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These Two Lectures

• Revisit attempt to define denotational
semantics for small imperative language

• Discussion of the reasons for it being
inadequate

• Fixed point semantics
• Basic domain theory
• The Least Fixed Point Theorem
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Recap: Imperative Language (1)

Syntax of expressions:

e → expressions:

x variable

| n constant number, n ∈ N

| true constant true

| false constant false

| not e logical negation

| e && e logical conjunction

. . .
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Recap: Imperative Language (2)

e → expressions:

. . .

| e + e addition

| e - e subtraction

| e = e numeric equality test

| e < e numeric less than test
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Recap: Imperative Language (3)

Syntax of commands:

c → commands:

| skip no operation

| x := e assignment

| c ; c sequence

| if e then c else c conditional

| while e do c iteration
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Rcp: Denotational Semantics for IL (1)

We take the semantic domain to be N for simplicity.
A store maps a variable name to its value:

Σ = x → N

σ : Σ

We need two semantic functions , one for
expressions (no side effects), one for commands:

E[[·]] : e → (Σ → N)

C[[·]] : c → (Σ → Σ) [Not correct yet!]

(Note: e → (Σ → N) = e → Σ → N etc.)
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Rcp: Denotational Semantics for IL (2)

E[[·]]: some typical cases:

E[[x]] σ = σ x

E[[n]] σ = n

E[[true]] σ = 1

E[[false]] σ = 0

E[[not e]] σ =

{

1, if E[[e]] σ = 0

0, otherwise

E[[e1 + e2]] σ = E[[e1]] σ + E[[e1]] σ
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Rcp: Denotational Semantics for IL (3)

First attempt:

C[[skip]] σ = σ

C[[x := e]] σ = [x 7→ E[[e]] σ]σ

C[[c1 ; c2]] σ = C[[c2]] (C[[c1]] σ)

C[[if e then c1 else c2]] σ =
{

C[[c1]] σ, if E[[e]] σ = 1

C[[c2]] σ, otherwise

C[[while e do c]] σ =

C[[if e then (c ; while e do c) else skip]] σ
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Rcp: Denotational Semantics for IL (4)
Intuition: Semantics of a command is a function
mapping state (store) as it is prior to executing the
command to resulting state after the command has
been executed; i.e., a state transformer (Σ → Σ).
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Rcp: Denotational Semantics for IL (4)
Intuition: Semantics of a command is a function
mapping state (store) as it is prior to executing the
command to resulting state after the command has
been executed; i.e., a state transformer (Σ → Σ).

Any problem?
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Rcp: Denotational Semantics for IL (4)
Intuition: Semantics of a command is a function
mapping state (store) as it is prior to executing the
command to resulting state after the command has
been executed; i.e., a state transformer (Σ → Σ).

Any problem? Yes:

C[[while e do c]] σ =

C[[if e then (c ; while e do c) else skip]] σ

is not compositional and does not define a
unique solution.

G54FOP: Lecture 17 & 18 – p.9/33



Rcp: Denotational Semantics for IL (4)
Intuition: Semantics of a command is a function
mapping state (store) as it is prior to executing the
command to resulting state after the command has
been executed; i.e., a state transformer (Σ → Σ).

Any problem? Yes:

C[[while e do c]] σ =

C[[if e then (c ; while e do c) else skip]] σ

is not compositional and does not define a
unique solution.
(However, it is a semantic equation that should hold.)
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The Problem (1)

To see no unique solution, consider for example:

c1 = while x /= 1 do x := x - 2

C[[c1]] σ =

{

C[[c1]] ([x 7→ σ x− 2]σ), if σ x 6= 1

σ, otherwise
(A)

Equation (A) is satisfied by C[[c1]] = fc1
where:

fc1
σ =

{

[x 7→ 1]σ, if odd(σ x)

σ′, if even(σ x), σ′ arbitrary!
(S)
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The Problem (2)

Verify this (was homework).

Case σ x = 1:

LHS (A) = C[[c1]] σ

= { C[[c1]] = fc1
}

fc1
σ

= { By (S), odd(σ x) }
[x 7→ 1]σ

= σ

= RHS (A)
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The Problem (3)

Case odd(σ x), σ x > 1:
Note that then also odd(σ x− 2).
LHS (A) = C[[c1]] σ

= fc1
σ

= { By (S), odd(σ x) }
[x 7→ 1]σ

= [x 7→ 1]([x 7→ σ x− 2]σ)

= { odd(σ x− 2), By (S) }
= fc1

([x 7→ σ x− 2]σ)

= . . .
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The Problem (4)

= . . .

= C[[c1]] ([x 7→ σ x− 2]σ)

= { σ x 6= 1 }
RHS (A)
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The Problem (5)
Case even(σ x), σ x > 1:

LHS (A) = C[[c1]] σ

= fc1
σ

= { By (S), even(σ x) }
σ′

= { even(σ x− 2), By (S) }
= fc1

([x 7→ σ x− 2]σ)

= C[[c1]] ([x 7→ σ x− 2]σ)

= { σ x 6= 1 }
RHS (A)
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Solution: Fixed Point Semantics (1)

How can we proceed?
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Solution: Fixed Point Semantics (1)

How can we proceed?

Clue: fc1
= C[[c1]] occurs in both the LHS and

RHS of (A). The desired semantic function is the
fixed point of the equation!
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Solution: Fixed Point Semantics (1)

How can we proceed?

Clue: fc1
= C[[c1]] occurs in both the LHS and

RHS of (A). The desired semantic function is the
fixed point of the equation!

New attempt:

C[[while e do c]] =

fixΣ→Σ

(

λf.λσ.

{

σ, if E[[e]] σ = 0

f (C[[c]] σ), otherwise

)
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Solution: Fixed Point Semantics (2)

(Might be easier to see if we allow a recursive
formulation where the fixed point is implicit:

C[[while e do c]] = f

where

f σ =

{

σ, if E[[e]] σ = 0

f (C[[c]] σ), otherwise

However, we stick to an explicit fixed point
formulation to make the semantics clear.)
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Existence and Uniqueness? (1)

Our definition of C[[·]] is now compositional !

But:
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Existence and Uniqueness? (1)

Our definition of C[[·]] is now compositional !

But:
• Does this fixed point exist?
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Existence and Uniqueness? (1)

Our definition of C[[·]] is now compositional !

But:
• Does this fixed point exist?
• Is it unique if it does exist?
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Existence and Uniqueness? (1)

Our definition of C[[·]] is now compositional !

But:
• Does this fixed point exist?
• Is it unique if it does exist?

We should be suspicious! Consider e.g.:

C[[while true do (x := x + 1)]] {x 7→ 0}

What could the final value of x possibly be?
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Existence and Uniqueness? (1)

Our definition of C[[·]] is now compositional !

But:
• Does this fixed point exist?
• Is it unique if it does exist?

We should be suspicious! Consider e.g.:

C[[while true do (x := x + 1)]] {x 7→ 0}

What could the final value of x possibly be?

10?
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Existence and Uniqueness? (1)

Our definition of C[[·]] is now compositional !

But:
• Does this fixed point exist?
• Is it unique if it does exist?

We should be suspicious! Consider e.g.:

C[[while true do (x := x + 1)]] {x 7→ 0}

What could the final value of x possibly be?

10? 1000?
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Existence and Uniqueness? (1)

Our definition of C[[·]] is now compositional !

But:
• Does this fixed point exist?
• Is it unique if it does exist?

We should be suspicious! Consider e.g.:

C[[while true do (x := x + 1)]] {x 7→ 0}

What could the final value of x possibly be?

10? 1000? ∞?
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Existence and Uniqueness? (2)

More generally, consider the following “recursive”
definitions:

f1 n = (f1 n) + 1 (1)

f2 n = f2 n (2)
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Existence and Uniqueness? (2)

More generally, consider the following “recursive”
definitions:

f1 n = (f1 n) + 1 (1)

f2 n = f2 n (2)

• No f1 ∈ N → N satisfies (1).
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Existence and Uniqueness? (2)

More generally, consider the following “recursive”
definitions:

f1 n = (f1 n) + 1 (1)

f2 n = f2 n (2)

• No f1 ∈ N → N satisfies (1).
• All f2 ∈ N → N satisfies (2).
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Existence and Uniqueness? (2)

More generally, consider the following “recursive”
definitions:

f1 n = (f1 n) + 1 (1)

f2 n = f2 n (2)

• No f1 ∈ N → N satisfies (1).
• All f2 ∈ N → N satisfies (2).

So, if we are considering functions defined on
sets , fixed points need not exist, and, if they do,
they need not be unique!
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Denotation for Non-termination (1)

Idea:

G54FOP: Lecture 17 & 18 – p.19/33



Denotation for Non-termination (1)

Idea:

• Let ⊥ (“bottom”) denote non-termination
(divergence) or error.
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Denotation for Non-termination (1)

Idea:

• Let ⊥ (“bottom”) denote non-termination
(divergence) or error.

• For a set A such that ⊥/∈ A, let A⊥ = A∪ {⊥}.
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Denotation for Non-termination (1)

Idea:

• Let ⊥ (“bottom”) denote non-termination
(divergence) or error.

• For a set A such that ⊥/∈ A, let A⊥ = A∪ {⊥}.
• For a function f : A → B⊥, let

f⊥⊥ x =

{

⊥, if x =⊥

f x, otherwise

(Called “source lifting”; note: f⊥⊥ : A⊥ → B⊥)
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Denotation for Non-termination (2)

• A function f is strict iff f ⊥ = ⊥.
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Denotation for Non-termination (2)

• A function f is strict iff f ⊥ = ⊥.
• Source lifting yields a strict function.

Intuitively, it ensures propagation of errors.
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Denotation for Non-termination (2)

• A function f is strict iff f ⊥ = ⊥.
• Source lifting yields a strict function.

Intuitively, it ensures propagation of errors.

We can now find a function satisfying (1):

f1 : N⊥ → N⊥

f1 x = ⊥

f1 satisfies (1) because + is strict (i.e., in this
case, ⊥ + 1 = ⊥).
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Denotation for Non-termination (3)
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Denotation for Non-termination (3)

• Thus, by considering a mathematically
richer structure than plain sets, we could
find a solution to at least one fixed point
equation that did not have a solution in plain
set theory.
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Denotation for Non-termination (3)

• Thus, by considering a mathematically
richer structure than plain sets, we could
find a solution to at least one fixed point
equation that did not have a solution in plain
set theory.

• This is a key idea of Domain Theory .
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Denotation for Non-termination (3)

• Thus, by considering a mathematically
richer structure than plain sets, we could
find a solution to at least one fixed point
equation that did not have a solution in plain
set theory.

• This is a key idea of Domain Theory .
• However, even if we move to such a richer

setting, we still don’t know:
- Does a fixed point equation always have a

solution?
- Are solutions unique if they exists?
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Semantics for Commands Revisited

But first, let us refine the meaning of commands:

C[[·]] : c → (Σ → Σ⊥)
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Semantics for Commands Revisited

But first, let us refine the meaning of commands:

C[[·]] : c → (Σ → Σ⊥)

Now we can find a meaning for e.g. an infinite
loop:

C[[while true do skip]] = λσ. ⊥
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Semantics for Commands Revisited

But first, let us refine the meaning of commands:

C[[·]] : c → (Σ → Σ⊥)

Now we can find a meaning for e.g. an infinite
loop:

C[[while true do skip]] = λσ. ⊥

But we have to refine the meaning of
sequencing:

C[[c1 ; c2]] σ = (C[[c2]]⊥⊥) (C[[c1]] σ)
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Domains and Continuous Functions (1)
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Domains and Continuous Functions (1)

• A domain D is a set with
- a partial order ⊑

- a least element ⊥

such that every chain of elements xi ∈ D,
x0 ⊑ x1 ⊑ . . ., has a limit in D, i.e., a least

upper bound , denoted
∞
⊔

i=0

xi.
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Domains and Continuous Functions (1)

• A domain D is a set with
- a partial order ⊑

- a least element ⊥

such that every chain of elements xi ∈ D,
x0 ⊑ x1 ⊑ . . ., has a limit in D, i.e., a least

upper bound , denoted
∞
⊔

i=0

xi.

• ⊑ is an information ordering : read x ⊑ y as
“x is less informative than y”.
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Domains and Continuous Functions (2)

• If D satisfies all conditions for being a
domain, except that it lacks a smallest
element, then it is called a predomain .
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Domains and Continuous Functions (2)

• If D satisfies all conditions for being a
domain, except that it lacks a smallest
element, then it is called a predomain .

• A function f is said to be continuous if it
preserves limits of chains:

f

(

∞
⊔

i=0

xi

)

=
∞
⊔

i=0

f xi

where xi is a chain.
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Domains and Continuous Functions (3)

• Any function space from a (pre)domain to a
domain is a domain with least element λx. ⊥;
i.e., the everywhere undefined function.
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The Least Fixed Point Theorem

If D is a domain and f : D → D is a continuous
function, then

x =
∞
⊔

n=0

fn ⊥

is the least fixed point of f ; i.e., f x = x, and for
all y such that f y = y, it is the case that x ⊑ y.
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The Meaning of fixD

Thus we take the meaning of fixD to be as given
by the Least Fixed Point Theorem.

As long as D is a domain and f : D → D is a
continuous function, then the fixed point x

x = fixD f

exists and is unique.
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Exercise (1)

Consider the following definition of the factorial
function:

f : (N → N⊥) → (N → N⊥)

f = λg.λn.if n = 0 then 1 else n × g (n − 1)

fac = fixN→N⊥
f

Note: N is a predomain and N⊥ is a domain.
Thus N → N⊥ is a domain.

Calculate fn ⊥ for n = 0, 1, 2, 3.
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Exercise (2)

Note how fn becomes a better and better
approximation of the factorial function as n
increases.
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Exercise (2)

Note how fn becomes a better and better
approximation of the factorial function as n
increases.

Thus each successive approximation is more
informative than the previous one (information
ordering).

G54FOP: Lecture 17 & 18 – p.29/33



Exercise (2)

Note how fn becomes a better and better
approximation of the factorial function as n
increases.

Thus each successive approximation is more
informative than the previous one (information
ordering).

Thus it seems plausible that the series
converges to the factorial function.
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Exercise (2)

Note how fn becomes a better and better
approximation of the factorial function as n
increases.

Thus each successive approximation is more
informative than the previous one (information
ordering).

Thus it seems plausible that the series
converges to the factorial function.

And in fact, because f is continuous, it does.
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Semantics of while Revisited (1)
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Semantics of while Revisited (1)

• It can be shown that Σ

Σ = x → N

is a predomain.
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Semantics of while Revisited (1)

• It can be shown that Σ

Σ = x → N

is a predomain.
• Thus Σ⊥ and Σ → Σ⊥ are both domains.
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Semantics of while Revisited (1)

• It can be shown that Σ

Σ = x → N

is a predomain.
• Thus Σ⊥ and Σ → Σ⊥ are both domains.
• Furthermore, it can be shown that all

functions g

g ∈ (Σ → Σ⊥) → (Σ → Σ⊥)

are continuous.
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Semantics of while Revisited (2)

Thus, we can define:

C[[while e do c]] = fixΣ→Σ⊥
g

where

g : (Σ → Σ⊥) → (Σ → Σ⊥)

g = λf.λσ.

{

σ, if E[[e]] σ = 0

f⊥⊥ (C[[c]] σ), otherwise

in the knowledge that the fixed point fixΣ→Σ⊥
g

exists and is the smallest fixed point of g.
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Exercises

• Calculate gn ⊥ for g from the previous slide
for a few n from 0 and upwards until you have
convinced yourself that you get a better and
better approximation of the semantic function
for a while-loop (i.e., that each successive
approximation can handle one more iteration).
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Exercises
• Suppose we wish to add a C/Java-like post

increment operator to the expression
fragment of our language:
x++

The value of the expression is the current
value of the variable, but as a side effect the
variable is also incremented by one.

How would the semantic definitions have to
be restructured to accommodate this
addition? In particular, what is a suitable type
for the semantic function E[[·]]?
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