP2)

call-by-value: the argument fully evaluated

before function “invoked” (E-APPABS).

Extension: Functions (3)

New typing rules:

F,ZEIT1|_tQIT2
' = \x: Ty, to 1115

(T-ABS)

Extension: Functions (3)

New typing rules:
F,ZEIT1|_tQIT2
' = \x: Ty, to 1115

[' - tl . T11—>T12 [I' - tQ . T11
[' - tl t2 . T12

(T-ABS)

(T-APP)

Homewor k

Derive:
I'y (Af: Nat —Nat . f 0) doubl e : Nat

given
['; = 0, doubl e : Nat —Nat

The Simply Typed \-Calculus (1)

The “function fragment” of our language Is known
as the (pure) simply typed A-Calculus ()_):

T — types:
| B fixed set of base types
| T—-T type of functions

t — terms:

X variable
C constant (optional)
Aol Tt abstraction
ti application

The Simply Typed \-Calculus (2)

cis a CO?SIEaZH? c%f type T° (T-CONST-c)
F,$ZT1|_t23T2

' = A\x: Tl. o : T1—>T2 (TFABS)

[' - tq : T11—>T12 ['F lo : Tll (T-APP)

F|_t1t22T12

The SImply Typed A-Calculus (3)

At least one base type needed, or not
possible to construct finite types.

The SImply Typed A-Calculus (3)

At least one base type needed, or not
possible to construct finite types.

Frequently, B Is taken to consist of only one
type, o, “the type of propositions”, without any
term constants.

The SImply Typed A-Calculus (3)

At least one base type needed, or not
possible to construct finite types.

Frequently, B Is taken to consist of only one
type, o, “the type of propositions”, without any
term constants.

The simply typed lambda calculus is strongly

normalizing: well-typed terms always reduce
to a value (regardless of reduction order).

The SImply Typed A-Calculus (3)

At least one base type needed, or not
possible to construct finite types.

Frequently, B Is taken to consist of only one
type, o, “the type of propositions”, without any
term constants.

The simply typed lambda calculus is strongly
normalizing: well-typed terms always reduce
to a value (regardless of reduction order).

Why? Because self application as used In
the definition of e.qg. Y or w = A\z. x x cannot
be typed. Thus no way to express recursion.

The SImply Typed A-Calculus (3)

To see this, note that to type x x, we need both

Xr . T1—>T2
X . T1

for some types T, and T5; i.e., T} = T —T5.
But there is no (finite) solution to this equation.

The SImply Typed A-Calculus (3)

To see this, note that to type x x, we need both

Xr . T1—>T2
X . T1

for some types T, and T5; i.e., T} = T —T5.
But there is no (finite) solution to this equation.

However, general recursion can be regained
by adding a special fixed-point operator
(parametrised on type «):

fix, : (a—a)—a

Aside: Strong and Weak Normalization

Strong normalization: Reduction always
terminates for all terms, regardless of
reduction order.

Weak normalization: There Is at least one
terminating reduction sequence for each
term.

The Simply Typed A-Calculus (4)

Q: Why are the constants “optional™?

The Simply Typed A-Calculus (4)

Q: Why are the constants “optional™?

A: As we have seen, constants like t r ue,
fal se, 0O, and assocliated functions can be
encoded In the base calculus. However:

The Simply Typed A-Calculus (4)

Q: Why are the constants “optional™?

A: As we have seen, constants like t r ue,
fal se, 0O, and assocliated functions can be
encoded In the base calculus. However:

It IS often convenient to add constants
explicitly, even if A-definable, along with
o-reduction rules that describe their
behaviour.

The Simply Typed A-Calculus (4)

Q: Why are the constants “optional™?

A: As we have seen, constants like t r ue,
fal se, 0O, and assocliated functions can be
encoded In the base calculus. However:

It IS often convenient to add constants
explicitly, even if A-definable, along with
o-reduction rules that describe their
behaviour.

It IS sometimes necessary to add constants
that cannot be encoded, e.g. fixed-point
combinators.

	This Lecture
	Recap: Example Language (1)
	Recap: Example Language (2)
	Recap: Example Language (3)
	Recap: Example Language (4)
	Recap: Example Language (5)
	Recap: Example Language (6)
	Recap: Example Language (7)
	Extension: Let Bindings (1)
	Extension: Let Bindings (2)
	Extension: Let Bindings (3)
	Extension: Let Bindings (4)
	Extension: Let Bindings (5)
	Extension: Let Bindings (6)
	Exercise
	Extension: Functions (1)
	Extension: Functions (2)
	Extension: Functions (3)
	Homework
	The Simply Typed $lambda $-Calculus (1)
	The Simply Typed $lambda $-Calculus (2)
	The Simply Typed $lambda $-Calculus (3)
	The Simply Typed $lambda $-Calculus (3)
	Aside: Strong and Weak Normalization
	The Simply Typed $lambda $-Calculus (4)

