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Reactive programming (1)

Reactive systems

Input arrives incrementally while system is
running.

Output is generated in response to input in an
Interleaved and timely fashion.

Contrast transformational systems
The notions of
time
time-varying values, or signals
are inherent and central to reactive systems.
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Reactive Programming (2)

Reactive systems are
generally concurrent
often parallel
often distributed

Thus, besides timeliness, difficulties related to
development of concurrent, parallel, and
distributed programming are also inherent.
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The Synchronous Approach (1)

The “synchronous realisation” (France, 1980s):

If we heed the observation that time-varying
values are central to reactive programming and

express systems directly as
fransformations of such entities

adopt system-wide logical time,

abstracting away processing delays
(hence synchronous )
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...then:

systems can be described declaratively
at a very high level of abstraction

simple, deterministic semantics,
facilitates reasoning

many problems related to imperative
idioms for concurrency and
synchronisation simply vanishes.
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The Synchronous Approach (2)

...then:

systems can be described declaratively
at a very high level of abstraction

simple, deterministic semantics,
facilitates reasoning

many problems related to imperative
idioms for concurrency and
synchronisation simply vanishes.

Contrast programming with values at isolated
points in time In a fundamentally temporally
agnostic setting.
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The Synchronous Approach (3)

The synchronous languages were invented In
France in the 1980s. The first ones were:

Esterel
Lustre
Signal

Have been very successful; e.g. lots of industrial
applications.

Many new languages and variations since then.
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Functional Reactive Programming

Functional Reactive Programming (FRP):

Paradigm for reactive, concurrent
programming in purely declarative (functional)
setting.

Originated from Functional Reactive
Animation (Fran) (Elliott & Hudak).

Has evolved in a number of directions and
Into different concrete implementations.

(Usually) continuous notion of time and
additional support for discrete events.



FRP applications

Some domains where FRP or FRP-like ideas
have been used:

Graphical Animation

Robotics

Vision

GUIs

Hybrid modeling

Video games

Sensor networks

Audio processing and generation
Financial, event-based systems



Example: Robotics (1)

[PPDP’02, with I1zzet Pembeci and Greg Hager,
Johns Hopkins University]

Hardware setup:

III
m
-

-
-



Example: Robotics (2)
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°
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Related approaches

FRP related to:

Synchronous languages, like Esterel, Lucid
Synchrone.

Modeling languages, like Simulink, Modelica.
Distinguishing features of FRP:

First class reactive components.

Allows highly dynamic system structure.

Supports hybrid (mixed continuous and
discrete) systems.
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Yampa

An FRP system originating at Yale
Embedding In Haskell (a Haskell library).

Arrows used as the basic structuring
framework.

Notionally continuous time

Discrete-time signals modelled by
continuous-time signals and an option type,
allowing for hybrid systems.

Advanced switching constructs  allows for
highly dynamic system structure.
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Yampa?
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Yampa?

NoO ...

Y et

A nother
M ostly

P ointless
A cronym

277
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Yampa?

Yampa Is a river ...

° ° ° ° ° ° ° ° °
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Yampa?

... with long calmly flowing sections ...
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Yampa?

...and abrupt whltewater transmons In between.

A good metaphor for hybrid systems!

° ° ° ° ° ° ° °
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Signal functions

Key concept: functions on signals

Sighal o =~ Time —«
r . Signal T1
y . Signal T2
f = Signal T1 —Signal T2
Additionally: causality requirement.

Intuition:

Signal functions are first class entities In Yampa:
SFa (§~ Signal o —Signal [
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Alternative view:

Signal functions can encapsulate state .

[state(t) ]

state(t) summarizes input history z(t'), t' € [0, t].
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Signal functions and state

Alternative view:

Signal functions can encapsulate state .

[state(t) ]

state(t) summarizes input history z(t'), t' € [0, t].

Functions on signals are either:
Stateful : y(t) depends on x(t) and state(t)
Stateless : y(t) depends only on x(t)



Example: Video tracker

Video trackers are typically stateful signal

functions:
ﬁ/l/ﬂ Tracker

[prev. pos.]
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How to build systems? Think of a signal function
as a block . Blocks have inputs and outputs and
can be combined into larger blocks. For example,
serial composition:

S o9

A combinator can be defined that captures this
idea:
(>>>) - SFab->SFbc->SFac
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Building systems (2)

But systems can be complex:

> B b I

+1
112

B > > I

How many and what combinators do we need
to be able to describe arbitrary systems?
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Arrows

Yampa uses John Hughes’ arrow framework:

Abstract data type interface for function-like
types (or “blocks”, if you prefer).

Particularly suitable for types representing
process-like computations.

Provides a minimal set of “wiring”
combinators.
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What isan arrow? (1)

A type constructor a of arity two.

Three operators:
lifting :
arr .. (b->c) -> a b c

composition :
(>>) : abc->acd->abd

widening
first ;. a b c -> a (b,d) (c,d)

A set of algebraic laws that must hold.



What isan arrow? (2)

These diagrams convey the general idea:

> (I . B
arr f f >>> g

first  f



Some arrow laws

(f >>> g) > h = f >>> (g >>> h)
arr (f >>> q) = arr f >>> arr g
arr id >>> f = f

ey
|

f >>> arr id
first (arr f) arr (first f)
first (f >>> Q) = first f >>> first g



Some arrow laws

(f >>> qg) >> h = f >>> (g >>> h)
arr (f >>> q) arr f >>> arr g
arr id >>> f f

f >>> arr id
first (arr f) arr (first f)

first (f >>> Q) = first f >>> first g

ey
|

Being able to use simple algebraic laws like
these greatly facilitates reasoning about
programs.
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Thel oop combinator

Another important operator is loop : a fixed-point

operator used to express recursive arrows or
feedback :

N e T

loop f
Remarkably, the four combinators arr , >>>,

first , and loop suffice for expressing any
concelivable wiring!



Some more arrow combinators (1)

second :: Arrow a =>
abc->a (db) (dc)

(*x++ ) :» Arrow a =>
abc->ade->a(bd (ce)

(&&&) . Arrow a =>
abc->abd->ab (cd



Some more arrow combinators (2)

As diagrams:

i

second f [ o g




Example: A SIimple Network

A simple network:

al, a2, a3 :: A Double Double

One way to express it using arrow combinators:

circuit. vl :: A Double Double
circuit v1 = (al &&& arr id)
>>> (a2 *** a3)
>>> arr (uncurry (+))

H—



Thearrow do notation (1)

Using the basic combinators directly can be
cumbersome. Ross Paterson’s do-notation for
arrows provides a convenient alternative. Only
syntactic sugar !

proc pat ->do [rec ]
pat, <- sfexp; -< exp,
paty <- sfexp, -< exp,

pat, <- sfexp,-< exp,
returnA -<  exp

Also: let pat =exp = pat <-arrid -< erp

F onal Reactivity:Eschewing the Imperative —
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Thearrow do notation (2)

Let us redo the example using this notation:

l

{H—

\

circuit v4 :: A Double Double
circuit v4 = proc x -> do

yl <- al < X

y2 <- a2 < yl

y3 <- a3 -< X

returnA -< y2 + y3



Yampa and Arrows

The Yampa signal function type is an arrow.

Signal function instances of the core
combinators:

arr .. (a ->Db) > SF ab

>>> . SFab->SFbc->SFac
first . SF a b -> SF (a,c) (b,c)

loop :: SF (a,c) (b,c) -> SF a b
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Some further basic signal functions

identity :: SF a a
identity = arr id

constant :: b -> SF a b
constant b = arr (const b)

Integral :: VectorSpace a s=>SF a a
time :: SF a Time

time = constant 1.0 >>> integral
("<<) = (b->c) > SF a b -> SF ac
f ("<<) sf = sf >>> arr f



A bouncing ball

y = yo+/vdt
a § = v0+/—9.81

On impact:
v = —v(t—)

(fully elastic collision)
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Modelling the bouncing ball: part 1

Free-falling ball:

type Pos = Double
type Vel = Double

fallingBall ::
Pos -> Vel -> SF () (Pos, Vel)

fallingBall yO vO = proc () -> do
v <- (vO +) "<< integral -< -9.81
y <- (yO +) << integral -< v
returnA -< (y, V)
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Events

Conceptually, discrete-time signals are only
defined at discrete points in time, often
associated with the occurrence of some event.
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Events

Conceptually, discrete-time signals are only
defined at discrete points in time, often
associated with the occurrence of some event.

Yampa models discrete-time signals by lifting the
range of continuous-time signals:

data Event a = NoEvent | Event a
Discrete-time signal = Signal (Event «).

Associating information with an event
occurrence:

tag :: Event a -> b -> Event b
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Modelling the bouncing ball: part 2

Detecting when the ball goes through the floor:

fallingBall’ ::
Pos -> Vel
-> SF () ((Pos,Vel), Event (Pos,Vel))
fallingBall yO vO = proc () -> do
yv@(y, ) <- fallingBall yO vO -< ()
hit <- edge <y <=0
returnA -< (yv, hit ‘tag’ yv)



Switching

Q: How and when do signal functions “start”?
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Switching

Q: How and when do signal functions “start™?
A: < Switchers “apply” a signal functions to Its
Input signal at some point in time.

This creates a “running” signal function
Instance .

The new signal function instance often
replaces the previously running instance.
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Switching

Q: How and when do signal functions “start”?
A: < Switchers “apply” a signal functions to Its
Input signal at some point in time.

This creates a “running” signal function
Instance .

The new signal function instance often
replaces the previously running instance.

Switchers thus allow systems with varying
structure to be described.
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Thebasic switch

|dea:

Allows one signal function to be replaced by
another.

Switching takes place on the first occurrence
of the switching event source.

switch ::
SF a (b, Event c)
-> (¢ -> SF a b)
-> SF ab
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Thebasic switch

|dea:

Allows one signal function to be replaced by
another.

Switching takes place on the first occurrence
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switch :: Initial SF with event source
SF a (b, Event c) L
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Thebasic switch

|dea:

Allows one signal function to be replaced by
another.

Switching takes place on the first occurrence
of the switching event source.

switch ::
SF a (b, Event c)

->

Function yielding SF to switch into

(c -> SF a b)

_

-> SF ab
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Modelling the bouncing ball: part 3

Making the ball bounce:

bouncingBall :: Pos -> SF () (Pos, Vel)
bouncingBall yO = bbAux yO 0.0
where
bbAux yO vO =
switch (fallingBall’ yO v0) $ \(y,v) ->
bbAux y (-v)

Functional Reactivity:Eschewing the Imperative — p.37/48



Simulation of bouncing ball

dy/dt ——
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Highly dynamic system structure?

Basic switch allows one signal function to be
replaced by another.

What about more general structural changes?

What about state?



Dynamic signal function collections

|dea:

Switch over collections of signal functions.

On event, “freeze” running signal functions
Into collection of signal function continuations
preserving encapsulated state.

Modify collection as needed and switch back In.






Overall game structure

dpSwitch

killOrSpawn

[ObjectOutput]

[ bullet :

Wi

ll / |
ObjInput ObjOutput

o o o o o o o o o
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Describing the alien behavior (1)

type Object = SF Objlnput ObjOutput

alien :: RandomGen g =>
g -> Position2 -> Velocity -> Object
alien g pO vyd = proc oi -> do
rec
-- Pick a desired horizontal position
X <- noiseR (xMin, xMax) g -< ()
smpl <- occasionally g 5 () < ()
xd <- hold (point2X p0) -< smpl ‘tag’ rx
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Describing the alien behavior (2)

-- Controller

let axd = 5 * (xd - point2X p)
- 3 * (vector2X v)
ayd = 20 =* (vyd - (vector2Y v))
ad =

vector2 axd ayd

h vector2Theta ad

o
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Describing the alien behavior (3)

-- Physics
let a = vector2Polar
(min alienAccMax

(vector2Rho ad))
h

vp <- IPre vO < V

ffi <- forceField -< (p, vp)

v <- (VO "+) "<< impulselntegral
-< (gravity "+ a, ffi)

p <- (p0 .+) "<< Integral -< v
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Describing the alien behavior (4)

-- Shi el ds
sl <- shield -< oiHIt ol
die <- edge < sl <=0

returnA -< ObjOutput {
000bsODbjState = oosAlien p h v,
ooKillReq = die,
ooSpawnReq = noEvent
}
where
vO = zeroVector
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Stateinal 1 en

Each of the following signal functions used in

alien

encapsulate state:
noiseR Impulselntegral
occasionally integral
hold shield
IPre edge

forceField

F onal Reactivity:Eschewing the Imperative —

p.47
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Why not imper ative, then?

If state Is so Important, why not stick to
Imperative/object-oriented programming where
we have “state for free”?

Advantages of declarative programming
retained:
High abstraction level.
Referential transparency, algebraic laws:
formal reasoning is simpler.

Synchronous approach avoids
“event-call-back soup”, meaning robust,
easy-to-understand semantics.
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