Henrik Nilsson

University of Nottingham, UK

Functonal Reactivity Eschewing the Imperaiive - p.1/48

Reactive programming (1)

* Input arrives while system is

running.
» Output is generated in response to input in an
interleaved and fashion.
Contrast

The notions of
* time
« time-varying values, or
are inherent and central to reactive systems.

Functional Reactivity. Eschewing the Imperalive - p.2/48

Reactive Programming (2)

Reactive systems are
» generally concurrent
- often parallel
- often distributed

Thus, besides timeliness, difficulties related to
development of concurrent, parallel, and
distributed programming are also inherent.

Functonal Reactivity Eschening the Imperaiive - p.3148

The Synchronous Approach (1)

The “synchronous realisation” (France, 1980s):

If we heed the observation that time-varying
values are central to reactive programming and
- express systems directly as
of such entities

- adopt system-wide time,
abstracting away processing delays
(hence

cional Reactiiy:Eschewing the Imperaive — p 4148

H

The Synchronous Approach (2)

...then:

- systems can be described declaratively
at a very high level of abstraction

- simple, deterministic semantics,
facilitates reasoning

« many problems related to imperative
idioms for concurrency and
synchronisation simply vanishes.

Contrast programming with values at isolated
points in time in a fundamentally temporally
agnostic setting.

Functional Reactvity. Eschening the Imperalive - p5/48

The Synchronous Approach (3)

The synchronous languages were invented in
France in the 1980s. The first ones were:

- Esterel
» Lustre
« Signal

Have been very successful; e.g. lots of industrial
applications.

Many new languages and variations since then.

cional Reactiiy:Eschewing the Imperaive — p 6148

H

Functional Reactive Programming

Functional Reactive Programming (FRP):

- Paradigm for reactive, concurrent
programming in purely declarative (functional)
setting.

- Originated from Functional Reactive
Animation (Fran) (Elliott & Hudak).

» Has evolved in a number of directions and
into different concrete implementations.

« (Usually) continuous notion of time and
additional support for discrete events.

:::::::: 1 Reaciiviy Escheuing the Imperatve — 7145

FRP applications

Some domains where FRP or FRP-like ideas
have been used:

» Graphical Animation

- Robotics

« Vision

- GUIs

 Hybrid modeling

» Video games

» Sensor networks

= Audio processing and generation

 Financial, event-based systems

_ PRy S e e e

Example: Robotics (1)

[PPDP’02, with Izzet Pembeci and Greg Hager,
Johns Hopkins University]

Hardware setup:

Console Wireless LAN On-board Stereo
computer camera

-y

_ PR SO e e 81

Example: Robotics (2)

Functional Reactiviy Eschewing the Imperative — p.10/48

Related approaches

FRP related to:

= Synchronous languages, like Esterel, Lucid
Synchrone.

» Modeling languages, like Simulink, Modelica.
Distinguishing features of FRP:

« First class reactive components.

« Allows highly dynamic system structure.

» Supports hybrid (mixed continuous and
discrete) systems.

Functional Reactiviy. Eschewing the Imperative - p.11/48

Yampa

» An FRP system originating at Yale

. in Haskell (a Haskell library).

. used as the basic structuring
framework.

« Notionally

- Discrete-time signals modelled by
continuous-time signals and an option type,
allowing for systems.

« Advanced
highly dynamic system structure.

allows for

Functional Reactiviy Eschewing the Imperative — p.12/48

Mampa IS a river with long calmly flowing sections

and abrupt whitewater transitions in between.

A good metaphor for hybrid systems!

Funciional Reaciivity Eschewing the Imperaiive - p.13/43

Signal functions
Key concept:
- -

Signal o ~ Time —a
xz Signal T1
y :» Signal T2
f = Signal T1

Additionally:

Intuition:

—Signal T2
requirement.

are first class entities in Yampa:
SFa § ~ Signal « —Signal

Signal functions and state

Alternative view:

Functional Reactiity. Eschewing the Imperalive - p.14/48

Signal functions can encapsulate state .

x (t) f y () ;
) [state(t)]

state(t) summarizes input history z(t'), t' € [0, t].
Functions on signals are either:

. : y(t) depends on z(t) and state(t)
. : y(t) depends only on z(t)

Example: Video tracker

Video trackers are typically stateful signal
functions:

Video stream Tracked object position

@ Tracker (234,192)
—>

—P>
[prev. pos.]

Functional Reacivity Eschewing the Imperative - p16/43

Building systems (1)

How to build systems? Think of a signal function
asa . Blocks have inputs and outputs and
can be combined into larger blocks. For example,
serial composition:

L 9 >

A combinator can be defined that captures this
idea:

(>>>) :SFab->SFbc->SFac

Building systems (2)

But systems can be complex:

Functional Reacivity. Eschewing the Imperalive - p.1T/48

_ PR SO e eI

Arrows Some arrow laws Some more arrow combinators (2)
, . As diagrams:
Yampa uses John Hughes framework: (f>>9q)>>h = f>> (g >> h)
- Abstract data type interface for function-like arr (f >>> g) = ar f>>>arg >——’
type§ (or bIoc!<s , if you prefer). . arr id >>> f = f .] - L, | L
- Particularly suitable for types representing f = 1f>>arid IZI
process-like computations. first (arr f) = arr (first f) second f o g
= Provides a minimal set of “wiring” first (f >>> @) = first f >>> first g
combinators. Being able to use simple algebraic laws like] >
these greatly facilitates reasoning about L 5
programs. n
f &&& g
I e m I o —
What isan arrow? (1) Thel oop combinator Example: A Simple Networ k
A simple network:
- A a of arity two. Another important operator is loop : a fixed-point e
- Three operators: operator used to express recursive arrows or
arr = (b>c) >abc mr i~
- : o al, a2, a3 = A Double Double
(>>>) = abc->acd->abd loop f One way to express it using arrow combinators:
L Remarkably, the four combinators arr , >>> circuit_vl iz A Double Double
first :: bc- b,d d ’ ' ' e X
s abc->abd (cd first , and loop suffice for expressing circuit vl = (al &&& arr id)
- A set of that must hold. >>> (a2 *+ a3)
>>> arr (uncurry (+))
_ nnnnnnnnnnnn vy b ho g - p 30 _ ‘‘‘‘‘‘‘‘‘‘‘‘‘‘ oy schou h gt - 5348 _ ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ s v gt o

What isan arrow? (2) Some more arrow combinators (1) Thearrow do notation (1)

Using the basic combinators directly can be
These diagrams convey the general idea: second @ Arrow a => cumbersome. Ross Paterson’s do -notation for

abc->a(db) (dc) arrows provides a convenient alternative. Only
— ot 7 L) e o o !

arr f f>>>y abc->ade->a (bd (ce) proc ptat > d;) [rec]

paty <- sferp, -< exp,

——> (&&&) :: Arrow a => paty <- sferpy -< exp,

abc->abd->ab (cd)

pat, <- sfexp, -< exp,
first f returnA -< exp

Also: let pat = exp = pat <-arrid < erp

ww

E
H
i
£
£
§
3
H
i
g
&
3
3
H

Thearrow do notation (2)

Let us redo the example using this notation:

—{ al | a2

circuit_v4 :: A Double Double
circuit_v4 = proc x -> do

yl <- al < x

y2 <- a2 <yl

y3 <- a3 -< x

returnA -< y2 + y3

Functional Reactiviy Eschewing th Imperative — p.26/48

Yampa and Arrows

The Yampa signal function type is an arrow.

Signal function instances of the core
combinators:

carr i (@a->b)->SFahb

«e>>>1 SFab->SFbc->SFac
- first :: SF a b -> SF (a,c) (b,c)
«loop :: SF (ac) (bc) -> SFab

Functional Reactiviy. Eschewing th Imperative - p.29/48

Some further basic signal functions

- identity :: SF a a
identity = arr id

econstant :: b -> SF a b
constant b = arr (const b)

- integral :: VectorSpace a s=>SF a a

e time :: SF a Time
time = constant 1.0 >>> integral

e("<<) i (b>c) > SFab->SFac
f ("<<) sf = sf >>> arr f

Functional Reactiviy Eschewing the Imperative — p.30/48

A bouncing ball

y y0+/vdt
y

Wl @ v = v0+/79.81

mg On impact:
v = —u(t—)

(fully elastic collision)

Functional Reaciivity Eschewing the Imperaiive - p.31/43

Modelling the bouncing ball: part 1

Free-falling ball:

type Pos = Double
type Vel = Double

fallingBall ::
Pos -> Vel -> SF () (Pos, Vel)
fallingBall yO vO = proc () -> do
v <- (VO +) "<< integral -< -9.81
y <- (yO +) "<< integral < v
returnA -< (y, V)

Functional Reactiity. Eschewing the Imperative - p.32/48

Events

Conceptually, signals are only
defined at discrete points in time, often
associated with the occurrence of some event.

Yampa models discrete-time signals by lifting the
of continuous-time signals:

data Event a = NoEvent | Event a

Associating information with an event
occurrence:

tag :: Event a -> b -> Event b

Funciional Reaciivity Eschewing the Imperative - p.33/43

2

Modelling the bouncing ball: part 2

Detecting when the ball goes through the floor:

fallingBall’ ::
Pos -> Vel
> SF () ((Pos,Vel), Event (Pos,Vel))
fallingBall'’ yO vO = proc () -> do
yw@(y, _) <- fallingBall yo v0 < ()
hit <- edge <y<=0
returnA -< (yv, hit ‘tag’ yv)

Functional Reacivity Eschewing the Imperative - p.34143

Switching

Q: How and when do signal functions “start"?

A e “apply” a signal functions to its
input signal at some point in time.

= This creates a “running” signal function

« The new signal function instance often
replaces the previously running instance.

Switchers thus allow systems with
to be described.

Functional Reacivity. Eschewing the Imperalive - p35/45

The basic switch

Idea:

« Allows one signal function to be replaced by
another.

« Switching takes place on the first occurrence
of the switching event source.
switch ::
SF a (b, Event c)
-=> (c -> SF a b)
> SF ab

Functional Reacivity Eschewing the Imperative - p36143

M odelling the bouncing ball: part 3 Dynamic signal function collections Describing the alien behavior (1)

. Idea: ; ; "
Making the ball bounce: . . . type Object = SF Objlnput ObjOutput
= Switch over of signal functions.
bouncingBall : P?s > SF 0 (Pos, Vel - On event, “freeze” running signal functions alien :: RandomGen g =>
bouncingBall y0 = bbAux y0 0.0 into collection of signal function , g -> Position2 -> Velocity -> Object
where preserving encapsulated . alien g p0 vyd = proc oi -> do
bbAux y0 vO = . . i . rec
switch (fallingBall' yOo v0) $ \(y,v) -> » Modify collection as needed and switch back in.
bbAux y (-v) X <- noiseR (xMin, xMax) g -< ()

smpl <- occasionally g 5 () -< ()
xd <- hold (point2X p0) -< smpl ‘tag‘ rx

Funcional Reactiviy Eschewing the Imperatve — p.37/48 Functional ReactvityEschewing the Imperative - p 40123 Functional Reacivity Eschening the Imperative - 43148

Simulation of bouncing ball Example: Space Invaders Describing the alien behavior (2)

jsPACE INVADERS

let axd = 5 * (xd - point2X p)
- 3 * (vector2X v)
ayd = 20 * (vyd - (vector2Y v))
ad vector2 axd ayd
h = vector2Theta ad

H
H
E
g
5
H

_ PRy S e e p _ R Ry S e e

Overall game structure Describing the alien behavior (3)

dpSwitch

Basic switch allows one signal function to be
replaced by another.

let a = vector2Polar
(min alienAccMax
(vector2Rho ad))

killorspawn

- What about more general structural changes?

[

<

i - bullet ' -t

Objoutput.

h
vp <- iPre vO < v
ffi <- forceField -< (p, vp)
vV <- (VO "+7) “<< impulselntegral
-< (gravity "+ a, ffi)
p <- (p0 +#7) “<< integral < v

ObjInput

» What about state?

_ P e Esheng e mpere p 2%

Functional ReactvityEschewing the Imperative - p 42123 Functional Reacivity Eschewing the Imperative - 45143

Describing the alien behavior (4)

sl <- shield -< oiHit oi
die <- edge -<sl <=0

returnA -< ObjOutput {
000bsObjState = oosAlien p h v,
ooKillReq = die,
ooSpawnReq = noEvent
}
where
v0 = zeroVector

Functional Reactiviy Eschewing th Imperative — p.46/48

Stateinal i en

Each of the following signal functions used in
alien encapsulate state:

* noiseR « impulselntegral
+ occasionally « integral

* hold « shield

- iPre - edge

- forceField

Functional Reactiviy. Eschewing the Imperatve - p4T/4&

Why not imper ative, then?

If state is so important, why not stick to
imperative/object-oriented programming where
we have “state for free”?

« Advantages of declarative programming
retained:
- High abstraction level.
- Referential transparency, algebraic laws:
formal reasoning is simpler.

« Synchronous approach avoids
“event-call-back soup”, meaning robust,
easy-to-understand semantics.

Funcional Reactiviy Eschewing th Imperative — p.48/48

	Reactive programming (1)
	Reactive Programming (2)
	The Synchronous Approach (1)
	The Synchronous Approach (2)
	The Synchronous Approach (3)
	Functional Reactive Programming
	FRP applications
	Example: Robotics (1)
	Example: Robotics (2)
	Related approaches
	Yampa
	Yampa?
	Signal functions
	Signal functions and state
	Example: Video tracker
	Building systems (1)
	Building systems (2)
	Arrows
	What is an arrow? (1)
	What is an arrow? (2)
	Some arrow laws
	The 	exttt {loop} combinator
	Some more arrow combinators (1)
	Some more arrow combinators (2)
	Example: A Simple Network
	The arrow 	exttt {do} notation (1)
	The arrow 	exttt {do} notation (2)
	Yampa and Arrows
	Some further basic signal functions
	A bouncing ball
	Modelling the bouncing ball: part 1
	Events
	Modelling the bouncing ball: part 2
	Switching
	The basic switch
	Modelling the bouncing ball: part 3
	Simulation of bouncing ball
	Highly dynamic system structure?
	Dynamic signal function collections
	Example: Space Invaders
	Overall game structure
	Describing the alien behavior (1)
	Describing the alien behavior (2)
	Describing the alien behavior (3)
	Describing the alien behavior (4)
	State in 	exttt {alien}
	Why not imperative, then?

