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This Lecture

• Introduction to Denotational Semantics
• The relation between Operational and

Denotational Semantics
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Denotational Semantics (1)

Operational Semantics (review):
• The meaning of a term is the term it

(ultimately) reduces to, if any:
- Stuck terms
- Infinite reduction sequences

• No inherent meaning (structure) beyond
syntax of terms.

• Focus on behaviour; important aspects of
semantics (such as non-termination)
emerges from the behaviour.
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Denotational Semantics (2)

Denotational Semantics:
• Idea: Semantic function maps (abstract)

syntax directly to meaning in a semantic
domain.

• Domains consist of appropriate semantic
objects (Booleans, numbers, functions, . . . )
and have structure; in particular, an
information ordering.

• The semantic functions are total; in particular,
even a diverging computation is mapped to
an element in the semantic domain.
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Denotational Semantics (3)

Example:
[[(1 + 2) * 3]] = 9
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Denotational Semantics (3)

Example:
[[(1 + 2) * 3]] = 9

abstract syntax
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Denotational Semantics (3)

Example:
[[(1 + 2) * 3]] = 9

abstract syntax

meaning/denotation
(here, semantic domain is Z)

G54FOP: Lecture 15 – p.5/16



Denotational Semantics (3)

Example:
[[(1 + 2) * 3]] = 9

abstract syntax

meaning/denotation
(here, semantic domain is Z)

[[·]], or variations like E[[·]], C[[·]]: semantic functions
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Denotational Semantics (3)

Example:
[[(1 + 2) * 3]] = 9

abstract syntax

meaning/denotation
(here, semantic domain is Z)

[[·]], or variations like E[[·]], C[[·]]: semantic functions

[[ and ]]: Scott brackets or semantic brackets.
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Compositionality (1)
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Compositionality (1)

• It is usually required that a denotational
semantics is compositional: that the
meaning of a program fragment is given in
terms of the meaning of its parts.
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Compositionality (1)

• It is usually required that a denotational
semantics is compositional: that the
meaning of a program fragment is given in
terms of the meaning of its parts.

• Compositionality ensures that
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Compositionality (1)

• It is usually required that a denotational
semantics is compositional: that the
meaning of a program fragment is given in
terms of the meaning of its parts.

• Compositionality ensures that
- the semantics is well-defined
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Compositionality (1)

• It is usually required that a denotational
semantics is compositional: that the
meaning of a program fragment is given in
terms of the meaning of its parts.

• Compositionality ensures that
- the semantics is well-defined
- important meta-theoretical properties hold
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Compositionality (2)
Example:

[[(1 + 2) * 3]] = [[1 + 2]] × [[3]]
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Compositionality (2)
Example:

[[(1 + 2) * 3]] = [[1 + 2]] × [[3]]

abstract syntax
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Compositionality (2)
Example:

[[(1 + 2) * 3]] = [[1 + 2]] × [[3]]

abstract syntax

subterms (abstract syntax)
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Compositionality (2)
Example:

[[(1 + 2) * 3]] = [[1 + 2]] × [[3]]

abstract syntax

subterms (abstract syntax)

semantic multiplication
(× : Z × Z → Z)

G54FOP: Lecture 15 – p.7/16



Compositionality (2)
Example:

[[(1 + 2) * 3]] = [[1 + 2]] × [[3]]

abstract syntax

subterms (abstract syntax)

semantic multiplication
(× : Z × Z → Z)

The meaning of the whole is given by composing
the meaning of the parts.
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Definition
Formally, a denotational semantics for a
language L is given by a pair

〈D, [[·]]〉

where
• D is the semantic domain
• [[·]] : L → D is the valuation function or

semantic function.
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Definition
Formally, a denotational semantics for a
language L is given by a pair

〈D, [[·]]〉

where
• D is the semantic domain
• [[·]] : L → D is the valuation function or

semantic function.

In simple cases D may be a set, but usually
more structure is required leading to domains as
defined in domain theory.
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Example: Simple Expr. Language (1)

e → expressions:

| true constant true

| false constant false

| if e then e else e conditional

| 0 constant zero

| succ e successor

| pred e predecessor

| iszero e zero test
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Example: Simple Expr. Language (2)

Develop a denotational semantics 〈D, [[·]]〉 for E,
picking N as the semantic domain for simplicity:

D = N

[[·]] : e → N
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Example: Simple Expr. Language (2)

Develop a denotational semantics 〈D, [[·]]〉 for E,
picking N as the semantic domain for simplicity:

D = N

[[·]] : e → N

However, as there are both Booleans and natural
numbers in the object language, a more refined
choice for the semantics at the meta level would
have been N ⊎ B, the disjoint union of natural
numbers and Booleans.
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Example: Simple Expr. Language (2)

Develop a denotational semantics 〈D, [[·]]〉 for E,
picking N as the semantic domain for simplicity:

D = N

[[·]] : e → N

However, as there are both Booleans and natural
numbers in the object language, a more refined
choice for the semantics at the meta level would
have been N ⊎ B, the disjoint union of natural
numbers and Booleans.

(On whiteboard)
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Exercises (1)

1. Find the denotation of

if (iszero (succ 0)) then true else false
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Exercises (2)

2. Consider the following language extension:

e → expressions:

. . .

| not e logical negation

| e && e logical conjunction

| e + e addition

| e - e subtraction

| e * e multiplication

Extend the denotational semantics accordingly.
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Operational and Denotational Sem. (1)

Given a language L, suppose we have:
• a big-step operational semantics

⇓ ⊆ L × V

where V ⊆ L is the set of values
• a denotational semantics

〈D, [[·]]〉

where [[·]] : L → D

How should these be related?
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Operational and Denotational Sem. (2)

Closed terms t1, t2 ∈ L are semantically or
denotationally equivalent iff

[[t1]] = [[t2]]

Assume D is ground (no functions; i.e., our
closed terms are programs that output
something “printable”). We adopt a function

· : D → V

that maps a semantic value d ∈ D to its term
representation v ∈ V .
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Operational and Denotational Sem. (3)

Assuming termination:

• Correctness of operational semantics w.r.t.
denotational semantics:

t ⇓ v ⇒ [[t]] = [[v]]

• Completeness of operational semantics w.r.t.
denotational semantics:

[[t]] = d ⇒ t ⇓ d
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Operational and Denotational Sem. (4)

Assuming termination:

• Computational adequacy of operational
semantics w.r.t. denotational semantics (or
vice versa, depending on point of view):

t ⇓ v ⇔ [[t]] = [[v]]
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