Software Transactinal Memory

Henrik Nilsson

University of Nottingham, UK

ThisLecture

Some problems with standard approaches to
synchronisation

Software Transactional Memory (STM)
Haskell used for illustration throughout

We will also see that STM and pure functional
programming is a particularly good match

We will start with a quick overview of
concurrent programming in Haskell.

Concurrent Programming in Haskell

Primitives for concurrent programming provided
as operations of the IO monad . Excerpts:

forkl O . 1O () -> 10 Threadl d
Ki | | Thr ead .. Threadld -> 10 ()
threadDelay :: Int -> 10 ()

newiWar .. a->10 (MWar a)
newenptyMvar :: 10 (MWar a)

put Mvar .. War a ->a ->10 ()

t akeMWar . MWar a -> 10 a

Software Transactinal Memory — p.3/29

ThelO Monad??? (1)

ThelO Monad??? (1)

Haskell uses monads as a “bridge” between
the pure functional world and the world of
Input/output, state, and other effects .

ThelO Monad??? (1)

Haskell uses monads as a “bridge” between
the pure functional world and the world of
Input/output, state, and other effects .

For the purpose of this talk, think about a
monadic value of type m a as a computation
In the monad mreturning a value of type a
described by a sequence of monadic
actions or “commands”.

| Memory — p.

4/29

ThelO Monad??? (2)

Each monad embodies a particular set of
effects.

ThelO Monad??? (2)

Each monad embodies a particular set of
effects.

Computations may be composed Into larger
computations, but ...

ThelO Monad??? (2)

Each monad embodies a particular set of
effects.

Computations may be composed Into larger
computations, but ...

...only when a computation is “run” are the
actions and their side effects actually carried
Out.

ThelO Monad??? (2)

Each monad embodies a particular set of
effects.

Computations may be composed Into larger
computations, but ...

...only when a computation is “run” are the
actions and their side effects actually carried
Out.

Key point: disciplined use of effects : types
account for precisely which effects can occur
where.

Concurrency primitives again

Let us revisit the 10 concurrency primitives again
In the light of what we now know about monads:

forkl O . 1O () -> 10 Threadl d
Ki | | Thr ead .. Threadld -> 10 ()
threadDelay :: Int -> 10 ()

newiWar .. a->10 (MWar a)
newenptyMvar . 10 (MWar a)

put Mvar .. War a ->a ->10 ()

t akeMWWar . Mar a -> 10 a

Software Transactinal Memory — p.6/29

MVar s

° ° ° ° ° ° ° ° °
Software Transactinal Memory — p.7/29

MVar s

The fundamental synchronisation mechanism
Is the War (“em-var”).

Software Transactinal Memory — p.7/29

MVar s

The fundamental synchronisation mechanism
Is the War (“em-var”).

An War Is a “one-item box” that may be
empty or full.

Software Transactinal Memory — p.7/29

MVar s

The fundamental synchronisation mechanism
Is the War (“em-var”).

An War Is a “one-item box” that may be
empty or full.

Reading (t akeMvar) and writing (put Mvar)
are atomic operations:

| Memory — p.

7/29

MVar s

The fundamental synchronisation mechanism
Is the War (“em-var”).

An War Is a “one-item box” that may be
empty or full.

Reading (t akeMvar) and writing (put Mvar)
are atomic operations:

Writing to an empty MVar makes it full.

MVar s

The fundamental synchronisation mechanism
Is the War (“em-var”).

An War Is a “one-item box” that may be
empty or full.

Reading (t akeMvar) and writing (put Mvar)
are atomic operations:

Writing to an empty MVar makes it full.
Writing to a full MVar blocks.

MVar s

The fundamental synchronisation mechanism
Is the War (“em-var”).

An War Is a “one-item box” that may be
empty or full.

Reading (t akeMvar) and writing (put Mvar)
are atomic operations:

Writing to an empty MVar makes it full.
Writing to a full MVar blocks.
Reading from an empty MVar blocks.

MVar s

The fundamental synchronisation mechanism
Is the War (“em-var”).

An War Is a “one-item box” that may be
empty or full.

Reading (t akeMvar) and writing (put Mvar)
are atomic operations:
Writing to an empty MVar makes it full.
Writing to a full Mvar blocks.
Reading from an empty MVar blocks.
Reading from a full M\War makes it empty.

Software Transactinal Memory — p.7/29

Example: Basic Synchronization (1)

nodul e Mai n where

| nport Control . Concurrent

countFromlo :: Int ->1Int -> 10 ()
count Fromlo m n
| m>n = return ()

| otherw se = do
putStrLn (show m
count Fromlo (ml) n

Software Transactinal Memory — p.8/29

Example: Basic Synchronization (2)

mai n = do
start <- newknptyMWar
done <- newEnptyMWar
forklO $ do
t akeWar start
count Fromio 1 10
put MWar done ()
putStrbLn "Gol™
put Mar start ()
t akeMvar done
(count Fromlo 11 20)
putStrLn "Done! "

Software Transactinal Memory — p.9/29

Example: Unbounded Buffer (1)

nodul e Mal n where

| nport Control.Mnad (when)
| mport Control.Concurrent

new ype Buffer a =
Buffer (Mvar (Either [a] (Int, Mar a)))

newBuffer :: 10 (Buffer a)
newBuf fer = do
b <- newiWar (Left [])
return (Buffer Db)

Software Transactinal Memory — p.10/29

Example: Unbounded Buffer (2)

readBuffer :: Buffer a -> 10 a
readBuffer (Buffer b) = do
bc <- takeMWwar Db
case bc of
Left (x : xs) -> do
put War b (Left xs)
return X
Left [] -> do
w <- newknpt yMWar
putMWar b (Right (1,w))
t akeMvar w
Ri ght (n,w) -> do
putMvar b (Right (n + 1, w))
t akeMvar w

Software Transactinal Memory — p.11/29

Example: Unbounded Buffer (3)

Why isn’t Buf f er simply defined as
newt ype Buffer a = Buffer [a]

Example: Unbounded Buffer (3)

Why isn’t Buf f er simply defined as

newt ype Buffer a = Buffer [a]
?

Hint: What would happen if e.g. an attempt is
made to read from an empty buffer?

Example: Unbounded Buffer (4)

witeBuffer :: Buffer a ->a -> 10 ()
witeBuffer (Buffer b) x = do
bc <- takeMar b
case bc of
Left xs ->
put Mar b (Left (xs ++ [X]))
Right (n,w) -> do
put War w X
If n > 1 then
putMar b (Rght (n - 1, w)
el se
put MWar b (Left [])

Software Transactinal Memory — p.13/29

Example: Unbounded Buffer (5)

The buffer can now be used as a channel of

communication between a set of “writers” and a

set of “readers”. E.g.

mal n

= do

b <- newBuffer
forklO (witer
forklO (witer
forkl O (reader
forkl O (reader

b)
b)
b)
b)

ansactinal Memory — p.14/29

Example: Unbounded Buffer (6)

reader :: Buffer Int -> 10 ()
reader n b = rLoop
wher e
rLoop = do
X <- readBuffer b
when (x > 0) $ do
putStrLn (n ++ ": " ++ show X)
rLoop

Compositionality? (1)

Suppose we would like to read two consecutive
elements from a buffer b?

That Is, sequential composition

Would the following work?

X1 <- readBuffer b
X2 <- readBuffer b

Software Transactinal Memory — p.16/29

Compositionality? (2)

What about this?

mut ex <- newWar ()

t akeMvar nut ex

X1 <- readBuffer b
X2 <- readBuffer b
put Mar nutex ()

Software Transactinal Memory — p.17/29

Compositionality? (3)

Suppose we would like to read from one of two
buffers.

That Is, composing alternatives

Compositionality? (3)
Suppose we would like to read from one of two
buffers.
That Is, composing alternatives

Hmmm. How do we even begin?

Compositionality? (3)
Suppose we would like to read from one of two
buffers.
That Is, composing alternatives

Hmmm. How do we even begin?

No way to attempt reading a buffer without
risking blocking.

Compositionality? (3)

Suppose we would like to read from one of two
buffers.

That Is, composing alternatives

Hmmm. How do we even begin?

No way to attempt reading a buffer without
risking blocking.

We have to change or enrich the buffer
Implementation. E.g. add at r yReadBuf f er
operation, and then repeatedly poll the two
buffers in a tight loop. Not so good!

Software Transactinal Memory — p.18/29

Software Transactional Memory (1)

Operations on shared mutable variables
grouped into transactions .

A transaction either succeeds or fails In Its
entirety . l.e., atomic w.r.t. other transactions.

Failed transactions are automatically retried
until they succeed.

Transaction logs , which records reading and
writing of shared variables, maintained to
enable transactions to be validated, partial
transactions to be rolled back, and to determine
when worth trying a transaction again.

Software Transactinal Memory — p.19/29

Software Transactional Memory (2)

» No locks! (At the application level.)

STM and Pure Declar ative L anguages

STM perfect match for purely declarative
languages

reading and writing of shared mutable
variables explicit and relatively rare,

most computations are pure and need not
be logged.

Disciplined use of effects through monads a
huge payoff: easy to ensure that only effects
that can be undone can go inside a transaction.

(Imagine the havoc arbitrary I/O actions could cause if
part of transaction: How to undo? What if retried?)

Software Transactinal Memory — p.21/29

The STMmonad

The software transactional memory abstraction
provided by a monad STM Distinct from |1O!
Defined in Cont rol . Concurrent. STM

Excerpts:
newTlVar .. a -> SITM (TVar a)
witeTVar :: TVar a -> a -> STM ()
readTVar .. TVar a -> STM a
retry .. STM a

atomcally :: STMa -> 10 a

Software Transactinal Memory — p.22/29

Example: Buffer Revisited (1)

Let us rewrite the unbounded buffer using the

STM monad:
nodul e Mai n where

| nport Control.Mnad (when)
| mport Control.Concurrent
| mport Control.Concurrent. STM

new ype Buffer a = Buffer (TVar [a])

newBuffer :: STM (Buffer a)
newBuf fer = do

b <- newlVar []

return (Buffer Db)

Software Transactinal Memory — p.23/29

Example: Buffer Revisited (2)

readBuffer :: Buffer a -> STM a
readBuffer (Buffer b) = do
XS <- readTVar Db
case xs of
[] ->retry
(x : xs') -> do
witeTVar b xs’
return X

witeBuffer :: Buffer a -> a -> STM ()
witeBuffer (Buffer b) x = do

XS <- readTVar b

witeTVar b (xs ++ [X])

Software Transactinal Memory — p.24/29

Example: Buffer Revisited (3)

The main program and code for readers and
writers can remain unchanged, except that STM
operations must be carried out atomically :

nal n = do

b <- atom cally newBuffer

forklO (witer
forklO (witer
forkl O (reader
forkl O (reader

b)
b)
b)
b)

Software Transactinal Memory — p.25/29

Example: Buffer Revisited (4)

reader :: Buffer Int -> 10 ()
reader n b = rLoop
wher e
rLoop = do
X <- atomcally (readBuffer b)
when (x > 0) $ do
putStrLn (n ++ ": " ++ show X)
rLoop

Why shouldn’t at om cal | y be part of the
definition of r eadBuf f er ?

Software Transactinal Memory — p.26/29

Composition (1)

STMoperations can be robustly composed
That'’s the reason for making r eadBuf f er and
wr i t eBuf f er STMoperations, and leaving it to
client code to decide the scope of atomic blocks.

Example, sequential composition: reading two
consecutive elements from a buffer b:

atomcally $ do
X1 <- readBuffer b
X2 <- readBuffer b

Software Transactinal Memory — p.27/29

Composition (2)

Example, composing alternatives: reading from
one of two buffers b1l and b2:

X <- atomcally $
readBuf fer bl
‘orEl se’ readBuffer b2

The buffer operations thus composes nicely. No
need to change the implementation of any of the
operations!

Software Transactinal Memory — p.28/29

Reading

Koen Claessen. A Poor Man’s Concurrency Monad.
Journal of Functional Programming, 9(3), 1999.

Wouter Swierstra and Thorsten Altenkirch. Beauty in
the Beast: A Functional Semantics for the Awkward
Squad. In Proceedings of Haskell'07, 2007.

Tim Harris, Simon Marlow, Simon Peyton Jones,
Maurice Herlihy. Composable Memory Transactions. In
Proceedings of PPoPP’05, 2005

Simon Peyton Jones. Beautiful Concurrency. Chapter
from Beautiful Code, ed. Greg Wilson, O’Reilly 2007.

Software Transactinal Memory — p.29/29

	This Lecture
	Concurrent Programming in Haskell
	The IO Monad??? (1)
	The IO Monad??? (2)
	Concurrency primitives again
		exttt {MVar}s
	Example: Basic Synchronization (1)
	Example: Basic Synchronization (2)
	Example: Unbounded Buffer (1)
	Example: Unbounded Buffer (2)
	Example: Unbounded Buffer (3)
	Example: Unbounded Buffer (4)
	Example: Unbounded Buffer (5)
	Example: Unbounded Buffer (6)
	Compositionality? (1)
	Compositionality? (2)
	Compositionality? (3)
	Software Transactional Memory (1)
	Software Transactional Memory (2)
	STM and Pure Declarative Languages
	The 	exttt {STM} monad
	Example: Buffer Revisited (1)
	Example: Buffer Revisited (2)
	Example: Buffer Revisited (3)
	Example: Buffer Revisited (4)
	Composition (1)
	Composition (2)
	Reading

