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This Lecture

• Denotational semantics for small imperative
language.

• Introduction to semantics of loops and
recursion.
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Imperative Language (1)

Syntax of expressions:

e → expressions:

x variable

| n constant natural number, N

| true constant true

| false constant false

| not e logical negation

| e && e logical conjunction

. . .
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Imperative Language (2)

e → expressions:

. . .

| e + e addition

| e - e subtraction

| e = e numeric equality test

| e < e numeric less than test
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Imperative Language (3)

Syntax of commands:

c → commands:

| skip no operation

| x := e assignment

| c ; c sequence

| if e then c else c conditional

| while e do c iteration
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Semantics of Expressions (1)

We take the semantic domain to be N for simplicity.

We need a way to give meaning to variables. A
store maps a variable name to its value:

Σ = x → N

σ : Σ
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Semantics of Expressions (2)

We then need two semantic functions, one for
expressions (have no side effects in this
language), one for commands.

Starting with the one for expressions:

E[[·]] : e → (Σ → N)

(Note: e → (Σ → N) = e → Σ → N etc.)

(Definition on whiteboard)
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Semantics of Commands

A command is executed for its effects: given a
state, executing a command results in a new
state. A command is a state transformer.

In our case, the state comprises only the store:

Σ = x → N

Thus, type of state transformer: Σ → Σ.

Semantic function for commands:

C[[·]] : c → (Σ → Σ) [Not correct yet!]

(Definition on whiteboard)
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