
G54FOP: Lecture 16
Denotational Semantics and Domain Theory II

Henrik Nilsson

University of Nottingham, UK

G54FOP: Lecture 16 – p.1/8

This Lecture

• Denotational semantics for small imperative
language.

• Introduction to semantics of loops and
recursion.

G54FOP: Lecture 16 – p.2/8

Imperative Language (1)

Syntax of expressions:

e → expressions:

x variable

| n constant natural number, N

| true constant true

| false constant false

| not e logical negation

| e && e logical conjunction

. . .

G54FOP: Lecture 16 – p.3/8

Imperative Language (2)

e → expressions:

. . .

| e + e addition

| e - e subtraction

| e = e numeric equality test

| e < e numeric less than test

G54FOP: Lecture 16 – p.4/8

Imperative Language (3)

Syntax of commands:

c → commands:

| skip no operation

| x := e assignment

| c ; c sequence

| if e then c else c conditional

| while e do c iteration

G54FOP: Lecture 16 – p.5/8

Semantics of Expressions (1)

We take the semantic domain to be N for simplicity.

We need a way to give meaning to variables. A
store maps a variable name to its value:

Σ = x → N

σ : Σ

G54FOP: Lecture 16 – p.6/8

Semantics of Expressions (2)

We then need two semantic functions, one for
expressions (have no side effects in this
language), one for commands.

Starting with the one for expressions:

E[[·]] : e → (Σ → N)

(Note: e → (Σ → N) = e → Σ → N etc.)

(Definition on whiteboard)

G54FOP: Lecture 16 – p.7/8

Semantics of Commands

A command is executed for its effects: given a
state, executing a command results in a new
state. A command is a state transformer.

In our case, the state comprises only the store:

Σ = x → N

Thus, type of state transformer: Σ → Σ.

Semantic function for commands:

C[[·]] : c → (Σ → Σ) [Not correct yet!]

(Definition on whiteboard)
G54FOP: Lecture 16 – p.8/8


	This Lecture
	Imperative Language (1)
	Imperative Language (2)
	Imperative Language (3)
	Semantics of Expressions (1)
	Semantics of Expressions (2)
	Semantics of Commands

