Functional Reactivity:
Eschewing the Imperative

An Overview of Functional Reactive
Programming in the Context of Yampa

Henrik Nilsson

University of Nottingham, UK

Reactive programming (1)

Reactive systems

Reactive programming (1)
Reactive systems

« Input arrives incrementally while system is
running.

Functional Reactivity:Eschewing the Imperative — p.2/48

Reactive programming (1)
Reactive systems

Input arrives incrementally while system is
running.

Output is generated in response to input in an
Interleaved and timely fashion.

Reactive programming (1)

Reactive systems

Input arrives incrementally while system is
running.

Output is generated in response to input in an
Interleaved and timely fashion.

Contrast transformational systems

F onal Reactivity:Eschewing the Imperative — p.2/48

Reactive programming (1)

Reactive systems

Input arrives incrementally while system is
running.

Output is generated in response to input in an
Interleaved and timely fashion.

Contrast transformational systems
The notions of
time
time-varying values, or signals
are inherent and central to reactive systems.

F onal Reactivity:Eschewing the Imperative — p.2/48

Reactive Programming (2)

Reactive systems are
generally concurrent
often parallel
often distributed

Functional Reactivity:Eschewing the Im perative — p.3/48

Reactive Programming (2)

Reactive systems are
generally concurrent
often parallel
often distributed

Thus, besides timeliness, difficulties related to
development of concurrent, parallel, and
distributed programming are also inherent.

Functional Reactivity:Eschewing the Im perative — p.3/48

The Synchronous Approach (1)

The “synchronous realisation” (France, 1980s):

If we heed the observation that time-varying
values are central to reactive programming and

The Synchronous Approach (1)

The “synchronous realisation” (France, 1980s):

If we heed the observation that time-varying
values are central to reactive programming and

express systems directly as
fransformations of such entities

The Synchronous Approach (1)

The “synchronous realisation” (France, 1980s):

If we heed the observation that time-varying
values are central to reactive programming and

express systems directly as
fransformations of such entities

adopt system-wide logical time,

abstracting away processing delays
(hence synchronous)

The Synchronous Approach (2)

...then:

The Synchronous Approach (2)

...then:

systems can be described declaratively
at a very high level of abstraction

The Synchronous Approach (2)

...then:

systems can be described declaratively
at a very high level of abstraction

simple, deterministic semantics,
facilitates reasoning

The Synchronous Approach (2)

...then:

systems can be described declaratively
at a very high level of abstraction

simple, deterministic semantics,
facilitates reasoning

many problems related to imperative
idioms for concurrency and
synchronisation simply vanishes.

Functional Reactivity:Eschewing the Im perative — p.5/48

The Synchronous Approach (2)

...then:

systems can be described declaratively
at a very high level of abstraction

simple, deterministic semantics,
facilitates reasoning

many problems related to imperative
idioms for concurrency and
synchronisation simply vanishes.

Contrast programming with values at isolated
points in time In a fundamentally temporally
agnostic setting.

Functional Reactivity:Eschewing the Im perative — p.5/48

The Synchronous Approach (3)

The synchronous languages were invented In
France in the 1980s. The first ones were:

Esterel
Lustre
Signal

Have been very successful; e.g. lots of industrial
applications.

Many new languages and variations since then.

Functional Reactive Programming

Functional Reactive Programming (FRP):

Paradigm for reactive, concurrent
programming in purely declarative (functional)
setting.

Functional Reactive Programming

Functional Reactive Programming (FRP):

Paradigm for reactive, concurrent
programming in purely declarative (functional)

setting.

Originated from Functional Reactive
Animation (Fran) (Elliott & Hudak).

Functional Reactive Programming

Functional Reactive Programming (FRP):

Paradigm for reactive, concurrent
programming in purely declarative (functional)

setting.

Originated from Functional Reactive
Animation (Fran) (Elliott & Hudak).

Has evolved in a number of directions and
Into different concrete implementations.

Functional Reactive Programming

Functional Reactive Programming (FRP):

Paradigm for reactive, concurrent
programming in purely declarative (functional)
setting.

Originated from Functional Reactive
Animation (Fran) (Elliott & Hudak).

Has evolved in a number of directions and
Into different concrete implementations.

(Usually) continuous notion of time and
additional support for discrete events.

FRP applications

Some domains where FRP or FRP-like ideas
have been used:

Graphical Animation

Robotics

Vision

GUIs

Hybrid modeling

Video games

Sensor networks

Audio processing and generation
Financial, event-based systems

Example: Robotics (1)

[PPDP’02, with I1zzet Pembeci and Greg Hager,
Johns Hopkins University]

Hardware setup:

III
m
-

-
-

Example: Robotics (2)

| %V ision(RICIRL- Window

L _Eltlgsgtar:_:lE!.!! I'-:'lﬁiiid_:""h '

°
Functional Reactivity:Eschewing the Imperative — p.10/48

Related approaches

FRP related to:

Synchronous languages, like Esterel, Lucid
Synchrone.

Modeling languages, like Simulink, Modelica.

Related approaches

FRP related to:

Synchronous languages, like Esterel, Lucid
Synchrone.

Modeling languages, like Simulink, Modelica.
Distinguishing features of FRP:

First class reactive components.

Allows highly dynamic system structure.

Supports hybrid (mixed continuous and
discrete) systems.

Yampa

An FRP system originating at Yale

Functional Reactivity:Eschewing the Imperative — p.12/48

Yampa

An FRP system originating at Yale
Embedding In Haskell (a Haskell library).

Yampa

An FRP system originating at Yale
Embedding In Haskell (a Haskell library).

Arrows used as the basic structuring
framework.

Yampa

An FRP system originating at Yale
Embedding In Haskell (a Haskell library).

Arrows used as the basic structuring
framework.

Notionally continuous time

Yampa

An FRP system originating at Yale
Embedding In Haskell (a Haskell library).

Arrows used as the basic structuring
framework.

Notionally continuous time

Discrete-time signals modelled by
continuous-time signals and an option type,
allowing for hybrid systems.

Yampa

An FRP system originating at Yale
Embedding In Haskell (a Haskell library).

Arrows used as the basic structuring
framework.

Notionally continuous time

Discrete-time signals modelled by
continuous-time signals and an option type,
allowing for hybrid systems.

Advanced switching constructs allows for
highly dynamic system structure.

Functional Reactivity:Eschewing the Im perative — p.12/48

Yampa?

° ° ° ° ° ° ° ° °
Functional Reactivity:Eschewing the Imperative — p.13/48

Yampa?

Y et

A nother
M ostly

P ointless
A cronym

Functional Reactivity:Eschewing the Imperative — p.13/48

Yampa?

Y et

A nother
M ostly

P ointless
A cronym

277

Functional Reactivity:Eschewing the Imperative — p.13/48

Yampa?

NoO ...

Y et

A nother
M ostly

P ointless
A cronym

277

Functional Reactivity:Eschewing the Imperative — p.13/48

Yampa?

Yampa Is a river ...

° ° ° ° ° ° ° ° °
Functional Reactivity:Eschewing the Imperative — p.13/48

Yampa?

... with long calmly flowing sections ...

° ° ° ° ° ° ° ° °
Functional Reactivity:Eschewing the Imperative — p.13/48

Yampa?

...and abrupt whltewater transmons In between.

A good metaphor for hybrid systems!

° ° ° ° ° ° ° °
Functional Reactivity:Eschewing the Imperative — p.13/48

Signal functions

Key concept: functions on signals

F onal Reactivity:Eschewing the Imperative —

p.1

4/48

Signal functions

Key concept: functions on signals

Intuition:
Signal
€T
y
f o

a =~ Time —«

Signa
Sigha
Signha

i
2

1

—Signal T2

Signal functions

Key concept: functions on signals

Sighal o =~ Time —«
r . Signal T1
y . Signal T2
f = Signal T1 —Signal T2
Additionally: causality requirement.

Intuition:

Signal functions

Key concept: functions on signals

Sighal o =~ Time —«
r . Signal T1
y . Signal T2
f = Signal T1 —Signal T2
Additionally: causality requirement.

Intuition:

Signal functions are first class entities In Yampa:
SFa (§~ Signal o —Signal [

Signal functions and state

Alternative view:

Signal functions and state

Alternative view:

Signal functions can encapsulate state .

[state(t)]

state(t) summarizes input history z(t'), t' € [0, t].

F onal Reactivity:Eschewing the Imperative — p.15/48

Signal functions and state

Alternative view:

Signal functions can encapsulate state .

[state(t)]

state(t) summarizes input history z(t'), t' € [0, t].

Functions on signals are either:
Stateful : y(t) depends on x(t) and state(t)
Stateless : y(t) depends only on x(t)

Example: Video tracker

Video trackers are typically stateful signal

functions:
ﬁ/l/ﬂ Tracker

[prev. pos.]

Building systems (1)

How to build systems? Think of a signal function
as a block . Blocks have inputs and outputs and
can be combined into larger blocks. For example,

serial composition:

S o9

Building systems (1)

How to build systems? Think of a signal function
as a block . Blocks have inputs and outputs and
can be combined into larger blocks. For example,
serial composition:

S o9

A combinator can be defined that captures this
idea:
(>>>) - SFab->SFbc->SFac

Building systems (2)

But systems can be complex:

> B > I

+1
1

B > > Il

Building systems (2)

But systems can be complex:

> B b I

+1
112

B > > I

How many and what combinators do we need
to be able to describe arbitrary systems?

Arrows

Yampa uses John Hughes’ arrow framework:

Abstract data type interface for function-like
types (or “blocks”, if you prefer).

Arrows

Yampa uses John Hughes’ arrow framework:

Abstract data type interface for function-like
types (or “blocks”, if you prefer).

Particularly suitable for types representing
process-like computations.

Arrows

Yampa uses John Hughes’ arrow framework:

Abstract data type interface for function-like
types (or “blocks”, if you prefer).

Particularly suitable for types representing
process-like computations.

Provides a minimal set of “wiring”
combinators.

F onal Reactivity:Eschewing the Imperative — p.19/48

What isan arrow? (1)

« A type constructor a of arity two.

What isan arrow? (1)

A type constructor a of arity two.
Three operators:

F onal Reactivity:Eschewing the Imperative — p.20/48

What isan arrow? (1)

A type constructor a of arity two.
Three operators:

lifting :

arr .. (b->c) > a b c

What isan arrow? (1)

A type constructor a of arity two.
Three operators:

lifting :
arr .. (b->c) -> a b c
composition

(>>>) 2 abc->acd->abd

What isan arrow? (1)

A type constructor a of arity two.

Three operators:
lifting :
arr .. (b->c) -> a b c
composition :
(>>) : abc->acd->abd

widening
first ;. a b c -> a (b,d) (c,d)

What isan arrow? (1)

A type constructor a of arity two.

Three operators:
lifting :
arr .. (b->c) -> a b c

composition :
(>>) : abc->acd->abd

widening
first ;. a b c -> a (b,d) (c,d)

A set of algebraic laws that must hold.

What isan arrow? (2)

These diagrams convey the general idea:

> (I . B
arr f f >>> g

first f

Some arrow laws

(f >>> g) > h = f >>> (g >>> h)
arr (f >>> q) = arr f >>> arr g
arr id >>> f = f

ey
|

f >>> arr id
first (arr f) arr (first f)
first (f >>> Q) = first f >>> first g

Some arrow laws

(f >>> qg) >> h = f >>> (g >>> h)
arr (f >>> q) arr f >>> arr g
arr id >>> f f

f >>> arr id
first (arr f) arr (first f)

first (f >>> Q) = first f >>> first g

ey
|

Being able to use simple algebraic laws like
these greatly facilitates reasoning about
programs.

Thel oop combinator

Another important operator is loop : a fixed-point
operator used to express recursive arrows or
feedback :

N e T

loop f

Thel oop combinator

Another important operator is loop : a fixed-point

operator used to express recursive arrows or
feedback :

N e T

loop f
Remarkably, the four combinators arr , >>>,

first , and loop suffice for expressing any
concelivable wiring!

Some more arrow combinators (1)

second :: Arrow a =>
abc->a (db) (dc)

(*x++) :» Arrow a =>
abc->ade->a(bd (ce)

(&&&) . Arrow a =>
abc->abd->ab (cd

Some more arrow combinators (2)

As diagrams:

i

second f [o g

Example: A SIimple Network

A simple network:

al, a2, a3 :: A Double Double

One way to express it using arrow combinators:

circuit. vl :: A Double Double
circuit v1 = (al &&& arr id)
>>> (a2 *** a3)
>>> arr (uncurry (+))

H—

Thearrow do notation (1)

Using the basic combinators directly can be
cumbersome. Ross Paterson’s do-notation for
arrows provides a convenient alternative. Only
syntactic sugar !

proc pat ->do [rec]
pat, <- sfexp; -< exp,
paty <- sfexp, -< exp,

pat, <- sfexp,-< exp,
returnA -< exp

Also: let pat =exp = pat <-arrid -< erp

F onal Reactivity:Eschewing the Imperative —

p.2

7/48

Thearrow do notation (2)

Let us redo the example using this notation:

l

{H—

\

circuit v4 :: A Double Double
circuit v4 = proc x -> do

yl <- al < X

y2 <- a2 < yl

y3 <- a3 -< X

returnA -< y2 + y3

Yampa and Arrows

The Yampa signal function type is an arrow.

Signal function instances of the core
combinators:

arr .. (a ->Db) > SF ab

>>> . SFab->SFbc->SFac
first . SF a b -> SF (a,c) (b,c)

loop :: SF (a,c) (b,c) -> SF a b

Some further basic signal functions

* Identity :: SF a a
identity = arr id

Some further basic signal functions

identity :: SF a a
identity = arr id

constant :: b -> SF a b
constant b = arr (const b)

Some further basic signal functions

identity :: SF a a
identity = arr id

constant :: b -> SF a b
constant b = arr (const b)

Integral :: VectorSpace a s=>SF a a

Some further basic signal functions

identity :: SF a a
identity = arr id

constant :: b -> SF a b
constant b = arr (const b)

Integral :: VectorSpace a s=>SF a a

time :: SF a Time
time = constant 1.0 >>> integral

Some further basic signal functions

identity :: SF a a
identity = arr id

constant :: b -> SF a b
constant b = arr (const b)

Integral :: VectorSpace a s=>SF a a
time :: SF a Time

time = constant 1.0 >>> integral
("<<) = (b->c) > SF a b -> SF ac
f ("<<) sf = sf >>> arr f

A bouncing ball

y = yo+/vdt
a § = v0+/—9.81

On impact:
v = —v(t—)

(fully elastic collision)

Functional Reactivity:Eschewing the Imperative — p.31/48

Modelling the bouncing ball: part 1

Free-falling ball:

type Pos = Double
type Vel = Double

fallingBall ::
Pos -> Vel -> SF () (Pos, Vel)

fallingBall yO vO = proc () -> do
v <- (vO +) "<< integral -< -9.81
y <- (yO +) << integral -< v
returnA -< (y, V)

Functional Reactivity:Eschewing the Imperative — p.32/48

Events

Conceptually, discrete-time signals are only
defined at discrete points in time, often
associated with the occurrence of some event.

Functional Reactivity:Eschewing the Imperative — p.33/48

Events

Conceptually, discrete-time signals are only
defined at discrete points in time, often
associated with the occurrence of some event.

Yampa models discrete-time signals by lifting the
range of continuous-time signals:

data Event a = NoEvent | Event a

Reactivity:Eschewing the Imperative — p.33/48

Events

Conceptually, discrete-time signals are only
defined at discrete points in time, often
associated with the occurrence of some event.

Yampa models discrete-time signals by lifting the
range of continuous-time signals:

data Event a = NoEvent | Event a

Discrete-time signal = Signal (Event «).

Reactivity:Eschewing the Imperative — p.33/48

Events

Conceptually, discrete-time signals are only
defined at discrete points in time, often
associated with the occurrence of some event.

Yampa models discrete-time signals by lifting the
range of continuous-time signals:

data Event a = NoEvent | Event a
Discrete-time signal = Signal (Event «).

Associating information with an event
occurrence:

tag :: Event a -> b -> Event b

Reactivity:Eschewing the Imperative — p.33/48

Modelling the bouncing ball: part 2

Detecting when the ball goes through the floor:

fallingBall’ ::
Pos -> Vel
-> SF () ((Pos,Vel), Event (Pos,Vel))
fallingBall yO vO = proc () -> do
yv@(y,) <- fallingBall yO vO -< ()
hit <- edge <y <=0
returnA -< (yv, hit ‘tag’ yv)

Switching

Q: How and when do signal functions “start”?

Functional Reactivity:Eschewing the Imperative — p.35/48

Switching

Q: How and when do signal functions “start”?

A: < Switchers “apply” a signal functions to Its
Input signal at some point in time.

F onal Reactivity:Eschewing the Imperative — p.35/48

Switching

Q: How and when do signal functions “start”?

A: < Switchers “apply” a signal functions to Its
Input signal at some point in time.

This creates a “running” signal function
Instance .

F onal Reactivity:Eschewing the Imperative — p.35/48

Switching

Q: How and when do signal functions “start™?
A: < Switchers “apply” a signal functions to Its
Input signal at some point in time.

This creates a “running” signal function
Instance .

The new signal function instance often
replaces the previously running instance.

F onal Reactivity:Eschewing the Imperative — p.35/48

Switching

Q: How and when do signal functions “start”?
A: < Switchers “apply” a signal functions to Its
Input signal at some point in time.

This creates a “running” signal function
Instance .

The new signal function instance often
replaces the previously running instance.

Switchers thus allow systems with varying
structure to be described.

F onal Reactivity:Eschewing the Imperative — p.35/48

Thebasic switch

|dea:

Allows one signal function to be replaced by
another.

Switching takes place on the first occurrence
of the switching event source.

switch ::
SF a (b, Event c)
-> (¢ -> SF a b)
-> SF ab

F onal Reactivity:Eschewing the Imperative — p.36/48

Thebasic switch

|dea:

Allows one signal function to be replaced by
another.

Switching takes place on the first occurrence
of the switching event source.

switch :: Initial SF with event source
SF a (b, Event c) L

-> (¢ -> SF a b)

> SF a b

Functional Reactivity:Eschewing the Imperative — p.36/48

Thebasic switch

|dea:

Allows one signal function to be replaced by
another.

Switching takes place on the first occurrence
of the switching event source.

switch ::
SF a (b, Event c)

->

Function yielding SF to switch into

(c -> SF a b)

_

-> SF ab

Functional Reactivity:Eschewing the Imperative — p.36/48

Modelling the bouncing ball: part 3

Making the ball bounce:

bouncingBall :: Pos -> SF () (Pos, Vel)
bouncingBall yO = bbAux yO 0.0
where
bbAux yO vO =
switch (fallingBall’ yO v0) $ \(y,v) ->
bbAux y (-v)

Functional Reactivity:Eschewing the Imperative — p.37/48

Simulation of bouncing ball

dy/dt ——

Highly dynamic system structure?

Basic switch allows one signal function to be
replaced by another.

Highly dynamic system structure?

Basic switch allows one signal function to be
replaced by another.

What about more general structural changes?

Highly dynamic system structure?

Basic switch allows one signal function to be
replaced by another.

What about more general structural changes?

What about state?

Dynamic signal function collections

|dea:

Switch over collections of signal functions.

On event, “freeze” running signal functions
Into collection of signal function continuations
preserving encapsulated state.

Modify collection as needed and switch back In.

Overall game structure

dpSwitch

killOrSpawn

[ObjectOutput]

[bullet :

Wi

ll / |
ObjInput ObjOutput

o o o o o o o o o
Functional Reactivity:Eschewing the Imperative — p.42/48

Describing the alien behavior (1)

type Object = SF Objlnput ObjOutput

alien :: RandomGen g =>
g -> Position2 -> Velocity -> Object
alien g pO vyd = proc oi -> do
rec
-- Pick a desired horizontal position
X <- noiseR (xMin, xMax) g -< ()
smpl <- occasionally g 5 () < ()
xd <- hold (point2X p0) -< smpl ‘tag’ rx

Functional Reactivity:Eschewing the Imperative — p.43/48

Describing the alien behavior (2)

-- Controller

let axd = 5 * (xd - point2X p)
- 3 * (vector2X v)
ayd = 20 =* (vyd - (vector2Y v))
ad =

vector2 axd ayd

h vector2Theta ad

o
Functional Reactivity:Eschewing the Imperative — p.44/48

Describing the alien behavior (3)

-- Physics
let a = vector2Polar
(min alienAccMax

(vector2Rho ad))
h

vp <- IPre vO < V

ffi <- forceField -< (p, vp)

v <- (VO "+) "<< impulselntegral
-< (gravity "+ a, ffi)

p <- (p0 .+) "<< Integral -< v

Functional Reactivity:Eschewing the Imperative — p.45/48

Describing the alien behavior (4)

-- Shi el ds
sl <- shield -< oiHIt ol
die <- edge < sl <=0

returnA -< ObjOutput {
000bsODbjState = oosAlien p h v,
ooKillReq = die,
ooSpawnReq = noEvent
}
where
vO = zeroVector

Functional Reactivity:Eschewing the Imperative — p.46/48

Stateinal 1 en

Each of the following signal functions used in

alien

encapsulate state:
noiseR Impulselntegral
occasionally integral
hold shield
IPre edge

forceField

F onal Reactivity:Eschewing the Imperative —

p.47

148

Why not imper ative, then?

If state Is so Important, why not stick to
Imperative/object-oriented programming where
we have “state for free”?

Why not imper ative, then?

If state Is so Important, why not stick to
Imperative/object-oriented programming where
we have “state for free”?

Advantages of declarative programming
retained:
High abstraction level.

Referential transparency, algebraic laws:
formal reasoning is simpler.

Why not imper ative, then?

If state Is so Important, why not stick to
Imperative/object-oriented programming where
we have “state for free”?

Advantages of declarative programming
retained:
High abstraction level.
Referential transparency, algebraic laws:
formal reasoning is simpler.

Synchronous approach avoids
“event-call-back soup”, meaning robust,
easy-to-understand semantics.

	Reactive programming (1)
	Reactive Programming (2)
	The Synchronous Approach (1)
	The Synchronous Approach (2)
	The Synchronous Approach (3)
	Functional Reactive Programming
	FRP applications
	Example: Robotics (1)
	Example: Robotics (2)
	Related approaches
	Yampa
	Yampa?
	Signal functions
	Signal functions and state
	Example: Video tracker
	Building systems (1)
	Building systems (2)
	Arrows
	What is an arrow? (1)
	What is an arrow? (2)
	Some arrow laws
	The 	exttt {loop} combinator
	Some more arrow combinators (1)
	Some more arrow combinators (2)
	Example: A Simple Network
	The arrow 	exttt {do} notation (1)
	The arrow 	exttt {do} notation (2)
	Yampa and Arrows
	Some further basic signal functions
	A bouncing ball
	Modelling the bouncing ball: part 1
	Events
	Modelling the bouncing ball: part 2
	Switching
	The basic switch
	Modelling the bouncing ball: part 3
	Simulation of bouncing ball
	Highly dynamic system structure?
	Dynamic signal function collections
	Example: Space Invaders
	Overall game structure
	Describing the alien behavior (1)
	Describing the alien behavior (2)
	Describing the alien behavior (3)
	Describing the alien behavior (4)
	State in 	exttt {alien}
	Why not imperative, then?

