
Software Transactinal Memory
Henrik Nilsson

University of Nottingham, UK

Software Transactinal Memory – p.1/29



This Lecture

• Some problems with standard approaches to
synchronisation

• Software Transactional Memory (STM)
• Haskell used for illustration throughout
• We will also see that STM and pure functional

programming is a particularly good match
• We will start with a quick overview of

concurrent programming in Haskell.

Software Transactinal Memory – p.2/29



Concurrent Programming in Haskell

Primitives for concurrent programming provided
as operations of the IO monad . Excerpts:

forkIO :: IO () -> IO ThreadId

killThread :: ThreadId -> IO ()

threadDelay :: Int -> IO ()

newMVar :: a -> IO (MVar a)

newEmptyMVar :: IO (MVar a)

putMVar :: MVar a -> a -> IO ()

takeMVar :: MVar a -> IO a

Software Transactinal Memory – p.3/29



The IO Monad??? (1)

Software Transactinal Memory – p.4/29



The IO Monad??? (1)

• Haskell uses monads as a “bridge” between
the pure functional world and the world of
input/output, state, and other effects .

Software Transactinal Memory – p.4/29



The IO Monad??? (1)

• Haskell uses monads as a “bridge” between
the pure functional world and the world of
input/output, state, and other effects .

• For the purpose of this talk, think about a
monadic value of type m a as a computation
in the monad m returning a value of type a
described by a sequence of monadic
actions or “commands”.

Software Transactinal Memory – p.4/29



The IO Monad??? (2)

• Each monad embodies a particular set of
effects.

Software Transactinal Memory – p.5/29



The IO Monad??? (2)

• Each monad embodies a particular set of
effects.

• Computations may be composed into larger
computations, but . . .

Software Transactinal Memory – p.5/29



The IO Monad??? (2)

• Each monad embodies a particular set of
effects.

• Computations may be composed into larger
computations, but . . .

• . . . only when a computation is “run” are the
actions and their side effects actually carried
out.

Software Transactinal Memory – p.5/29



The IO Monad??? (2)

• Each monad embodies a particular set of
effects.

• Computations may be composed into larger
computations, but . . .

• . . . only when a computation is “run” are the
actions and their side effects actually carried
out.

Key point: disciplined use of effects : types
account for precisely which effects can occur
where.

Software Transactinal Memory – p.5/29



Concurrency primitives again

Let us revisit the IO concurrency primitives again
in the light of what we now know about monads:

forkIO :: IO () -> IO ThreadId

killThread :: ThreadId -> IO ()

threadDelay :: Int -> IO ()

newMVar :: a -> IO (MVar a)

newEmptyMVar :: IO (MVar a)

putMVar :: MVar a -> a -> IO ()

takeMVar :: MVar a -> IO a

Software Transactinal Memory – p.6/29



MVars

Software Transactinal Memory – p.7/29



MVars

• The fundamental synchronisation mechanism
is the MVar (“em-var”).

Software Transactinal Memory – p.7/29



MVars

• The fundamental synchronisation mechanism
is the MVar (“em-var”).

• An MVar is a “one-item box” that may be
empty or full .

Software Transactinal Memory – p.7/29



MVars

• The fundamental synchronisation mechanism
is the MVar (“em-var”).

• An MVar is a “one-item box” that may be
empty or full .

• Reading (takeMVar) and writing (putMVar)
are atomic operations:

Software Transactinal Memory – p.7/29



MVars

• The fundamental synchronisation mechanism
is the MVar (“em-var”).

• An MVar is a “one-item box” that may be
empty or full .

• Reading (takeMVar) and writing (putMVar)
are atomic operations:
- Writing to an empty MVar makes it full.

Software Transactinal Memory – p.7/29



MVars

• The fundamental synchronisation mechanism
is the MVar (“em-var”).

• An MVar is a “one-item box” that may be
empty or full .

• Reading (takeMVar) and writing (putMVar)
are atomic operations:
- Writing to an empty MVar makes it full.
- Writing to a full MVar blocks.

Software Transactinal Memory – p.7/29



MVars

• The fundamental synchronisation mechanism
is the MVar (“em-var”).

• An MVar is a “one-item box” that may be
empty or full .

• Reading (takeMVar) and writing (putMVar)
are atomic operations:
- Writing to an empty MVar makes it full.
- Writing to a full MVar blocks.
- Reading from an empty MVar blocks.

Software Transactinal Memory – p.7/29



MVars

• The fundamental synchronisation mechanism
is the MVar (“em-var”).

• An MVar is a “one-item box” that may be
empty or full .

• Reading (takeMVar) and writing (putMVar)
are atomic operations:
- Writing to an empty MVar makes it full.
- Writing to a full MVar blocks.
- Reading from an empty MVar blocks.
- Reading from a full MVar makes it empty.

Software Transactinal Memory – p.7/29



Example: Basic Synchronization (1)

module Main where

import Control.Concurrent

countFromTo :: Int -> Int -> IO ()

countFromTo m n

| m > n = return ()

| otherwise = do

putStrLn (show m)

countFromTo (m+1) n

Software Transactinal Memory – p.8/29



Example: Basic Synchronization (2)
main = do

start <- newEmptyMVar

done <- newEmptyMVar

forkIO $ do

takeMVar start

countFromTo 1 10

putMVar done ()

putStrLn "Go!"

putMVar start ()

takeMVar done

(countFromTo 11 20)

putStrLn "Done!"

Software Transactinal Memory – p.9/29



Example: Unbounded Buffer (1)
module Main where

import Control.Monad (when)

import Control.Concurrent

newtype Buffer a =

Buffer (MVar (Either [a] (Int, MVar a)))

newBuffer :: IO (Buffer a)

newBuffer = do

b <- newMVar (Left [])

return (Buffer b)

Software Transactinal Memory – p.10/29



Example: Unbounded Buffer (2)
readBuffer :: Buffer a -> IO a
readBuffer (Buffer b) = do

bc <- takeMVar b
case bc of

Left (x : xs) -> do
putMVar b (Left xs)
return x

Left [] -> do
w <- newEmptyMVar
putMVar b (Right (1,w))
takeMVar w

Right (n,w) -> do
putMVar b (Right (n + 1, w))
takeMVar w

Software Transactinal Memory – p.11/29



Example: Unbounded Buffer (3)

Why isn’t Buffer simply defined as

newtype Buffer a = Buffer [a]

?

Software Transactinal Memory – p.12/29



Example: Unbounded Buffer (3)

Why isn’t Buffer simply defined as

newtype Buffer a = Buffer [a]

?
Hint: What would happen if e.g. an attempt is
made to read from an empty buffer?

Software Transactinal Memory – p.12/29



Example: Unbounded Buffer (4)
writeBuffer :: Buffer a -> a -> IO ()

writeBuffer (Buffer b) x = do

bc <- takeMVar b

case bc of

Left xs ->

putMVar b (Left (xs ++ [x]))

Right (n,w) -> do

putMVar w x

if n > 1 then

putMVar b (Right (n - 1, w))

else

putMVar b (Left [])

Software Transactinal Memory – p.13/29



Example: Unbounded Buffer (5)

The buffer can now be used as a channel of
communication between a set of “writers” and a
set of “readers”. E.g.
main = do

b <- newBuffer

forkIO (writer b)

forkIO (writer b)

forkIO (reader b)

forkIO (reader b)

...

Software Transactinal Memory – p.14/29



Example: Unbounded Buffer (6)

reader :: Buffer Int -> IO ()

reader n b = rLoop

where

rLoop = do

x <- readBuffer b

when (x > 0) $ do

putStrLn (n ++ ": " ++ show x)

rLoop

Software Transactinal Memory – p.15/29



Compositionality? (1)

Suppose we would like to read two consecutive
elements from a buffer b?

That is, sequential composition .

Would the following work?

x1 <- readBuffer b

x2 <- readBuffer b

Software Transactinal Memory – p.16/29



Compositionality? (2)

What about this?

mutex <- newMVar ()

...

takeMVar mutex

x1 <- readBuffer b

x2 <- readBuffer b

putMVar mutex ()

Software Transactinal Memory – p.17/29



Compositionality? (3)

Suppose we would like to read from one of two
buffers.

That is, composing alternatives .

Software Transactinal Memory – p.18/29



Compositionality? (3)

Suppose we would like to read from one of two
buffers.

That is, composing alternatives .

Hmmm. How do we even begin?

Software Transactinal Memory – p.18/29



Compositionality? (3)

Suppose we would like to read from one of two
buffers.

That is, composing alternatives .

Hmmm. How do we even begin?

• No way to attempt reading a buffer without
risking blocking.

Software Transactinal Memory – p.18/29



Compositionality? (3)

Suppose we would like to read from one of two
buffers.

That is, composing alternatives .

Hmmm. How do we even begin?

• No way to attempt reading a buffer without
risking blocking.

• We have to change or enrich the buffer
implementation. E.g. add a tryReadBuffer
operation, and then repeatedly poll the two
buffers in a tight loop. Not so good!

Software Transactinal Memory – p.18/29



Software Transactional Memory (1)

• Operations on shared mutable variables
grouped into transactions .

• A transaction either succeeds or fails in its
entirety . I.e., atomic w.r.t. other transactions.

• Failed transactions are automatically retried
until they succeed.

• Transaction logs , which records reading and
writing of shared variables, maintained to
enable transactions to be validated, partial
transactions to be rolled back, and to determine
when worth trying a transaction again.

Software Transactinal Memory – p.19/29



Software Transactional Memory (2)

• No locks! (At the application level.)

Software Transactinal Memory – p.20/29



STM and Pure Declarative Languages
• STM perfect match for purely declarative

languages :
- reading and writing of shared mutable

variables explicit and relatively rare;
- most computations are pure and need not

be logged.
• Disciplined use of effects through monads a

huge payoff: easy to ensure that only effects
that can be undone can go inside a transaction.

(Imagine the havoc arbitrary I/O actions could cause if
part of transaction: How to undo? What if retried?)

Software Transactinal Memory – p.21/29



The STM monad

The software transactional memory abstraction
provided by a monad STM. Distinct from IO!
Defined in Control.Concurrent.STM.

Excerpts:

newTVar :: a -> STM (TVar a)

writeTVar :: TVar a -> a -> STM ()

readTVar :: TVar a -> STM a

retry :: STM a

atomically :: STM a -> IO a

Software Transactinal Memory – p.22/29



Example: Buffer Revisited (1)

Let us rewrite the unbounded buffer using the
STM monad:
module Main where

import Control.Monad (when)
import Control.Concurrent
import Control.Concurrent.STM

newtype Buffer a = Buffer (TVar [a])

newBuffer :: STM (Buffer a)
newBuffer = do

b <- newTVar []
return (Buffer b)

Software Transactinal Memory – p.23/29



Example: Buffer Revisited (2)

readBuffer :: Buffer a -> STM a
readBuffer (Buffer b) = do

xs <- readTVar b
case xs of

[] -> retry
(x : xs’) -> do

writeTVar b xs’
return x

writeBuffer :: Buffer a -> a -> STM ()
writeBuffer (Buffer b) x = do

xs <- readTVar b
writeTVar b (xs ++ [x])

Software Transactinal Memory – p.24/29



Example: Buffer Revisited (3)

The main program and code for readers and
writers can remain unchanged, except that STM
operations must be carried out atomically :
main = do

b <- atomically newBuffer

forkIO (writer b)

forkIO (writer b)

forkIO (reader b)

forkIO (reader b)

...

Software Transactinal Memory – p.25/29



Example: Buffer Revisited (4)

reader :: Buffer Int -> IO ()

reader n b = rLoop

where

rLoop = do

x <- atomically (readBuffer b)

when (x > 0) $ do

putStrLn (n ++ ": " ++ show x)

rLoop

Why shouldn’t atomically be part of the
definition of readBuffer?

Software Transactinal Memory – p.26/29



Composition (1)

STM operations can be robustly composed .
That’s the reason for making readBuffer and
writeBuffer STM operations, and leaving it to
client code to decide the scope of atomic blocks.

Example, sequential composition: reading two
consecutive elements from a buffer b:

atomically $ do

x1 <- readBuffer b

x2 <- readBuffer b

...

Software Transactinal Memory – p.27/29



Composition (2)

Example, composing alternatives: reading from
one of two buffers b1 and b2:

x <- atomically $

readBuffer b1

‘orElse‘ readBuffer b2

The buffer operations thus composes nicely. No
need to change the implementation of any of the
operations!

Software Transactinal Memory – p.28/29



Reading
• Koen Claessen. A Poor Man’s Concurrency Monad.

Journal of Functional Programming, 9(3), 1999.

• Wouter Swierstra and Thorsten Altenkirch. Beauty in
the Beast: A Functional Semantics for the Awkward
Squad. In Proceedings of Haskell’07, 2007.

• Tim Harris, Simon Marlow, Simon Peyton Jones,
Maurice Herlihy. Composable Memory Transactions. In
Proceedings of PPoPP’05, 2005

• Simon Peyton Jones. Beautiful Concurrency. Chapter
from Beautiful Code, ed. Greg Wilson, O’Reilly 2007.

Software Transactinal Memory – p.29/29


	This Lecture
	Concurrent Programming in Haskell
	The IO Monad??? (1)
	The IO Monad??? (2)
	Concurrency primitives again
		exttt {MVar}s
	Example: Basic Synchronization (1)
	Example: Basic Synchronization (2)
	Example: Unbounded Buffer (1)
	Example: Unbounded Buffer (2)
	Example: Unbounded Buffer (3)
	Example: Unbounded Buffer (4)
	Example: Unbounded Buffer (5)
	Example: Unbounded Buffer (6)
	Compositionality? (1)
	Compositionality? (2)
	Compositionality? (3)
	Software Transactional Memory (1)
	Software Transactional Memory (2)
	STM and Pure Declarative Languages
	The 	exttt {STM} monad
	Example: Buffer Revisited (1)
	Example: Buffer Revisited (2)
	Example: Buffer Revisited (3)
	Example: Buffer Revisited (4)
	Composition (1)
	Composition (2)
	Reading

