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These Two L ectures

Revisit attempt to define denotational
semantics for small imperative language

Discussion of the reasons for it being
Inadequate

Fixed point semantics
Basic domain theory
The Least Fixed Point Theorem
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Recap: | mperative Language (1)

Syntax of expressions:

e — expressions:
T variable
n constant number, n € N
true constant true
fal se constant false
not e logical negation
e && e logical conjunction
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Recap: | mperative Language (2)

e — expressions:
e+ e addition
e- € subtraction

e = e numeric equality test

e < ¢ numeric less than test
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Recap: | mperative L anguage (3)

Syntax of commands:

c — commands:
ski p no operation
Tr.=e assignment
C, C seguence

T ethencel se ¢ conditional
whi |l e edo ¢ iteration
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Rcp: Denotational Semanticsfor 1L (1)

We take the semantic domain to be N for simplicity.
A store maps a variable name to its value:

> = z— N
o 2

We need two semantic functions , one for
expressions (no side effects), one for commands:

E[] : e—= (X —=N)
Cl] : ¢— (3 — %) [Notcorrect yet!]

(Note: e — (X — N) =¢e¢ — ¥ — Netc.)



Rcp: Denotational Semanticsfor IL (2)

E[-]: some typical cases:

Elx]c = ox

Eln]oc = n
Elftrue]jec = 1
Elffal se]oc = 0

(1, ifE[e] o =0

Einot =
[[ el o < 0, otherwise

\

E[[61 + 62]] o E[[el]] o + E[[el]] o



Rcp: Denotational Semanticsfor IL (3)

First attempt:
Clskip]o = o
Clr:=¢e]o = |z~ Ele] olo
Clei: ] o = Cle] (Cled] o)

Clif ethenc elsec]o=

r Clei] o, if E[e] 0 =1

<
Clcs] o, otherwise

Clwhileedoc| o=
Clif ethen(c; whileedoc)el seskip]o



Rcp: Denotational Semanticsfor IL (4)

Intuition: Semantics of a command is a function
mapping state (store) as it is prior to executing the
command to resulting state after the command has
been executed; I.e., a state transformer (3 — ).
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Rcp: Denotational Semanticsfor IL (4)

Intuition: Semantics of a command is a function
mapping state (store) as it is prior to executing the
command to resulting state after the command has
been executed; I.e., a state transformer (3 — ).

Any problem? Yes:

Clwhileedoc| o=
Clif ethen(c; whileedoc)el seskip]o
IS not compositional and does not define a

uniqgue solution.
(However, it is a semantic equation that should hold.)



TheProblem (1)

To see no unique solution, consider for example:

cc=wWhilex/=1dox:=x- 2

(

Cla] (X —ox —=2]o), ifox#£1

C = A

ler] o <\0, otherwise ()
Equation (A) is satisfied by C|c;| = f., where:

£ oo <’ [x/ — 1]o, if odd(o x) S)

\

o’ if even(o x), o’ arbitrary!



TheProblem (2)

Verify this (was homework).

Case o x =1:

LHS (A) = Cl¢] o

{ C[[Cﬂ] = fe }

Jo 0

{ By (S), odd(c x) }
X — 1]o

o

RHS (A)



The Problem (3)

Case odd(o x), o x > 1;
Note that then also odd(c x — 2).

LHS (A) C[[Cl]] o

fer O

{ By (S), odd(c x) }

X — 1]o

X — 1]([Xx — o x = 2|o)
{ odd(c x —2), By (S) }
fe, (X — o x —2]o)



TheProblem (4)

é[tcl]] ([X — o x —2]o)

{ox#1}
RHS (A)



The Problem (5)

Case even(o x), o x > 1:

LHS (A)

C[[Cl]] o)

Jeo O
{ By (S), even(o x) }

/
O

{ even(c x — 2), By (S) }
f01 ([X = 0 X — 2]0)
Clei] ([X — o x — 2]o)
{ox=#£1}

RHS (A)
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Solution: Fixed Point Semantics (1)

How can we proceed?

Clue: f., = C|c1] occurs in both the LHS and
RHS of (A). The desired semantic function is the
fixed point of the equation!

New attempt:

Cwhil e edo ] =

ﬁXE_>§] ()\f)\()’ <

(0', if Ele] o = O)

f (C|c] o), otherwise

\



Solution: Fixed Point Semantics (2)

(Might be easier to see if we allow a recursive
formulation where the fixed point is implicit:

Clwhileedoc|=f

where

fo=

\

(

\

o, if Ele] 0 =0
f (C|c] o), otherwise

However, we stick to an explicit fixed point
formulation to make the semantics clear.)
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Existence and Uniqueness? (1)

Our definition of C|[-] is now compositional !

But:
Does this fixed point exist?
Is It unique If it does exist?
We should be suspicious! Consider e.g.:

Clwhiletruedo (x:=x+1)] {x — 0}

What could the final value of x possibly be?
10?7 1000? oo0?
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definitions:
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No f; € N — N satisfies (1).
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Existence and Uniqueness? (2)

More generally, consider the following “recursive
definitions:

fin = (fin)+1 (1)
fan = fan (2)
No f; € N — N satisfies (1).
All fo € N — N satisfies (2).
So, If we are considering functions defined on

sets, fixed points need not exist, and, if they do,
they need not be unique!
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Denotation for Non-ter mination (1)

|dea:

Let L (“bottom”) denote non-termination
(divergence) or error.

Foraset Asuchthat 1¢ A, letA, = AU{Ll}.
For a function f : A — B, let

(

1, fxz=1L

T = < :
Ju f x, otherwise

(Called “source lifting”; note: f, : A, — B))
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Denotation for Non-ter mination (2)

A function f Is strict Iff f 1 = L.

Source lifting yields a strict function.
Intuitively, it ensures propagation of errors.

We can now find a function satisfying (1):

Ji ¢+ N — N
iz = 1

f; satisfies (1) because + is strict (i.e., in this
case, L +1 = 1).
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Denotation for Non-ter mination (3)

Thus, by considering a mathematically
richer structure than plain sets, we could
find a solution to at least one fixed point
equation that did not have a solution in plain
set theory.

This is a key idea of Domain Theory .
However, even if we move to such a richer

setting, we still don’t know:

Does a fixed point equation always have a
solution?

Are solutions unigue If they exists?
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Semanticsfor Commands Revisited

But first, let us refine the meaning of commands:
Cl]:c— (X —31)

Now we can find a meaning for e.g. an infinite
loop:

Clwhi l etrue doskip] = do. L

But we have to refine the meaning of
seqguencing:

Cler; co] o = (Clea] i) (Clet] o)



Domains and Continuous Functions (1)



Domains and Continuous Functions (1)

« Adomain D iIs a set with
- a partial order C

- aleast element L
such that every chain of elements z; € D,
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upper bound , denoted | | z;.
1=0



Domains and Continuous Functions (1)

A domain D IS a set with
a partial order C

a least element _L

such that every chain of elements z; € D,
roCz1 C...,hasalimit in D, I.e., aleast

upper bound , denoted | | z;.
1=0

C I1s an information ordering : read x C y as
“x Is less informative than y”.
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If D satisfies all conditions for being a
domain, except that it lacks a smallest
element, then it Iis called a predomain .



Domains and Continuous Functions (2)

If D satisfies all conditions for being a
domain, except that it lacks a smallest
element, then it Iis called a predomain .

A function f Is said to be continuous If it
preserves limits of chains:

S (UIZ) — |_|fﬂfz'
i=0 i=0

where z; 1S a chain.



Domains and Continuous Functions (3)

Any function space from a (pre)domain to a
domain is a domain with least element \z. L;
l.e., the everywhere undefined function.



TheLeast Fixed Point Theorem

If D isadomainand f: D — D Is a continuous
function, then

r = Df”J_
n=0

IS the least fixed point of f; I.e., f x = =, and for
all y such that f y = vy, It Is the case that = C y.



The Meaning of fixp

Thus we take the meaning of fix, to be as given
by the Least Fixed Point Theorem.

Aslongas Disadomainand f: D — D iIs a
continuous function, then the fixed point x

L = ﬁXDf

exists and is unique.



Exercise (1)

Consider the following definition of the factorial
function:

f @ N->N )= (N—=N,)

f = Ag.An.if n=0then lelsen x g (n — 1)

fCLC — ﬁXN—>NLf

Note: N is a predomain and N Iis a domain.
Thus N — N, I1s a domain.

Calculate f* 1 forn=0,1, 2, 3.



Exercise (2)

Note how f" becomes a better and better
approximation of the factorial function as n
Increases.
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Exercise (2)
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ordering).
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Exercise (2)

Note how f" becomes a better and better
approximation of the factorial function as n
Increases.

Thus each successive approximation is more
iInformative than the previous one (information

ordering).

Thus it seems plausible that the series
converges to the factorial function.
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Exercise (2)

Note how f" becomes a better and better
approximation of the factorial function as n
Increases.

Thus each successive approximation is more
iInformative than the previous one (information

ordering).

Thus it seems plausible that the series
converges to the factorial function.

And In fact, because f Is continuous, It does.
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Semanticsof whi | e Revisited (1)



Semanticsof whi | e Revisited (1)

It can be shown that X
> = 1 — N

IS a predomain.



Semanticsof whi | e Revisited (1)

It can be shown that X
> = 1 — N

IS a predomain.
Thus >, and X — >, are both domains.



Semanticsof whi | e Revisited (1)

It can be shown that X
> = 1 — N

IS a predomain.
Thus >, and X — >, are both domains.

Furthermore, it can be shown that all
functions ¢

geEX —-X )= (X —-X))

are continuous.



Semanticsof whi | e Revisited (2)

Thus, we can define:
Clwhileedoc = fixy.sy, g
where
g + E-¥)—-(E—-X)

o if Ele] 0 =0

= Af.Ao. ¢ )
I JAg <\fiL (Clc] o), otherwise

in the knowledge that the fixed point fixy_ .5, ¢
exists and Is the smallest fixed point of g.



Exercises

Calculate ¢ 1 for g from the previous slide
for a few n from O and upwards until you have
convinced yourself that you get a better and
better approximation of the semantic function
for a whi | e-loop (i.e., that each successive
approximation can handle one more iteration).

G54FOP: Lecture 17 & 18 — p.32/33



Exercises

Suppose we wish to add a C/Java-like post
Increment operator to the expression
fragment of our language:

X ++

The value of the expression is the current
value of the variable, but as a side effect the
variable Is also incremented by one.

How would the semantic definitions have to
be restructured to accommodate this
addition? In particular, what is a suitable type
for the semantic function E[-]?
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