G54FOP: Lecture 17 & 18 Denotational Semantics and Domain Theory III & IV

Henrik Nilsson

University of Nottingham, UK

G54FOP: Lecture 17 & 18 - p.1/3

Recap: Imperative Language (1)

Syntax of expressions:

		•	
expressions:		\longrightarrow	e
variable	x		
constant number, $n \in \mathbb{N}$	n		
constant true	true		
constant false	false		
logical negation	$\mathtt{not}\; e$		
logical conjunction	e && e		

These Two Lectures

- Revisit attempt to define denotational semantics for small imperative language
- Discussion of the reasons for it being inadequate
- Fixed point semantics
- Basic domain theory
- The Least Fixed Point Theorem

G54FOP: Lecture 17 & 18 - p.2/33

Recap: Imperative Language (2)

expressions:		\longrightarrow	e
addition	e + e		
subtraction	e - e		
numeric equality test	<i>e</i> = <i>e</i>		
numeric less than test	<i>e</i> < <i>e</i>		

G54FOP: Lecture 17 & 18 - p.3/33

G54FOP: Lecture 17 & 18 - p.4/33

Recap: Imperative Language (3)

Syntax of commands:

c	\longrightarrow		commands:
		skip	no operation
		x := e	assignment
		$c \neq c$	sequence
		$\verb if e \verb then c \verb else c$	conditional
		$\mathbf{while}\ e\ \mathbf{do}\ c$	iteration

G54FOP: Lecture 17 & 18 - p.5/33

Rcp: Denotational Semantics for IL (2)

$E[\cdot]$: some typical cases:

$$E[x] \sigma = \sigma x$$

$$E[n] \sigma = n$$

$$E[true] \sigma = 1$$

$$E[false] \sigma = 0$$

$$E[not e] \sigma = \begin{cases} 1, & \text{if } E[e] \sigma = 0 \\ 0, & \text{otherwise} \end{cases}$$

$$E[e_1 + e_2] \sigma = E[e_1] \sigma + E[e_1] \sigma$$

Rcp: Denotational Semantics for IL (1)

We take the **semantic domain** to be \mathbb{N} for simplicity. A **store** maps a variable name to its value:

$$\begin{array}{ccc} \Sigma &=& x \to \mathbb{N} \\ \sigma &:& \Sigma \end{array}$$

We need two **semantic functions**, one for expressions (no side effects), one for commands:

$$\mathbf{E}[\![\cdot]\!] : e \to (\Sigma \to \mathbb{N})$$
 $\mathbf{C}[\![\cdot]\!] : c \to (\Sigma \to \Sigma)$ [Not correct yet!]

(Note:
$$e \to (\Sigma \to \mathbb{N}) = e \to \Sigma \to \mathbb{N}$$
 etc.)

G54FOP: Lecture 17 & 18 - p.6/33

Rcp: Denotational Semantics for IL (3)

First attempt:

$$C[\![\mathbf{skip}]\!] \sigma = \sigma$$

$$C[\![x := e]\!] \sigma = [x \mapsto E[\![e]\!] \sigma] \sigma$$

$$C[\![c_1 : c_2]\!] \sigma = C[\![c_2]\!] (C[\![c_1]\!] \sigma)$$

$$\mathbb{C}[\![\mathbf{if}\ e\ \mathbf{then}\ c_1\ \mathbf{else}\ c_2]\!]\ \sigma =$$

$$\left\{ \begin{array}{l} \mathbb{C}[\![c_1]\!]\ \sigma,\ \ \mathrm{if}\ \mathbb{E}[\![e]\!]\ \sigma = 1 \\ \mathbb{C}[\![c_2]\!]\ \sigma,\ \ \mathrm{otherwise} \end{array} \right.$$

$$\begin{array}{c} \mathbf{C}[\![\mathbf{while}\ e\ \mathsf{do}\ c]\!]\ \sigma = \\ \\ \mathbf{C}[\![\mathbf{if}\ e\ \mathsf{then}\ (c\ ; \ \mathsf{while}\ e\ \mathsf{do}\ c)\ \mathsf{else}\ \mathsf{skip}]\!]\ \sigma \end{array}$$

Rcp: Denotational Semantics for IL (4)

Intuition: Semantics of a command is a function mapping state (store) as it is *prior* to executing the command to resulting state *after* the command has been executed; i.e., a *state transformer* ($\Sigma \to \Sigma$).

Any problem? Yes:

$$C[\![$$
while e do $c]\!]$ $\sigma =$
 $C[\![$ if e then $(c$; while e do $c)$ else skip $]\!]$ σ

is *not compositional* and does not define a unique solution.

(However, it *is* a semantic equation that should hold.)

G54FOP: Lecture 17 & 18 - p.9/33

The Problem (2)

Verify this (was homework).

Case
$$\sigma \mathbf{x} = 1$$
:

LHS (A) =
$$\mathbb{C}[\![c_1]\!] \sigma$$

= $\{\mathbb{C}[\![c_1]\!] = f_{c_1}\}$
 $f_{c_1} \sigma$
= $\{\mathbb{B}\mathbf{y} (S), \operatorname{odd}(\sigma \mathbf{x})\}$
 $[\mathbf{x} \mapsto 1] \sigma$
= σ
= RHS (A)

The Problem (1)

To see no unique solution, consider for example:

$$c_1 =$$
while x /= 1 do x := x - 2

$$C[\![c_1]\!] \ \sigma = \begin{cases} C[\![c_1]\!] \ ([\mathbf{x} \mapsto \sigma \ \mathbf{x} - 2]\sigma), & \text{if } \sigma \ \mathbf{x} \neq 1 \\ \sigma, & \text{otherwise} \end{cases}$$
 (A)

Equation (A) is satisfied by $C[[c_1]] = f_{c_1}$ where:

$$f_{c_1} \sigma = \begin{cases} [\mathbf{x} \mapsto 1] \sigma, & \text{if } \text{odd}(\sigma \mathbf{x}) \\ \sigma', & \text{if } \text{even}(\sigma \mathbf{x}), \sigma' \text{ arbitrary!} \end{cases}$$
(S)

G54FOP: Lecture 17 & 18 - p.10/33

The Problem (3)

Case $odd(\sigma \mathbf{x}), \ \sigma \mathbf{x} > 1$:

Note that then also $odd(\sigma \times -2)$.

LHS (A) =
$$C[c_1] \sigma$$

= $f_{c_1} \sigma$
= $\{ \text{By (S)}, \text{odd}(\sigma \mathbf{x}) \}$
[$\mathbf{x} \mapsto 1] \sigma$
= $[\mathbf{x} \mapsto 1] ([\mathbf{x} \mapsto \sigma \mathbf{x} - 2] \sigma)$
= $\{ \text{odd}(\sigma \mathbf{x} - 2), \text{By (S)} \}$
= $f_{c_1} ([\mathbf{x} \mapsto \sigma \mathbf{x} - 2] \sigma)$
= ...

G54FOP: Lecture 17 & 18 - p.11/33

The Problem (4)

= ...
=
$$\mathbb{C}[c_1]([\mathbf{x} \mapsto \sigma \mathbf{x} - 2]\sigma)$$

= $\{\sigma \mathbf{x} \neq 1\}$
RHS (A)

G54FOP: Lecture 17 & 18 - p 13/33

Solution: Fixed Point Semantics (1)

How can we proceed?

Clue: $f_{c_1} = \mathbb{C}[\![c_1]\!]$ occurs in both the LHS and RHS of (A). The desired semantic function is the *fixed point* of the equation!

New attempt:

$$\begin{split} \mathbf{C}[\![\mathbf{while}\ e\ \mathbf{do}\ c]\!] = \\ \mathrm{fix}_{\Sigma \to \Sigma} \left(\lambda f. \lambda \sigma. \begin{cases} \sigma, & \text{if } \mathbf{E}[\![e]\!]\ \sigma = 0 \\ f\ (\mathbf{C}[\![c]\!]\ \sigma), & \text{otherwise} \end{cases} \right) \end{split}$$

The Problem (5)

Case
$$\operatorname{even}(\sigma \mathbf{x}), \ \sigma \mathbf{x} > 1$$
:

$$\mathsf{LHS} \ (\mathsf{A}) = \mathbb{C}[\![c_1]\!] \ \sigma$$

$$= f_{c_1} \ \sigma$$

$$= \{ \mathsf{By} \ (\mathsf{S}), \operatorname{even}(\sigma \mathbf{x}) \}$$

$$\sigma'$$

$$= \{ \operatorname{even}(\sigma \mathbf{x} - 2), \mathsf{By} \ (\mathsf{S}) \}$$

$$= f_{c_1} \ ([\mathbf{x} \mapsto \sigma \mathbf{x} - 2]\sigma)$$

$$= \mathbb{C}[\![c_1]\!] \ ([\mathbf{x} \mapsto \sigma \mathbf{x} - 2]\sigma)$$

$$= \{ \sigma \mathbf{x} \neq 1 \}$$

$$\mathsf{RHS} \ (\mathsf{A})$$

G54FOP: Lecture 17 & 18 - p.14/33

Solution: Fixed Point Semantics (2)

(Might be easier to see if we allow a *recursive* formulation where the fixed point is implicit:

$$\begin{split} \mathbf{C}[\![\mathbf{while}\ e\ \mathbf{do}\ c]\!] &= f \\ where \\ f\ \sigma &= \begin{cases} \sigma, & \text{if } \mathbf{E}[\![e]\!]\ \sigma = 0 \\ f\ (\mathbf{C}[\![c]\!]\ \sigma), & \text{otherwise} \end{cases} \end{split}$$

However, we stick to an explicit fixed point formulation to make the semantics clear.)

GAEOP lettire 17 & 18 - n 1623

Existence and Uniqueness? (1)

Our definition of $\mathbb{C}[\![\cdot]\!]$ is now *compositional*!

But:

- Does this fixed point exist?
- Is it unique if it does exist?

We should be suspicious! Consider e.g.:

$$C[[\mathbf{while\ true\ do\ }(\mathbf{x:=x+1})]]\ \{\mathbf{x}\mapsto 0\}$$

What could the final value of \mathbf{x} possibly be? 10? 1000? ∞ ?

G54FOP: Lecture 17 & 18 - p.17/33

Denotation for Non-termination (1)

Idea:

- Let ⊥ ("bottom") denote non-termination (divergence) or error.
- For a set A such that $\bot \notin A$, let $A_\bot = A \cup \{\bot\}$.
- For a function $f: A \to B_{\perp}$, let

$$f_{\perp \! \! \perp} \; x = egin{cases} \perp, & \text{if } x = \perp \\ f \; x, & \text{otherwise} \end{cases}$$

(Called "source lifting"; note: $f_{\perp \perp}: A_{\perp} \to B_{\perp}$)

Existence and Uniqueness? (2)

More generally, consider the following "recursive" definitions:

$$f_1 n = (f_1 n) + 1 (1$$

$$f_2 n = f_2 n \tag{2}$$

- No $f_1 \in \mathbb{N} \to \mathbb{N}$ satisfies (1).
- All $f_2 \in \mathbb{N} \to \mathbb{N}$ satisfies (2).

So, if we are considering functions defined on **sets**, fixed points need not exist, and, if they do, they need not be unique!

G54FOP: Lecture 17 & 18 - p.18/33

Denotation for Non-termination (2)

- A function f is **strict** iff $f \perp = \perp$.
- Source lifting yields a strict function.
 Intuitively, it ensures propagation of errors.

We can now find a function satisfying (1):

$$f_1 : \mathbb{N}_{\perp} \to \mathbb{N}_{\perp}$$

$$f_1 x = \perp$$

 f_1 satisfies (1) because + is strict (i.e., in this case, $\bot + 1 = \bot$).

Denotation for Non-termination (3)

- Thus, by considering a mathematically richer structure than plain sets, we could find a solution to at least one fixed point equation that did not have a solution in plain set theory.
- This is a key idea of Domain Theory.
- However, even if we move to such a richer setting, we still don't know:
 - Does a fixed point equation always have a solution?
 - Are solutions *unique* if they exists?

G54FOP: Lecture 17 & 18 - p.21/33

Domains and Continuous Functions (1)

- A domain D is a set with
 - a partial order □
 - a least element ⊥

such that every *chain* of elements $x_i \in D$, $x_0 \sqsubseteq x_1 \sqsubseteq ...$, has a *limit* in D, i.e., a *least* upper bound, denoted $\bigsqcup_{i=0}^{\infty} x_i$.

• \sqsubseteq is an *information ordering*: read $x \sqsubseteq y$ as "x is less informative than y".

Semantics for Commands Revisited

But first, let us refine the meaning of commands:

$$\mathbb{C}[\![\cdot]\!]:c\to(\Sigma\to\Sigma_\perp)$$

Now we can find a meaning for e.g. an infinite loop:

$$\mathbb{C}[\mathbf{while true do skip}] = \lambda \sigma. \perp$$

But we have to refine the meaning of sequencing:

$$C[\![c_1 : c_2]\!] \sigma = (C[\![c_2]\!]_{\perp \perp}) (C[\![c_1]\!] \sigma)$$

G54FOP: Lecture 17 & 18 - p.22/3

Domains and Continuous Functions (2)

- If D satisfies all conditions for being a domain, except that it lacks a smallest element, then it is called a predomain.
- A function f is said to be continuous if it preserves limits of chains:

$$f\left(\bigsqcup_{i=0}^{\infty} x_i\right) = \bigsqcup_{i=0}^{\infty} f x_i$$

where x_i is a chain.

Domains and Continuous Functions (3)

• Any *function space* from a (pre)domain to a domain is a domain with least element λx . \bot ; i.e., the everywhere undefined function.

G54FOP: Lecture 17 & 18 - p.25/33

The Meaning of fix_D

Thus we take the meaning of fix_D to be as given by the Least Fixed Point Theorem.

As long as D is a domain and $f:D\to D$ is a continuous function, then the fixed point x

$$x = \operatorname{fix}_D f$$

exists and is unique.

The Least Fixed Point Theorem

If D is a domain and $f:D\to D$ is a continuous function, then

$$x = \bigsqcup_{n=0}^{\infty} f^n \perp$$

is the least fixed point of f; i.e., f = x, and for all y such that f = y, it is the case that $x \sqsubseteq y$.

G54FOP: Lecture 17 & 18 - p.26/33

Exercise (1)

Consider the following definition of the factorial function:

$$\begin{array}{ll} f & : & (\mathbb{N} \to \mathbb{N}_\perp) \to (\mathbb{N} \to \mathbb{N}_\perp) \\ f & = & \lambda g. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times g \; (n-1) \\ fac & = & \operatorname{fix}_{\mathbb{N} \to \mathbb{N}_\perp} f \end{array}$$

Note: $\mathbb N$ is a predomain and $\mathbb N_\perp$ is a domain. Thus $\mathbb N\to\mathbb N_\perp$ is a domain.

Calculate $f^n \perp$ for n = 0, 1, 2, 3.

Exercise (2)

Note how f^n becomes a better and better approximation of the factorial function as n increases.

Thus each successive approximation is more *informative* than the previous one (information ordering).

Thus it seems plausible that the series converges to the factorial function.

And in fact, because f is continuous, it does.

G54FOP: Lecture 17 & 18 - p.29/33

Semantics of while Revisited (2)

Thus, we can define:

$$\mathbb{C}[\![\mathbf{while}\ e\ \mathbf{do}\ c]\!] = \operatorname{fix}_{\Sigma \to \Sigma_+} g$$

where

$$\begin{array}{lll} g & : & (\Sigma \to \Sigma_\perp) \to (\Sigma \to \Sigma_\perp) \\ \\ g & = & \lambda f. \lambda \sigma. \begin{cases} \sigma, & \text{if } \mathbf{E} \llbracket e \rrbracket \ \sigma = 0 \\ f_{\perp\!\!\!\perp} \ (\mathbf{C} \llbracket e \rrbracket \ \sigma), & \text{otherwise} \\ \end{cases} \end{array}$$

in the knowledge that the fixed point $fix_{\Sigma \to \Sigma_{\perp}} g$ exists and is the smallest fixed point of g.

Semantics of while Revisited (1)

• It can be shown that Σ

$$\Sigma = x \to \mathbb{N}$$

is a predomain.

- Thus Σ_{\perp} and $\Sigma \to \Sigma_{\perp}$ are both domains.
- Furthermore, it can be shown that all functions g

$$g \in (\Sigma \to \Sigma_{\perp}) \to (\Sigma \to \Sigma_{\perp})$$

are continuous.

G54FOP: Lecture 17 & 18 - p.30/33

Exercises

 Calculate gⁿ ⊥ for g from the previous slide for a few n from 0 and upwards until you have convinced yourself that you get a better and better approximation of the semantic function for a while-loop (i.e., that each successive approximation can handle one more iteration).

Exercises

 Suppose we wish to add a C/Java-like post increment operator to the expression fragment of our language:

x++

The value of the expression is the current value of the variable, but as a side effect the variable is also incremented by one.

How would the semantic definitions have to be restructured to accommodate this addition? In particular, what is a suitable type for the semantic function $\mathbb{E}[\![\cdot]\!]$?