G54FOP: Lecture 15 Denotational Semantics and Domain Theory I

Henrik Nilsson

University of Nottingham, UK

G54FOP: Lecture 15 - p.1/16

This Lecture

- Introduction to Denotational Semantics
- The relation between Operational and Denotational Semantics

Operational Semantics (review):

- The meaning of a term is the term it (ultimately) reduces to, if any:
 - Stuck terms
 - Infinite reduction sequences
- No *inherent* meaning (structure) beyond syntax of terms.
- Focus on behaviour; important aspects of semantics (such as non-termination)
 emerges from the behaviour.

Denotational Semantics:

- Idea: Semantic function maps (abstract) syntax directly to meaning in a semantic domain.
- Domains consist of appropriate semantic objects (Booleans, numbers, functions, ...) and have structure; in particular, an information ordering.
- The semantic functions are total; in particular, even a diverging computation is mapped to an element in the semantic domain.

Example:

$$[(1 + 2) * 3] = 9$$

Example: [(1 + 2) * 3] = 9abstract syntax

Example:

abstract syntax

meaning/denotation (here, semantic domain is \mathbb{Z})

G54FOP: Lecture 15 – p.5/16

Example:

abstract syntax

meaning/denotation (here, semantic domain is \mathbb{Z})

G54FOP: Lecture 15 – p.5/16

 $\llbracket \cdot \rrbracket$, or variations like $E\llbracket \cdot \rrbracket$, $C\llbracket \cdot \rrbracket$: semantic functions

+ 2) * 3

Example:

abstract syntax

meaning/denotation (here, semantic domain is \mathbb{Z})

 $\llbracket \cdot \rrbracket$, or variations like $E\llbracket \cdot \rrbracket$, $C\llbracket \cdot \rrbracket$: semantic functions

[and]: Scott brackets or semantic brackets.

(1 + 2) * 3

• • • • •

G54FOP: Lecture 15 – p.6/16

 It is usually required that a denotational semantics is *compositional*: that the meaning of a program fragment is given in terms of the meaning of its *parts*.

- It is usually required that a denotational semantics is compositional: that the meaning of a program fragment is given in terms of the meaning of its parts.
- Compositionality ensures that

- It is usually required that a denotational semantics is compositional: that the meaning of a program fragment is given in terms of the meaning of its parts.
- Compositionality ensures that
 - the semantics is well-defined

- It is usually required that a denotational semantics is *compositional*: that the meaning of a program fragment is given in terms of the meaning of its *parts*.
- Compositionality ensures that
 - the semantics is well-defined
 - important meta-theoretical properties hold

Example:

•

$\llbracket (\mathbf{1} + \mathbf{2}) \star \mathbf{3} \rrbracket = \llbracket \mathbf{1} + \mathbf{2} \rrbracket \times \llbracket \mathbf{3} \rrbracket$

G54FOP: Lecture 15 – p.7/16

Compositionality (2) Example: $[(1+2) \cdot 3] = [1+2] \times [3]$ abstract syntax

Compositionality (2) Example: [(1 + 2) * 3] = [1 + 2]3) \times abstract syntax subterms (abstract syntax)

G54FOP: Lecture 15 - p.7/16

Compositionality (2) Example: $[(1 + 2) * 3] = [1 + 2] \otimes$ 3) abstract syntax subterms (abstract syntax) semantic multiplication $(\times:\mathbb{Z}\times\mathbb{Z} o\mathbb{Z})$

G54FOP: Lecture 15 - p.7/16

Definition

Formally, a *denotational semantics* for a language L is given by a pair

$\langle D, \llbracket \cdot \rrbracket \rangle$

where

• D is the semantic domain

 [[·]] : L → D is the valuation function or semantic function.

Definition

Formally, a *denotational semantics* for a language L is given by a pair

$\langle D, \llbracket \cdot \rrbracket \rangle$

where

D is the semantic domain

 [[·]] : L → D is the valuation function or semantic function.

In simple cases *D* may be a set, but usually more structure is required leading to *domains* as defined in *domain theory*.

Example: Simple Expr. Language (1)

expressions:		\rightarrow	e
constant true	true		
constant false	false		
conditional	if e then e else e		
constant zero	0		
successor	succ e		
predecessor	pred e		
zero test	iszero <i>e</i>		

Example: Simple Expr. Language (2)

Develop a denotational semantics $\langle D, \llbracket \cdot \rrbracket \rangle$ for *E*, picking \mathbb{N} as the semantic domain for simplicity:

 $\begin{array}{rcl} D &=& \mathbb{N} \\ \llbracket \cdot \rrbracket & : & e \to \mathbb{N} \end{array}$

Example: Simple Expr. Language (2)

Develop a denotational semantics $\langle D, \llbracket \cdot \rrbracket \rangle$ for *E*, picking \mathbb{N} as the semantic domain for simplicity:

However, as there are both Booleans and natural numbers in the *object* language, a more refined choice for the semantics at the *meta* level would have been $\mathbb{N} \uplus \mathbb{B}$, the *disjoint union* of natural numbers and Booleans.

Example: Simple Expr. Language (2)

Develop a denotational semantics $\langle D, \llbracket \cdot \rrbracket \rangle$ for *E*, picking \mathbb{N} as the semantic domain for simplicity:

 $D = \mathbb{N}$ $\llbracket \cdot \rrbracket : e \to \mathbb{N}$

However, as there are both Booleans and natural numbers in the *object* language, a more refined choice for the semantics at the *meta* level would have been $\mathbb{N} \uplus \mathbb{B}$, the *disjoint union* of natural numbers and Booleans.

(On whiteboard)

1. Find the denotation of if (iszero (succ 0)) then true else false

2. Consider the following language extension:

 $e \rightarrow$ expressions:

notelogical negatione & elogical conjunctione + eadditione + esubtractione - esubtractione * emultiplication

Extend the denotational semantics accordingly.

Operational and Denotational Sem. (1)

Given a language *L*, suppose we have:

a big-step operational semantics

 $\Downarrow \subseteq L \times V$

where $V \subseteq L$ is the set of values • a denotational semantics

 $\langle D, \llbracket \cdot \rrbracket \rangle$

where $\llbracket \cdot \rrbracket : L \to D$ How should these be related? **Operational and Denotational Sem. (2)**

Closed terms $t_1, t_2 \in L$ are semantically or denotationally equivalent iff

$\llbracket t_1 \rrbracket = \llbracket t_2 \rrbracket$

Assume *D* is *ground* (no functions; i.e., our closed terms are *programs* that output something "printable"). We adopt a function

 $|\underline{\cdot}: D \to V|$

that maps a semantic value $d \in D$ to its *term* representation $v \in V$.

Operational and Denotational Sem. (3)

Assuming termination:

 Correctness of operational semantics w.r.t. denotational semantics:

$$t \Downarrow v \implies \llbracket t \rrbracket = \llbracket v \rrbracket$$

 Completeness of operational semantics w.r.t. denotational semantics:

$$\llbracket t \rrbracket = d \implies t \Downarrow \underline{d}$$

Operational and Denotational Sem. (4)

Assuming termination:

 Computational adequacy of operational semantics w.r.t. denotational semantics (or vice versa, depending on point of view):

 $t \Downarrow v \Leftrightarrow \llbracket t \rrbracket = \llbracket v \rrbracket$