G54FOP: Lecture 17 \& 18 Denotational Semantics and Domain Theory III \& IV
 Henrik Nilsson

University of Nottingham, UK

These Two Lectures

- Revisit attempt to define denotational semantics for small imperative language
- Discussion of the reasons for it being inadequate
- Fixed point semantics
- Basic domain theory
- The Least Fixed Point Theorem

Recap: Imperative Language (1)

Syntax of expressions:
$e \quad \longrightarrow$
expressions:
x
variable
constant number, $n \in \mathbb{N}$
true
| Ealse
not e
$e \& \& e$

constant true
constant false
logical negation
logical conjunction

Recap: Imperative Language (2)

$e \quad \longrightarrow$
expressions:

$e+e$	addition
\|	subtraction
$e=e$	numeric equality test
$e<e$	numeric less than test

Recap: Imperative Language (3)

Syntax of commands:

```
\(c \quad \rightarrow\)
    skip
    \(x:=e\)
    \(c ; c\)
    if \(e\) then \(c\) else \(c\)
    while \(e\) do \(c\)
```

commands:
no operation
assignment
sequence
conditional
iteration

Rcp: Denotational Semantics for IL (1)

We take the semantic domain to be \mathbb{N} for simplicity. A store maps a variable name to its value:

$$
\begin{aligned}
\Sigma & =x \rightarrow \mathbb{N} \\
\sigma & : \Sigma
\end{aligned}
$$

We need two semantic functions, one for expressions (no side effects), one for commands:

$$
\begin{aligned}
& \mathrm{E}[\cdot]: \quad e \rightarrow(\Sigma \rightarrow \mathbb{N}) \\
& \mathrm{C}[\cdot]: c \rightarrow(\Sigma \rightarrow \Sigma) \quad \text { [Not correct yet!] }
\end{aligned}
$$

(Note: $e \rightarrow(\Sigma \rightarrow \mathbb{N})=e \rightarrow \Sigma \rightarrow \mathbb{N}$ etc.)

Rcp: Denotational Semantics for IL (2)

E[•]: some typical cases:

$$
\begin{aligned}
\mathrm{E} \llbracket x \rrbracket \sigma & =\sigma x \\
\mathrm{E} \llbracket n \rrbracket \sigma & =n \\
\mathrm{E}[\mathrm{true} \rrbracket \sigma & =1 \\
\mathrm{E}[\text { false] } \sigma & =0 \\
\mathrm{E}[\text { not } e \rrbracket \sigma & = \begin{cases}1, & \text { if } \mathrm{E}[e \rrbracket \sigma=0 \\
0, & \text { otherwise }\end{cases} \\
\mathrm{E}\left[e_{1}+e_{2} \rrbracket \sigma\right. & \left.=\mathrm{E} \llbracket e_{1} \rrbracket \sigma+\mathrm{E} \llbracket e_{1}\right] \sigma
\end{aligned}
$$

Rep: Denotational Semantics for IL (3)

First attempt:

$$
\begin{aligned}
\mathrm{C} \llbracket \text { skip } \rrbracket \sigma & =\sigma \\
\mathrm{C} \llbracket x:=e \rrbracket \sigma & =[x \mapsto \mathrm{E} \llbracket e \rrbracket \sigma] \sigma \\
\mathrm{C}\left[c_{1} ; c_{2} \rrbracket \sigma\right. & \left.=\mathrm{C} \llbracket c_{2} \rrbracket\left(\mathrm{C} \llbracket c_{1}\right] \sigma\right)
\end{aligned}
$$

$\mathrm{C}\left[\right.$ if e then c_{1} else $c_{2} \rrbracket \sigma=$

$$
\begin{cases}\left.\mathrm{C} \llbracket c_{1}\right] \sigma, & \text { if } \mathrm{E} \llbracket e \rrbracket \sigma=1 \\ \mathrm{C}\left[c_{2}\right] \sigma, & \text { otherwise }\end{cases}
$$

$\mathrm{C}[$ while e do $c \rrbracket \sigma=$
$\mathrm{C}[$ if e then $(c$; while e do $c)$ else skip] σ

Rcp: Denotational Semantics for IL (4)

Intuition: Semantics of a command is a function mapping state (store) as it is prior to executing the command to resulting state after the command has been executed; i.e., a state transformer $(\Sigma \rightarrow \Sigma)$.

Rcp: Denotational Semantics for IL (4)

Intuition: Semantics of a command is a function mapping state (store) as it is prior to executing the command to resulting state after the command has been executed; i.e., a state transformer $(\Sigma \rightarrow \Sigma)$. Any problem?

Rcp: Denotational Semantics for IL (4)

Intuition: Semantics of a command is a function mapping state (store) as it is prior to executing the command to resulting state after the command has been executed; i.e., a state transformer $(\Sigma \rightarrow \Sigma)$.

Any problem? Yes:
$\mathrm{C}[$ while e do $c \rrbracket \sigma=$

$$
\mathrm{C}[\text { if } e \text { then }(c \text {; while } e \text { do } c) \text { else skip }] \sigma
$$

is not compositional and does not define a unique solution.

Rcp: Denotational Semantics for IL (4)

Intuition: Semantics of a command is a function mapping state (store) as it is prior to executing the command to resulting state after the command has been executed; i.e., a state transformer $(\Sigma \rightarrow \Sigma)$.
Any problem? Yes:
$\mathrm{C}[$ while e do $c \rrbracket \sigma=$

$$
\mathrm{C}[i f e \text { then }(c ; \text { while } e \text { do } c) \text { else skip] } \sigma
$$

is not compositional and does not define a unique solution.
(However, it is a semantic equation that should hold.)

The Problem (1)

To see no unique solution, consider for example:

$$
\begin{gather*}
c_{1}=\text { while } \mathbf{x} /=1 \text { do } \mathbf{x}:=\mathbf{x}-2 \\
\mathrm{C} \llbracket c_{1} \rrbracket \sigma= \begin{cases}\mathrm{C} \llbracket c_{1} \rrbracket([\mathbf{x} \mapsto \sigma \mathrm{x}-2] \sigma), & \text { if } \sigma \mathbf{x} \neq 1 \\
\sigma, & \text { otherwise }\end{cases} \tag{A}
\end{gather*}
$$

Equation (A) is satisfied by $\mathrm{C}\left[c_{1}\right]=f_{c_{1}}$ where:

$$
f_{c_{1}} \sigma= \begin{cases}{[\mathbf{x} \mapsto 1] \sigma,} & \text { if } \operatorname{odd}(\sigma \mathbf{x}) \\ \sigma^{\prime}, & \text { if } \operatorname{even}(\sigma \mathbf{x}), \sigma^{\prime} \text { arbitrary! }\end{cases}
$$

The Problem (2)

Verify this (was homework).
Case $\sigma \mathrm{x}=1$:
$\operatorname{LHS}(\mathrm{A})=\mathrm{C} \llbracket c_{1} \rrbracket \sigma$

$$
=\left\{\mathrm{C}\left[c_{1}\right]=f_{c_{1}}\right\}
$$

$f_{c_{1}} \sigma$
$=\{\operatorname{By}(\mathrm{S}), \operatorname{odd}(\sigma x)\}$
$[\mathrm{x} \mapsto 1] \sigma$
$=\sigma$
$=$ RHS (A)

The Problem (3)

Case $\operatorname{odd}(\sigma \mathrm{x}), \sigma \mathrm{x}>1$:
Note that then also odd $(\sigma x-2)$.
$\mathrm{LHS}(\mathrm{A})=\mathrm{C} \llbracket c_{1} \rrbracket \sigma$
$=f_{c_{1}} \sigma$
$=\{\operatorname{By}(\mathrm{S}), \operatorname{odd}(\sigma \mathrm{x})\}$
$[\mathrm{x} \mapsto 1] \sigma$
$=[\mathbf{x} \mapsto 1]([\mathbf{x} \mapsto \sigma \mathbf{x}-2] \sigma)$
$=\{\operatorname{odd}(\sigma x-2), \operatorname{By}(\mathrm{S})\}$
$=f_{c_{1}}([\mathbf{x} \mapsto \sigma \mathbf{x}-2] \sigma)$
$\bar{\square} \quad$.

The Problem (4)

$$
\begin{aligned}
= & \cdots \\
= & \mathrm{C} \llbracket c_{1} \rrbracket([\mathbf{x} \mapsto \sigma \mathbf{x}-2] \sigma) \\
= & \{\sigma \mathbf{x} \neq 1\} \\
& \operatorname{RHS}(\mathbf{A})
\end{aligned}
$$

The Problem (5)

Case even $(\sigma x), \sigma x>1$:

$$
\begin{aligned}
\operatorname{LHS}(\mathrm{A})= & \mathrm{C}\left[c_{1} \rrbracket \sigma\right. \\
= & f_{c_{1}} \sigma \\
= & \{\operatorname{By}(\mathrm{S}), \operatorname{even}(\sigma \mathrm{x})\} \\
& \sigma^{\prime}
\end{aligned}
$$

$$
=\{\operatorname{even}(\sigma \mathbf{x}-2), \operatorname{By}(\mathrm{S})\}
$$

$$
=f_{c_{1}}([\mathbf{x} \mapsto \sigma \mathbf{x}-2] \sigma)
$$

$$
=\mathrm{C}\left[c_{1}\right]([\mathbf{x} \mapsto \sigma \mathbf{x}-2] \sigma)
$$

$$
=\{\sigma x \neq 1\}
$$

RHS (A)

Solution: Fixed Point Semantics (1)

How can we proceed?

Solution: Fixed Point Semantics (1)

How can we proceed?
Clue: $f_{c_{1}}=\mathrm{C}\left[c_{1}\right]$ occurs in both the LHS and RHS of (A). The desired semantic function is the fixed point of the equation!

Solution: Fixed Point Semantics (1)

How can we proceed?
Clue: $f_{c_{1}}=\mathrm{C}\left[c_{1}\right]$ occurs in both the LHS and RHS of (A). The desired semantic function is the fixed point of the equation!

New attempt:
$\mathrm{C}[$ while e do $c]=$

$$
\operatorname{fix}_{\Sigma \rightarrow \Sigma}\left(\lambda f \cdot \lambda \sigma \cdot\left\{\begin{array}{ll}
\sigma, & \text { if } \mathrm{E} \llbracket e \rrbracket \sigma=0 \\
f(\mathrm{C} \llbracket c \rrbracket \sigma), & \text { otherwise }
\end{array}\right)\right.
$$

Solution: Fixed Point Semantics (2)

(Might be easier to see if we allow a recursive formulation where the fixed point is implicit:

$$
\begin{aligned}
& \mathrm{C} \llbracket \text { while } e \text { do } c \rrbracket=f \\
& \text { where } \\
& \qquad f \sigma= \begin{cases}\sigma, & \text { if } \mathrm{E} \llbracket e \rrbracket \sigma=0 \\
f(\mathrm{C} \llbracket c \rrbracket \sigma), & \text { otherwise }\end{cases}
\end{aligned}
$$

However, we stick to an explicit fixed point formulation to make the semantics clear.)

Existence and Uniqueness? (1)

Our definition of $\mathrm{C}[\cdot]$ is now compositional!
But:

Existence and Uniqueness? (1)

Our definition of C[.] is now compositional!

But:

- Does this fixed point exist?

Existence and Uniqueness? (1)

Our definition of $\mathrm{C}[\cdot]$ is now compositional!

But:

- Does this fixed point exist?
- Is it unique if it does exist?

Existence and Uniqueness? (1)

Our definition of $\mathrm{C}[\cdot]$ is now composittional!
But:

- Does this fixed point exist?
- Is it unique if it does exist?

We should be suspicious! Consider e.g.:

$$
\text { C[while true do }(x:=x+1)]\{x \mapsto 0\}
$$

What could the final value of x possibly be?

Existence and Uniqueness? (1)

Our definition of $\mathrm{C}[\cdot]$ is now composittional!
But:

- Does this fixed point exist?
- Is it unique if it does exist?

We should be suspicious! Consider e.g.:

$$
\mathrm{C}[\text { while true do }(\mathrm{x}:=\mathrm{x}+1)]\{\mathrm{x} \mapsto 0\}
$$

What could the final value of x possibly be? 10 ?

Existence and Uniqueness? (1)

Our definition of $\mathrm{C}[\cdot]$ is now compositional!
But:

- Does this fixed point exist?
- Is it unique if it does exist?

We should be suspicious! Consider e.g.:

$$
\text { C[while true do }(\mathrm{x}:=\mathrm{x}+1)]\{\mathrm{x} \mapsto 0\}
$$

What could the final value of x possibly be? 10 ? 1000?

Existence and Uniqueness? (1)

Our definition of $\mathrm{C}[\cdot]$ is now compositional! But:

- Does this fixed point exist?
- Is it unique if it does exist?

We should be suspicious! Consider e.g.:

$$
\text { C[while true do }(\mathrm{x}:=\mathrm{x}+1)]\{\mathrm{x} \mapsto 0\}
$$

What could the final value of x possibly be? 10 ? 1000 ? ∞ ?

Existence and Uniqueness? (2)

More generally, consider the following "recursive" definitions:

$$
\begin{align*}
f_{1} n & =\left(f_{1} n\right)+1 \tag{1}\\
f_{2} n & =f_{2} n \tag{2}
\end{align*}
$$

Existence and Uniqueness? (2)

More generally, consider the following "recursive" definitions:

$$
\begin{align*}
& f_{1} n=\left(f_{1} n\right)+1 \tag{1}\\
& f_{2} n=f_{2} n \tag{2}
\end{align*}
$$

- No $f_{1} \in \mathbb{N} \rightarrow \mathbb{N}$ satisfies (1).

Existence and Uniqueness? (2)

More generally, consider the following "recursive" definitions:

$$
\begin{align*}
& f_{1} n=\left(f_{1} n\right)+1 \tag{1}\\
& f_{2} n=f_{2} n \tag{2}
\end{align*}
$$

- No $f_{1} \in \mathbb{N} \rightarrow \mathbb{N}$ satisfies (1).
- $\mathbf{A l l} f_{2} \in \mathbb{N} \rightarrow \mathbb{N}$ satisfies (2).

Existence and Uniqueness? (2)

More generally, consider the following "recursive" definitions:

$$
\begin{align*}
& f_{1} n=\left(f_{1} n\right)+1 \tag{1}\\
& f_{2} n=f_{2} n \tag{2}
\end{align*}
$$

- No $f_{1} \in \mathbb{N} \rightarrow \mathbb{N}$ satisfies (1).
- All $f_{2} \in \mathbb{N} \rightarrow \mathbb{N}$ satisfies (2).

So, if we are considering functions defined on sets, fixed points need not exist, and, if they do, they need not be unique!

Denotation for Non-termination (1)

Idea:

Denotation for Non-termination (1)

Idea:

- Let \perp ("bottom") denote non-termination (divergence) or error.

Denotation for Non-termination (1)

Idea:

- Let \perp ("bottom") denote non-termination (divergence) or error.
- For a set A such that $\perp \notin A$, let $A_{\perp}=A \cup\{\perp\}$.

Denotation for Non-termination (1)

Idea:

- Let \perp ("bottom") denote non-termination (divergence) or error.
- For a set A such that $\perp \notin A$, let $A_{\perp}=A \cup\{\perp\}$.
- For a function $f: A \rightarrow B_{\perp}$, let

$$
f_{\Perp} x= \begin{cases}\perp, & \text { if } x=\perp \\ f x, & \text { otherwise }\end{cases}
$$

(Called "source lifting"; note: $f_{\Perp}: A_{\perp} \rightarrow B_{\perp}$)

Denotation for Non-termination (2)

- A function f is strict iff $f \perp=\perp$.

Denotation for Non-termination (2)

- A function f is strict iff $f \perp=\perp$.
- Source lifting yields a strict function. Intuitively, it ensures propagation of errors.

Denotation for Non-termination (2)

- A function f is strict iff $f \perp=\perp$.
- Source lifting yields a strict function. Intuitively, it ensures propagation of errors.

We can now find a function satisfying (1):

$$
\begin{aligned}
f_{1} & : \mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp} \\
f_{1} x & =\perp
\end{aligned}
$$

f_{1} satisfies (1) because + is strict (i.e., in this case, $\perp+1=\perp$).

Denotation for Non-termination (3)

Denotation for Non-termination (3)

- Thus, by considering a mathematically richer structure than plain sets, we could find a solution to at least one fixed point equation that did not have a solution in plain set theory.

Denotation for Non-termination (3)

- Thus, by considering a mathematically richer structure than plain sets, we could find a solution to at least one fixed point equation that did not have a solution in plain set theory.
- This is a key idea of Domain Theory.

Denotation for Non-termination (3)

- Thus, by considering a mathematically richer structure than plain sets, we could find a solution to at least one fixed point equation that did not have a solution in plain set theory.
- This is a key idea of Domain Theory.
- However, even if we move to such a richer setting, we still don't know:
- Does a fixed point equation always have a solution?
- Are solutions unique if they exists?

Semantics for Commands Revisited

But first, let us refine the meaning of commands:

$$
\mathrm{C}[\cdot]: c \rightarrow\left(\Sigma \rightarrow \Sigma_{\perp}\right)
$$

Semantics for Commands Revisited

But first, let us refine the meaning of commands:

$$
\mathrm{C}[\cdot]: c \rightarrow\left(\Sigma \rightarrow \Sigma_{\perp}\right)
$$

Now we can find a meaning for e.g. an infinite loop:

$$
\mathrm{C}[\text { while true do skip }]=\lambda \sigma . \perp
$$

Semantics for Commands Revisited

But first, let us refine the meaning of commands:

$$
\mathrm{C}[\cdot]: c \rightarrow\left(\Sigma \rightarrow \Sigma_{\perp}\right)
$$

Now we can find a meaning for e.g. an infinite loop:

$$
\mathrm{C}[\text { while true do skip }]=\lambda \sigma . \perp
$$

But we have to refine the meaning of sequencing:

$$
\mathrm{C} \llbracket c_{1} ; c_{2} \rrbracket \sigma=\left(\mathrm{C} \llbracket c_{2} \rrbracket \Perp\right)\left(\mathrm{C} \llbracket c_{1} \rrbracket \sigma\right)
$$

Domains and Continuous Functions (1)

Domains and Continuous Functions (1)

- A domain D is a set with
- a partial order \sqsubseteq
- a least element \perp
such that every chain of elements $x_{i} \in D$, $x_{0} \sqsubseteq x_{1} \sqsubseteq \ldots$, has a limit in D, i.e., a least upper bound, denoted $\bigsqcup_{i=0}^{\infty} x_{i}$.

Domains and Continuous Functions (1)

- A domain D is a set with
- a partial order \sqsubseteq
- a least element \perp
such that every chain of elements $x_{i} \in D$, $x_{0} \sqsubseteq x_{1} \sqsubseteq \ldots$, has a limit in D, i.e., a least upper bound, denoted $\bigsqcup_{i=0}^{\infty} x_{i}$.
- \sqsubseteq is an information ordering: read $x \sqsubseteq y$ as "x is less informative than y ".

Domains and Continuous Functions (2)

- If D satisfies all conditions for being a domain, except that it lacks a smallest element, then it is called a predomain.

Domains and Continuous Functions (2)

- If D satisfies all conditions for being a domain, except that it lacks a smallest element, then it is called a predomain.
- A function f is said to be continuous if it preserves limits of chains:

$$
f\left(\bigsqcup_{i=0}^{\infty} x_{i}\right)=\bigsqcup_{i=0}^{\infty} f x_{i}
$$

where x_{i} is a chain.

Domains and Continuous Functions (3)

- Any function space from a (pre)domain to a domain is a domain with least element $\lambda x . \perp$; i.e., the everywhere undefined function.

The Least Fixed Point Theorem

If D is a domain and $f: D \rightarrow D$ is a continuous function, then

$$
x=\bigsqcup_{n=0}^{\infty} f^{n} \perp
$$

is the least fixed point of f; i.e., $f x=x$, and for all y such that $f y=y$, it is the case that $x \sqsubseteq y$.

The Meaning of fix $_{D}$

Thus we take the meaning of fix_{D} to be as given by the Least Fixed Point Theorem.

As long as D is a domain and $f: D \rightarrow D$ is a continuous function, then the fixed point x

$$
x=\operatorname{fix}_{D} f
$$

exists and is unique.

Exercise (1)

Consider the following definition of the factorial function:

$$
\begin{aligned}
f & :\left(\mathbb{N} \rightarrow \mathbb{N}_{\perp}\right) \rightarrow\left(\mathbb{N} \rightarrow \mathbb{N}_{\perp}\right) \\
f & =\lambda g \cdot \lambda n . \text { if } n=0 \text { then } 1 \text { else } n \times g(n-1) \\
f a c & =\text { fix }_{\mathbb{N} \rightarrow \mathbb{N}_{\perp}} f
\end{aligned}
$$

Note: \mathbb{N} is a predomain and \mathbb{N}_{\perp} is a domain. Thus $\mathbb{N} \rightarrow \mathbb{N}_{\perp}$ is a domain.

Calculate $f^{n} \perp$ for $n=0,1,2,3$.

Exercise (2)

Note how f^{n} becomes a better and better approximation of the factorial function as n increases.

Exercise (2)

Note how f^{n} becomes a better and better approximation of the factorial function as n increases.

Thus each successive approximation is more informative than the previous one (information ordering).

Exercise (2)

Note how f^{n} becomes a better and better approximation of the factorial function as n increases.

Thus each successive approximation is more informative than the previous one (information ordering).

Thus it seems plausible that the series converges to the factorial function.

Exercise (2)

Note how f^{n} becomes a better and better approximation of the factorial function as n increases.

Thus each successive approximation is more informative than the previous one (information ordering).

Thus it seems plausible that the series converges to the factorial function.

And in fact, because f is continuous, it does.

Semantics of while Revisited (1)

Semantics of while Revisited (1)

- It can be shown that Σ

$$
\Sigma=x \rightarrow \mathbb{N}
$$

is a predomain.

Semantics of while Revisited (1)

- It can be shown that Σ

$$
\Sigma=x \rightarrow \mathbb{N}
$$

is a predomain.

- Thus Σ_{\perp} and $\Sigma \rightarrow \Sigma_{\perp}$ are both domains.

Semantics of while Revisited (1)

- It can be shown that Σ

$$
\Sigma=x \rightarrow \mathbb{N}
$$

is a predomain.

- Thus Σ_{\perp} and $\Sigma \rightarrow \Sigma_{\perp}$ are both domains.
- Furthermore, it can be shown that all functions g

$$
g \in\left(\Sigma \rightarrow \Sigma_{\perp}\right) \rightarrow\left(\Sigma \rightarrow \Sigma_{\perp}\right)
$$

are continuous.

Semantics of while Revisited (2)

Thus, we can define:

$$
\mathrm{C}[\text { while } e \text { do } c]=\operatorname{fix}_{\Sigma \rightarrow \Sigma_{\perp}} g
$$

where

$$
\begin{aligned}
& g:\left(\Sigma \rightarrow \Sigma_{\perp}\right) \rightarrow\left(\Sigma \rightarrow \Sigma_{\perp}\right) \\
& g=\lambda f \cdot \lambda \sigma \cdot \begin{cases}\sigma, & \text { if } \mathrm{E} \llbracket e \rrbracket \sigma=0 \\
f_{\Perp}(\mathrm{C} \llbracket c \rrbracket \sigma), & \text { otherwise }\end{cases}
\end{aligned}
$$

in the knowledge that the fixed point fix ${ }_{\Sigma \rightarrow \Sigma_{\perp}} g$ exists and is the smallest fixed point of g.

Exercises

- Calculate $g^{n} \perp$ for g from the previous slide for a few n from 0 and upwards until you have convinced yourself that you get a better and better approximation of the semantic function for a while-loop (i.e., that each successive approximation can handle one more iteration).

Exercises

- Suppose we wish to add a C/Java-like post increment operator to the expression fragment of our language:

x++

The value of the expression is the current value of the variable, but as a side effect the variable is also incremented by one.

How would the semantic definitions have to be restructured to accommodate this addition? In particular, what is a suitable type for the semantic function $E[\cdot]$?

