
Functional Reactivity:
Eschewing the Imperative

An Overview of Functional Reactive Programming in
the Context of Yampa

Henrik Nilsson

University of Nottingham, UK

Functional Reactivity:Eschewing the Imperative – p.1/48

Reactive programming (1)
Reactive systems :

• Input arrives incrementally while system is
running.

• Output is generated in response to input in an
interleaved and timely fashion.

Contrast transformational systems .

The notions of
• time
• time-varying values, or signals

are inherent and central to reactive systems.
Functional Reactivity:Eschewing the Imperative – p.2/48

Reactive Programming (2)

Reactive systems are
• generally concurrent
• often parallel
• often distributed

Thus, besides timeliness, difficulties related to
development of concurrent, parallel, and
distributed programming are also inherent.

Functional Reactivity:Eschewing the Imperative – p.3/48

The Synchronous Approach (1)

The “synchronous realisation” (France, 1980s):

If we heed the observation that time-varying
values are central to reactive programming and
• express systems directly as

transformations of such entities
• adopt system-wide logical time,

abstracting away processing delays
(hence synchronous)

. . .

Functional Reactivity:Eschewing the Imperative – p.4/48

The Synchronous Approach (2)

. . . then:
• systems can be described declaratively

at a very high level of abstraction
• simple, deterministic semantics,

facilitates reasoning
• many problems related to imperative

idioms for concurrency and
synchronisation simply vanishes.

Contrast programming with values at isolated
points in time in a fundamentally temporally
agnostic setting.

Functional Reactivity:Eschewing the Imperative – p.5/48

The Synchronous Approach (3)

The synchronous languages were invented in
France in the 1980s. The first ones were:

• Esterel
• Lustre
• Signal

Have been very successful; e.g. lots of industrial
applications.

Many new languages and variations since then.

Functional Reactivity:Eschewing the Imperative – p.6/48

Functional Reactive Programming

Functional Reactive Programming (FRP):
• Paradigm for reactive, concurrent

programming in purely declarative (functional)
setting.

• Originated from Functional Reactive
Animation (Fran) (Elliott & Hudak).

• Has evolved in a number of directions and
into different concrete implementations.

• (Usually) continuous notion of time and
additional support for discrete events.

Functional Reactivity:Eschewing the Imperative – p.7/48

FRP applications
Some domains where FRP or FRP-like ideas
have been used:

• Graphical Animation
• Robotics
• Vision
• GUIs
• Hybrid modeling
• Video games
• Sensor networks
• Audio processing and generation
• Financial, event-based systems

Functional Reactivity:Eschewing the Imperative – p.8/48

Example: Robotics (1)

[PPDP’02, with Izzet Pembeci and Greg Hager,
Johns Hopkins University]

Hardware setup:

Functional Reactivity:Eschewing the Imperative – p.9/48

Example: Robotics (2)

Functional Reactivity:Eschewing the Imperative – p.10/48

Related approaches

FRP related to:
• Synchronous languages, like Esterel, Lucid

Synchrone.
• Modeling languages, like Simulink, Modelica.

Distinguishing features of FRP:
• First class reactive components.
• Allows highly dynamic system structure.
• Supports hybrid (mixed continuous and

discrete) systems.

Functional Reactivity:Eschewing the Imperative – p.11/48

Yampa

• An FRP system originating at Yale
• Embedding in Haskell (a Haskell library).
• Arrows used as the basic structuring

framework.
• Notionally continuous time .
• Discrete-time signals modelled by

continuous-time signals and an option type,
allowing for hybrid systems.

• Advanced switching constructs allows for
highly dynamic system structure.

Functional Reactivity:Eschewing the Imperative – p.12/48

Yampa?
Yampa is a river with long calmly flowing sections
and abrupt whitewater transitions in between.

A good metaphor for hybrid systems!
Functional Reactivity:Eschewing the Imperative – p.13/48

Signal functions
Key concept: functions on signals .

Intuition:

Signal α ≈ Time→α

x :: Signal T1
y :: Signal T2
f :: Signal T1 →Signal T2

Additionally: causality requirement.

Signal functions are first class entities in Yampa:
SF α β ≈ Signal α →Signal β

Functional Reactivity:Eschewing the Imperative – p.14/48

Signal functions and state

Alternative view:

Signal functions can encapsulate state .

state(t) summarizes input history x(t′), t′ ∈ [0, t].

Functions on signals are either:
• Stateful : y(t) depends on x(t) and state(t)

• Stateless : y(t) depends only on x(t)

Functional Reactivity:Eschewing the Imperative – p.15/48

Example: Video tracker

Video trackers are typically stateful signal
functions:

Functional Reactivity:Eschewing the Imperative – p.16/48

Building systems (1)

How to build systems? Think of a signal function
as a block . Blocks have inputs and outputs and
can be combined into larger blocks. For example,
serial composition:

A combinator can be defined that captures this
idea:

(>>>) :: SF a b -> SF b c -> SF a c

Functional Reactivity:Eschewing the Imperative – p.17/48

Building systems (2)

But systems can be complex:

How many and what combinators do we need
to be able to describe arbitrary systems?

Functional Reactivity:Eschewing the Imperative – p.18/48

Arrows

Yampa uses John Hughes’ arrow framework:
• Abstract data type interface for function-like

types (or “blocks”, if you prefer).
• Particularly suitable for types representing

process-like computations.
• Provides a minimal set of “wiring”

combinators.

Functional Reactivity:Eschewing the Imperative – p.19/48

What is an arrow? (1)

• A type constructor a of arity two.
• Three operators:

- lifting :
arr :: (b->c) -> a b c

- composition :
(>>>) :: a b c -> a c d -> a b d

- widening :
first :: a b c -> a (b,d) (c,d)

• A set of algebraic laws that must hold.

Functional Reactivity:Eschewing the Imperative – p.20/48

What is an arrow? (2)

These diagrams convey the general idea:

arr f f >>> g

first f

Functional Reactivity:Eschewing the Imperative – p.21/48

Some arrow laws

(f >>> g) >>> h = f >>> (g >>> h)

arr (f >>> g) = arr f >>> arr g

arr id >>> f = f

f = f >>> arr id

first (arr f) = arr (first f)

first (f >>> g) = first f >>> first g

Being able to use simple algebraic laws like
these greatly facilitates reasoning about
programs.

Functional Reactivity:Eschewing the Imperative – p.22/48

The loop combinator

Another important operator is loop : a fixed-point
operator used to express recursive arrows or
feedback :

loop f

Remarkably, the four combinators arr , >>>,
first , and loop suffice for expressing any
conceivable wiring!

Functional Reactivity:Eschewing the Imperative – p.23/48

Some more arrow combinators (1)

second :: Arrow a =>
a b c -> a (d,b) (d,c)

(***) :: Arrow a =>
a b c -> a d e -> a (b,d) (c,e)

(&&&) :: Arrow a =>
a b c -> a b d -> a b (c,d)

Functional Reactivity:Eschewing the Imperative – p.24/48

Some more arrow combinators (2)

As diagrams:

second f
f *** g

f &&& g
Functional Reactivity:Eschewing the Imperative – p.25/48

Example: A Simple Network
A simple network:

a1, a2, a3 :: A Double Double

One way to express it using arrow combinators:
circuit_v1 :: A Double Double
circuit_v1 = (a1 &&& arr id)

>>> (a2 *** a3)
>>> arr (uncurry (+))

Functional Reactivity:Eschewing the Imperative – p.26/48

The arrow do notation (1)
Using the basic combinators directly can be
cumbersome. Ross Paterson’s do -notation for
arrows provides a convenient alternative. Only
syntactic sugar !

proc pat -> do [rec]
pat1 <- sfexp1 -< exp1

pat2 <- sfexp2 -< exp2

. . .
pat

n
<- sfexp

n
-< exp

n

returnA -< exp

Also: let pat = exp ≡ pat <- arr id -< exp
Functional Reactivity:Eschewing the Imperative – p.27/48

The arrow do notation (2)

Let us redo the example using this notation:

circuit_v4 :: A Double Double
circuit_v4 = proc x -> do

y1 <- a1 -< x
y2 <- a2 -< y1
y3 <- a3 -< x
returnA -< y2 + y3

Functional Reactivity:Eschewing the Imperative – p.28/48

Yampa and Arrows

The Yampa signal function type is an arrow.

Signal function instances of the core
combinators:

• arr :: (a -> b) -> SF a b

• >>> :: SF a b -> SF b c -> SF a c

• first :: SF a b -> SF (a,c) (b,c)

• loop :: SF (a,c) (b,c) -> SF a b

Functional Reactivity:Eschewing the Imperative – p.29/48

Some further basic signal functions

• identity :: SF a a
identity = arr id

• constant :: b -> SF a b
constant b = arr (const b)

• integral :: VectorSpace a s=>SF a a

• time :: SF a Time
time = constant 1.0 >>> integral

• (^<<) :: (b->c) -> SF a b -> SF a c
f (^<<) sf = sf >>> arr f

Functional Reactivity:Eschewing the Imperative – p.30/48

A bouncing ball

y = y0 +

∫
v dt

v = v0 +

∫
−9.81

On impact:

v = −v(t−)

(fully elastic collision)

Functional Reactivity:Eschewing the Imperative – p.31/48

Modelling the bouncing ball: part 1

Free-falling ball:

type Pos = Double

type Vel = Double

fallingBall ::

Pos -> Vel -> SF () (Pos, Vel)

fallingBall y0 v0 = proc () -> do

v <- (v0 +) ˆ<< integral -< -9.81

y <- (y0 +) ˆ<< integral -< v

returnA -< (y, v)

Functional Reactivity:Eschewing the Imperative – p.32/48

Events

Conceptually, discrete-time signals are only
defined at discrete points in time, often
associated with the occurrence of some event .

Yampa models discrete-time signals by lifting the
range of continuous-time signals:

data Event a = NoEvent | Event a

Discrete-time signal = Signal (Event α).

Associating information with an event
occurrence:

tag :: Event a -> b -> Event b
Functional Reactivity:Eschewing the Imperative – p.33/48

Modelling the bouncing ball: part 2

Detecting when the ball goes through the floor:

fallingBall’ ::

Pos -> Vel

-> SF () ((Pos,Vel), Event (Pos,Vel))

fallingBall’ y0 v0 = proc () -> do

yv@(y, _) <- fallingBall y0 v0 -< ()

hit <- edge -< y <= 0

returnA -< (yv, hit ‘tag‘ yv)

Functional Reactivity:Eschewing the Imperative – p.34/48

Switching

Q: How and when do signal functions “start”?

A: • Switchers “apply” a signal functions to its
input signal at some point in time.

• This creates a “running” signal function
instance .

• The new signal function instance often
replaces the previously running instance.

Switchers thus allow systems with varying
structure to be described.

Functional Reactivity:Eschewing the Imperative – p.35/48

The basic switch

Idea:
• Allows one signal function to be replaced by

another.
• Switching takes place on the first occurrence

of the switching event source.

switch ::

SF a (b, Event c)

-> (c -> SF a b)

-> SF a b

Functional Reactivity:Eschewing the Imperative – p.36/48

Modelling the bouncing ball: part 3

Making the ball bounce:

bouncingBall :: Pos -> SF () (Pos, Vel)

bouncingBall y0 = bbAux y0 0.0

where

bbAux y0 v0 =

switch (fallingBall’ y0 v0) $ \(y,v) ->

bbAux y (-v)

Functional Reactivity:Eschewing the Imperative – p.37/48

Simulation of bouncing ball

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

y
dy/dt

Functional Reactivity:Eschewing the Imperative – p.38/48

Highly dynamic system structure?

Basic switch allows one signal function to be
replaced by another.

• What about more general structural changes?

• What about state?

Functional Reactivity:Eschewing the Imperative – p.39/48

Dynamic signal function collections

Idea:
• Switch over collections of signal functions.
• On event, “freeze” running signal functions

into collection of signal function continuations ,
preserving encapsulated state .

• Modify collection as needed and switch back in.

Functional Reactivity:Eschewing the Imperative – p.40/48

Example: Space Invaders

Functional Reactivity:Eschewing the Imperative – p.41/48

Overall game structure

gun

alien

bullet

alien

...

killOrSpawn

ObjInput ObjOutput

} [ObjectOutput]

dpSwitch

route

Functional Reactivity:Eschewing the Imperative – p.42/48

Describing the alien behavior (1)

type Object = SF ObjInput ObjOutput

alien :: RandomGen g =>

g -> Position2 -> Velocity -> Object

alien g p0 vyd = proc oi -> do

rec

-- Pick a desired horizontal position

rx <- noiseR (xMin, xMax) g -< ()

smpl <- occasionally g 5 () -< ()

xd <- hold (point2X p0) -< smpl ‘tag‘ rx

...

Functional Reactivity:Eschewing the Imperative – p.43/48

Describing the alien behavior (2)

...

-- Controller

let axd = 5 * (xd - point2X p)

- 3 * (vector2X v)

ayd = 20 * (vyd - (vector2Y v))

ad = vector2 axd ayd

h = vector2Theta ad

...

Functional Reactivity:Eschewing the Imperative – p.44/48

Describing the alien behavior (3)

...

-- Physics

let a = vector2Polar

(min alienAccMax

(vector2Rho ad))

h

vp <- iPre v0 -< v

ffi <- forceField -< (p, vp)

v <- (v0 ˆ+ˆ) ˆ<< impulseIntegral

-< (gravity ˆ+ˆ a, ffi)

p <- (p0 .+ˆ) ˆ<< integral -< v

...
Functional Reactivity:Eschewing the Imperative – p.45/48

Describing the alien behavior (4)

...

-- Shields

sl <- shield -< oiHit oi

die <- edge -< sl <= 0

returnA -< ObjOutput {

ooObsObjState = oosAlien p h v,

ooKillReq = die,

ooSpawnReq = noEvent

}

where

v0 = zeroVector
Functional Reactivity:Eschewing the Imperative – p.46/48

State in alien

Each of the following signal functions used in
alien encapsulate state:

• noiseR

• occasionally

• hold

• iPre

• forceField

• impulseIntegral

• integral

• shield

• edge

Functional Reactivity:Eschewing the Imperative – p.47/48

Why not imperative, then?

If state is so important, why not stick to
imperative/object-oriented programming where
we have “state for free”?

• Advantages of declarative programming
retained:
- High abstraction level.
- Referential transparency, algebraic laws:

formal reasoning is simpler.
• Synchronous approach avoids

“event-call-back soup”, meaning robust,
easy-to-understand semantics.

Functional Reactivity:Eschewing the Imperative – p.48/48

	Reactive programming (1)
	Reactive Programming (2)
	The Synchronous Approach (1)
	The Synchronous Approach (2)
	The Synchronous Approach (3)
	Functional Reactive Programming
	FRP applications
	Example: Robotics (1)
	Example: Robotics (2)
	Related approaches
	Yampa
	Yampa?
	Signal functions
	Signal functions and state
	Example: Video tracker
	Building systems (1)
	Building systems (2)
	Arrows
	What is an arrow? (1)
	What is an arrow? (2)
	Some arrow laws
	The 	exttt {loop} combinator
	Some more arrow combinators (1)
	Some more arrow combinators (2)
	Example: A Simple Network
	The arrow 	exttt {do} notation (1)
	The arrow 	exttt {do} notation (2)
	Yampa and Arrows
	Some further basic signal functions
	A bouncing ball
	Modelling the bouncing ball: part 1
	Events
	Modelling the bouncing ball: part 2
	Switching
	The basic switch
	Modelling the bouncing ball: part 3
	Simulation of bouncing ball
	Highly dynamic system structure?
	Dynamic signal function collections
	Example: Space Invaders
	Overall game structure
	Describing the alien behavior (1)
	Describing the alien behavior (2)
	Describing the alien behavior (3)
	Describing the alien behavior (4)
	State in 	exttt {alien}
	Why not imperative, then?

