
G54FOP: Lecture 14
The Polymorphic Lambda Calculus (System F)

Henrik Nilsson

University of Nottingham, UK

G54FOP: Lecture 14 – p.1/17

This Lecture

• Limitations of the simply typed λ-calculus.
• The polymorphic lambda calculus (System F)
• Examples illustrating the power of system F

G54FOP: Lecture 14 – p.2/17

Rcp: The Simply Typed λ-Calculus (1)

T → types:

| B fixed set of base types

| T→T type of functions

Γ → contexts:

| ∅ empty context

| Γ, x : T context extension

Note: Need at least one base type, or there is no
way to construct a type of finite size.

G54FOP: Lecture 14 – p.3/17

Rcp: The Simply Typed λ-Calculus (2)

t → terms:

| x variable

| c constant (optional)

| λx:T.t abstraction

| t t application

v → values:

| c constant (optional)

| λx:T.t abstraction

G54FOP: Lecture 14 – p.4/17

Rcp: The Simply Typed λ-Calculus (3)

x : T ∈ Γ
Γ ⊢ x : T

(T-VAR)

c is a constant of type T
Γ ⊢ c : T

(T-CONST-c)

Γ, x : T1 ⊢ t2 : T2

Γ ⊢ λx:T1.t2 : T1→T2

(T-ABS)

Γ ⊢ t1 : T11→T12 Γ ⊢ t2 : T11

Γ ⊢ t1 t2 : T12

(T-APP)

G54FOP: Lecture 14 – p.5/17

Example: TWICE (1)

Consider defining a function twice:

twice(f, x) = f(f(x))

G54FOP: Lecture 14 – p.6/17

Example: TWICE (1)

Consider defining a function twice:

twice(f, x) = f(f(x))

Easy in the untyped λ-calculus:

TWICE ≡ λf.λx.f (f x)

G54FOP: Lecture 14 – p.6/17

Example: TWICE (1)

Consider defining a function twice:

twice(f, x) = f(f(x))

Easy in the untyped λ-calculus:

TWICE ≡ λf.λx.f (f x)

What about the simply typed λ-calculus?

TWICE ≡ λf:???.λx:???.f (f x)

G54FOP: Lecture 14 – p.6/17

Example: TWICE (1)

Consider defining a function twice:

twice(f, x) = f(f(x))

Easy in the untyped λ-calculus:

TWICE ≡ λf.λx.f (f x)

What about the simply typed λ-calculus?

TWICE ≡ λf:???.λx:???.f (f x)

What should the types of the arguments be?

G54FOP: Lecture 14 – p.6/17

Example: TWICE (1)

Consider defining a function twice:

twice(f, x) = f(f(x))

Easy in the untyped λ-calculus:

TWICE ≡ λf.λx.f (f x)

What about the simply typed λ-calculus?

TWICE ≡ λf:???.λx:???.f (f x)

What should the types of the arguments be?
Can TWICE be used for, say, both Bool and Nat?

G54FOP: Lecture 14 – p.6/17

Example: TWICE (2)
Suppose Bool,Nat ∈ B.

G54FOP: Lecture 14 – p.7/17

Example: TWICE (2)
Suppose Bool,Nat ∈ B.

What matters is that the types would be different
even if we were to encode them in the base
calculus.

G54FOP: Lecture 14 – p.7/17

Example: TWICE (2)
Suppose Bool,Nat ∈ B.

What matters is that the types would be different
even if we were to encode them in the base
calculus.

Thus we need a separate definition for each
type at which we want to use TWICE:

G54FOP: Lecture 14 – p.7/17

Example: TWICE (2)
Suppose Bool,Nat ∈ B.

What matters is that the types would be different
even if we were to encode them in the base
calculus.

Thus we need a separate definition for each
type at which we want to use TWICE:

TWICEBOOL ≡ λf:Bool→Bool.λx:Bool.f (f x)

G54FOP: Lecture 14 – p.7/17

Example: TWICE (2)
Suppose Bool,Nat ∈ B.

What matters is that the types would be different
even if we were to encode them in the base
calculus.

Thus we need a separate definition for each
type at which we want to use TWICE:

TWICEBOOL ≡ λf:Bool→Bool.λx:Bool.f (f x)

TWICENAT ≡ λf:Nat→Nat.λx:Nat.f (f x)

G54FOP: Lecture 14 – p.7/17

Example: TWICE (2)
Suppose Bool,Nat ∈ B.

What matters is that the types would be different
even if we were to encode them in the base
calculus.

Thus we need a separate definition for each
type at which we want to use TWICE:

TWICEBOOL ≡ λf:Bool→Bool.λx:Bool.f (f x)

TWICENAT ≡ λf:Nat→Nat.λx:Nat.f (f x)

TWICENATFUN ≡ λf:(Nat→Nat)→(Nat→Nat).
λx:Nat→Nat.f (f x)

G54FOP: Lecture 14 – p.7/17

Example: TWICE (3)
We have been forced to define essentially the
same function over and over.

G54FOP: Lecture 14 – p.8/17

Example: TWICE (3)
We have been forced to define essentially the
same function over and over.

Common CS sensibility suggests abstraction
over the varying part; i.e., here the type!

G54FOP: Lecture 14 – p.8/17

Example: TWICE (3)
We have been forced to define essentially the
same function over and over.

Common CS sensibility suggests abstraction
over the varying part; i.e., here the type!

Thus, we would like to do something like:

TWICEPOLY ≡ ΛT.λf:T→T.λx:T.f (f x)

G54FOP: Lecture 14 – p.8/17

Example: TWICE (3)
We have been forced to define essentially the
same function over and over.

Common CS sensibility suggests abstraction
over the varying part; i.e., here the type!

Thus, we would like to do something like:

TWICEPOLY ≡ ΛT.λf:T→T.λx:T.f (f x)

Now:

TWICEBOOL ≡ TWICEPOLY [Bool]

TWICENAT ≡ TWICEPOLY [Nat]

TWICENATFUN ≡ TWICEPOLY [Nat→Nat]
G54FOP: Lecture 14 – p.8/17

System F: Abstract Syntax (1)

T → types:

| B | T→T [as for simply typed]

| ∀X.T universally quantified type

Γ → contexts:

| ∅ | Γ, x : T [as for simply typed]

| Γ, X extension with type variable

G54FOP: Lecture 14 – p.9/17

System F: Abstract Syntax (2)

t → terms:

| x | c | λx:T.t | t t [as for simply typed]

| ΛX.t type abstraction

| t [T] type application

v → values:

| c | λx:T.t [as for simply typed]

| ΛX.t type abstraction value

G54FOP: Lecture 14 – p.10/17

System F: Typing Rules

T-VAR, (T-CONST-c), T-ABS, T-APP are as
before (omitted).

G54FOP: Lecture 14 – p.11/17

System F: Typing Rules

T-VAR, (T-CONST-c), T-ABS, T-APP are as
before (omitted).

Additional typing rules:

G54FOP: Lecture 14 – p.11/17

System F: Typing Rules

T-VAR, (T-CONST-c), T-ABS, T-APP are as
before (omitted).

Additional typing rules:

Γ, X ⊢ t : T
Γ ⊢ ΛX.t : ∀X.T

(T-TABS)

G54FOP: Lecture 14 – p.11/17

System F: Typing Rules

T-VAR, (T-CONST-c), T-ABS, T-APP are as
before (omitted).

Additional typing rules:

Γ, X ⊢ t : T
Γ ⊢ ΛX.t : ∀X.T

(T-TABS)

Γ ⊢ t1 : ∀X.T12

Γ ⊢ t1 [T2] : [X 7→ T2] T12

(T-TAPP)

G54FOP: Lecture 14 – p.11/17

System F: Evaluation Rules

E-APP1, E-APP2, E-APPABS are as before:
t1 −→ t′

1

t1 t2 −→ t′
1
t2

(E-APP1)

t2 −→ t′
2

v1 t2 −→ v1 t′
2

(E-APP2)

(λx:T11.t12) v2 −→ [x 7→ v2]t12 (E-APPABS)

t1 −→ t′
1

t1 [T2] −→ t′
1

[T2]
(E-TAPP)

(ΛX.t12) [T2] −→ [X 7→ T2] t12 (E-TAPPABS)

G54FOP: Lecture 14 – p.12/17

Exercise

Given

ID ≡ ΛT.λx:T.x

Γ1 = ∅,Nat,5 : Nat

type check ID [Nat] 5 in context Γ1.

(On whiteboard)

G54FOP: Lecture 14 – p.13/17

System F: Church Booleans (1)

Recall untyped encoding:

TRUE ≡ λt.λf.t

FALSE ≡ λt.λf.f

We need to:
• assign a common type to these two terms;
• need to work for arbitrary argument types.

Any ideas?

CBOOL ≡ ???

G54FOP: Lecture 14 – p.14/17

System F: Church Booleans (1)

Recall untyped encoding:

TRUE ≡ λt.λf.t

FALSE ≡ λt.λf.f

We need to:
• assign a common type to these two terms;
• need to work for arbitrary argument types.

Parametrise on the type:

CBOOL ≡ ∀X.X→X→X

G54FOP: Lecture 14 – p.14/17

System F: Church Booleans (2)

CBOOL ≡ ∀X.X→X→X

TRUE : CBOOL

TRUE ≡ ΛX.λt:X.λf:X.t

FALSE : CBOOL

FALSE ≡ ΛX.λt:X.λf:X.f

NOT : CBOOL→CBOOL

NOT ≡ λb:CBOOL.ΛX.λt:X.λf:X.b [X] f t

G54FOP: Lecture 14 – p.15/17

Normalization

System F is strongly normalizing, like the simply
typed λ-calculus.

G54FOP: Lecture 14 – p.16/17

Homework

• Given 1 : Nat and 2 : Nat, write down a
type-correct application of TRUE to 1 and 2
such that the result is 1.

• Evaluate the above term using the evaluation
rules.

• Prove TRUE : CBOOL.
• Prove NOT : CBOOL→CBOOL

• Provide a suitable definition of logical
conjunction, AND.

G54FOP: Lecture 14 – p.17/17

	This Lecture
	Rcp: The Simply Typed $lambda $-Calculus (1)
	Rcp: The Simply Typed $lambda $-Calculus (2)
	Rcp: The Simply Typed $lambda $-Calculus (3)
	Example: TWICE (1)
	Example: TWICE (2)
	Example: TWICE (3)
	System F: Abstract Syntax (1)
	System F: Abstract Syntax (2)
	System F: Typing Rules
	System F: Evaluation Rules
	Exercise
	System F: Church Booleans (1)
	System F: Church Booleans (2)
	Normalization
	Homework

