G54FOP: Lecture 15
 Denotational Semantics and Domain Theory I

Henrik Nilsson

University of Nottingham, UK

This Lecture

- Introduction to Denotational Semantics
- The relation between Operational and Denotational Semantics

Denotational Semantics (1)

Operational Semantics (review):

- The meaning of a term is the term it (ultimately) reduces to, if any:
- Stuck terms
- Infinite reduction sequences
- No inherent meaning (structure) beyond syntax of terms.
- Focus on behaviour; important aspects of semantics (such as non-termination) emerges from the behaviour.

Denotational Semantics (2)

Denotational Semantics:

- Idea: Semantic function maps (abstract) syntax directly to meaning in a semantic domain.
- Domains consist of appropriate semantic objects (Booleans, numbers, functions, ...) and have structure; in particular, an information ordering.
- The semantic functions are total; in particular, even a diverging computation is mapped to an element in the semantic domain.

Denotational Semantics (3)

Example:

$$
[(1+2) * 3]=9
$$

Denotational Semantics (3)

Example:

$$
[1+2) * 3]=9
$$

abstract syntax

Denotational Semantics (3)

Example:
meaning/denotation
(here, semantic domain is \mathbb{Z})

Denotational Semantics (3)

Example:
abstract syntax

meaning/denotation
(here, semantic domain is \mathbb{Z})
[•]], or variations like E[•], C[•]: semantic functions

Denotational Semantics (3)

Example:

abstract syntax
meaning/denotation
(here, semantic domain is \mathbb{Z})
[.]], or variations like E[•], C[•]: semantic functions
[and 】: Scott brackets or semantic brackets.

Compositionality (1)

Compositionality (1)

- It is usually required that a denotational semantics is compositional: that the meaning of a program fragment is given in terms of the meaning of its parts.

Compositionality (1)

- It is usually required that a denotational semantics is compositional: that the meaning of a program fragment is given in terms of the meaning of its parts.
- Compositionality ensures that

Compositionality (1)

- It is usually required that a denotational semantics is compositional: that the meaning of a program fragment is given in terms of the meaning of its parts.
- Compositionality ensures that
- the semantics is well-defined

Compositionality (1)

- It is usually required that a denotational semantics is compositional: that the meaning of a program fragment is given in terms of the meaning of its parts.
- Compositionality ensures that
- the semantics is well-defined
- important meta-theoretical properties hold

Compositionality (2)

Example:

$$
\llbracket(1+2) * 3 \rrbracket=\llbracket 1+2 \rrbracket \times \llbracket 3 \rrbracket
$$

Compositionality (2)

Example:

abstract syntax

Compositionality (2)

Example:

Compositionality (2)

Example:

abstract syntax

subterms (abstract syntax)

semantic multiplication

$$
(\times: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z})
$$

Compositionality (2)

Example:

subterms (abstract syntax)
semantic multiplication

$$
(\times: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z})
$$

The meaning of the whole is given by composing the meaning of the parts.

Definition

Formally, a denotational semantics for a language L is given by a pair

$$
\langle D, \llbracket \cdot \rrbracket\rangle
$$

where

- D is the semantic domain
- $\llbracket \cdot]: L \rightarrow D$ is the valuation function or semantic function.

Definition

Formally, a denotational semantics for a language L is given by a pair

$$
\langle D, \llbracket \cdot \rrbracket\rangle
$$

where

- D is the semantic domain
- [.] : $L \rightarrow D$ is the valuation function or semantic function.
In simple cases D may be a set, but usually more structure is required leading to domains as defined in domain theory.

Example: Simple Expr. Language (1)

$e \quad \longrightarrow$
| true
false
if e then e else e
0
succe
prede
iszero e

expressions:
constant true
constant false
conditional
constant zero
successor
predecessor
zero test

Example: Simple Expr. Language (2)

Develop a denotational semantics $\langle D,[[\cdot]\rangle$ for E, picking \mathbb{N} as the semantic domain for simplicity:

$$
\begin{aligned}
& D=\mathbb{N} \\
& \llbracket \cdot]: \quad e \rightarrow \mathbb{N}
\end{aligned}
$$

Example: Simple Expr. Language (2)

Develop a denotational semantics $\langle D, \llbracket \cdot \rrbracket\rangle$ for E, picking \mathbb{N} as the semantic domain for simplicity:

$$
\begin{aligned}
D & =\mathbb{N} \\
\llbracket \cdot \rrbracket & : \quad e \rightarrow \mathbb{N}
\end{aligned}
$$

However, as there are both Booleans and natural numbers in the object language, a more refined choice for the semantics at the meta level would have been $\mathbb{N} \uplus \mathbb{B}$, the disjoint union of natural numbers and Booleans.

Example: Simple Expr. Language (2)

Develop a denotational semantics $\langle D, \llbracket \cdot \rrbracket\rangle$ for E, picking \mathbb{N} as the semantic domain for simplicity:

$$
\begin{aligned}
D & =\mathbb{N} \\
\llbracket \cdot \rrbracket & : \quad e \rightarrow \mathbb{N}
\end{aligned}
$$

However, as there are both Booleans and natural numbers in the object language, a more refined choice for the semantics at the meta level would have been $\mathbb{N} \uplus \mathbb{B}$, the disjoint union of natural numbers and Booleans.
(On whiteboard)

Exercises (1)

1. Find the denotation of if (iszero (succ 0)) then true else false

Exercises (2)

2. Consider the following language extension:
$e \rightarrow$ expressions:

not e	logical negation	
\|	$e \& \& e$	logical conjunction
	$e+e$	addition
$e-e$	subtraction	
$e \star e$	multiplication	

Extend the denotational semantics accordingly.

Operational and Denotational Sem. (1)

Given a language L, suppose we have:

- a big-step operational semantics

$$
\Downarrow \subseteq L \times V
$$

where $V \subseteq L$ is the set of values

- a denotational semantics

$$
\langle D, \llbracket \cdot \rrbracket\rangle
$$

where $\llbracket \cdot \rrbracket: L \rightarrow D$
How should these be related?

Operational and Denotational Sem. (2)

Closed terms $t_{1}, t_{2} \in L$ are semantically or denotationally equivalent iff

$$
\llbracket t_{1} \rrbracket=\llbracket t_{2} \rrbracket
$$

Assume D is ground (no functions; i.e., our closed terms are programs that output something "printable"). We adopt a function

$$
\therefore: D \rightarrow V
$$

that maps a semantic value $d \in D$ to its term representation $v \in V$.

Operational and Denotational Sem. (3)

Assuming termination:

- Correctness of operational semantics w.r.t. denotational semantics:

$$
t \Downarrow v \Rightarrow \llbracket t \rrbracket=\llbracket v \rrbracket
$$

- Completeness of operational semantics w.r.t. denotational semantics:

$$
\llbracket t \rrbracket=d \Rightarrow t \Downarrow \underline{d}
$$

Operational and Denotational Sem. (4)

Assuming termination:

- Computational adequacy of operational semantics w.r.t. denotational semantics (or vice versa, depending on point of view):

$$
t \Downarrow v \Leftrightarrow \llbracket t \rrbracket=\llbracket v \rrbracket
$$

