
A Brief Haskell and GHC Refresher

Henrik Nilsson and Neil Sculthorpe
School of Computer Science
University of Nottingham

24th September 2013

1 Introduction

The purpose of this document is to give you quick recap of Haskell and GHC
(the Haskell system we are using). This is recommended reading if you are
taking the G52MAL or G53CMP modules. However it is there only for your
benefit: it is not assessed and there is nothing to hand in. Should you feel you
need a more in-depth Haskell refresher, or if you happen to be new to Haskell,
Graham Hutton’s book Programming in Haskell is highly recommended (in
particular, the first 70 pages). Even if you are a fairly confident Haskell
programmer, we advise you to quickly glance through this document: it may
contain aspects of Haskell and GHC that you are not familiar with, but which
are used in supplied code (partiularly for G53CMP) as they are useful when
developing large programs.

We recommend that you use the Haskell system GHC on the School’s
Linux servers. However, you could use other Haskell implementations, such
as Hugs or NHC, or different platforms, such as Unix, Mac OS X, or Windows,
if you prefer. In particular, the Haskell Platform (which includes GHC) has
recently been installed on the Windows machines in the Lab. Note that if you
use other platforms or Haskell implementations, then you cannot expect the
course Teaching Assistants (TAs) to provide much technical assistance if you
run into trouble with your installation. The site www.haskell.org is your
starting point for everything you possibly want to know about Haskell, and
for downloading Haskell implementations, related tools, and documentation.

1

www.haskell.org


2 Setting Up

2.1 Linux

The following assumes that you work on one of the School’s Windows ma-
chines; e.g. in the main lab A32. Log on to your Linux server using e.g. the
SSH Secure Shell Client (easiest) or PuTTY (there should be shortcuts to
both on your desktop). At time of writing, the servers are avon for 1st year
students, bann for 2nd year students and clyde for 3rd and 4th year students.

Start the interactive GHC environment by issuing the command ghci at
the command line prompt:

bann$ ghci

Some information about GHCi gets printed, and you’ll then get a new prompt:

Prelude>

From here, you can enter and evaluate Haskell expressions, load Haskell code
from files, etc. See section 3 for more details.

You can also edit code on the servers using text editors like Emacs (com-
mand emacs) or Vi (command vi). Using a terminal multiplexer like Screen
(command screen; do man screen for info) you can start a number of in-
teractive sessions (e.g. GHCi, Emacs, shell) and quickly and easily switch
between them, all within one window. Alternatively, you can start a num-
ber of SSH sessions in separate windows by invoking the SSH client multiple
times.

2.2 Windows

The Haskell Platform, which includes GHCi, has been installed on the Win-
dows machines in the lab. Just select GHCi from the start menu (you will
find it under All Programs, Haskell Platform).

Note that you can navigate around the directory structure using the :cd

command. For example, to get to the H drive:

:cd H:

Also, you can set GHCi (if it isn’t already) as the default program as-
sociated with .hs files, so you can load them into GHCi just by clicking on
them in a file browser window.

Alternatively, you can use WinGHCi. It allows you do do simple things
like loading, editing, and running code through GUI shortcuts. However, the

2



associated editor is Notepad, and as Notepad does not understand Unix line-
ending conventions, you may need to work around that one way or another
in certain cases: see below.

You can edit Haskell files on the Windows machines using editors like
XEmacs or Notepad++ (there should be shortcuts to both on your desktop).
Both of these adapt automatically to different line-ending conventions, but
Notepad++ may need some configuration regarding the width of tab stops:
see below.

2.2.1 Unix and Windows Line-Ending Conventions

As you may be aware, Unix (and hence also Linux, Solaris, Mac OS, etc.) and
Windows use different line-ending conventions for text files. Consequently,
you could encounter problems if you switch between systems. In particular,
the source code for the G53CMP coursework was created under Linux, and
thus uses its line-ending convention. To get around this problem, you can
use the unix2dos and dos2unix programs to convert text files from Unix to
Windows and vice-versa (respectively). You can run these programs (under
Linux) by supplying them with the names of one or more files to convert (old
files will be overwritten); for example:

unix2dos MyFile1.hs MyFile2.hs MyFile3.hs

Alternatively, you can specify input-output file pairs; for example:

unix2dos -n MyFile-Unix.hs MyFile-Windows.hs

You can read about these issues in more detail in Wikipedia:

http://en.wikipedia.org/wiki/Newline

2.2.2 Haskell Layout and the Width of Tab Stops

Another issue concerns assumptions about the width of tab stops, although
this is more of a tool issue (in particular, text editors, like Emacs or Notepad++)
than an operating system issue.

Parsing of Haskell programs take layout (indentation) into account (unless
the structure is made explicit using curly braces and semicolons). If tab
characters are used in a Haskell file, it thus become a critical question just
how wide (in spaces) a tab stop is supposed to be, as the presence of a tab
character means that the horizontal position of the next character should be
aligned with the next tab stop. The Haskell language standard has a precise
definition (to ensure that Haskell programs always are interpreted the same

3



way): a tab stop is 8 spaces wide. This is also the default in many (most?)
text editors, like Emacs.

However, for example Notepad++, which is a popular text editor among
Windows users, has (at least usually) a different idea about the default: it
opts for tab stops being 4 spaces wide. To avoid unnecessary grief caused by
this (i.e., seemingly inexplicable parse errors), it is recommended that you,
when editing Haskell source using Notepad++, go to Settings, Preferences,
Tab Settings and change the width of tab stops to 8, and that you also tick
the box “treat tabs like spaces”.

If using Notepad, at least from within WinGHCi, the width of a tab stop
seems to default to 8, which is appropriate for Haskell, but as noted above,
it seems Notepad cannot handle Unix line-ending conventions, so you might
need to convert files from Unix to Windows conventions manually.

3 Getting Started

3.1 Using GHCi

The text before > (in this case Prelude) are the names of the modules whose
definitions are in scope. Thus the above prompt means that everything in
the Haskell standard Prelude is available.

Now evaluate some simple expressions. For example:

Prelude> 1 + 2

Prelude> "Hello World!"

Prelude> putStrLn "Hello World!"

Prelude> "Hello\nWorld!\n"

Prelude> putStrLn "Hello\nWorld!\n"

Make sure you become familiar with the command-line editing facilities to
save on typing. For example, try out the arrow keys and various Emacs
bindings.

Beside expressions, which get evaluated when entered, GHCi accepts a
number of commands. They are all prefixed by : to distinguish them from
Haskell expressions. The command :help prints a list of available commands.
Try it now. Note that commands may be abbreviated to save on typing. For
example :h is enough to get help. Try it. What is the command to load a
Haskell module (and recursively all modules it depends on) from a file? What
is the command for leaving GHCi? Try it now, and then restart GHCi.

4



3.2 Haskell Online

Visit www.haskell.org and locate:

1. The page on Haskell tutorials.

2. The book Learn You a Haskell for Great Good!

3. The GHC documentation, in particular the section on GHCi.

4 Trees

Task 1

Using a text editor of your choice, define a module called Tree. The GHC
convention is that there should be one module per file, and that the name
of the file should be the same as the name of the module defined in it with
an additional .hs extension. (This is how GHC can find the definitions of a
module given just its name.) In your case the file should be called Tree.hs.

The module Tree should contain a data declaration for a tree with three
data constructors representing:

• an empty tree

• a singleton tree (a leaf)

• a non-empty tree consisting of two subtrees

Both the singleton tree node and the interior tree nodes should carry a single
Int value. Call the constructors Empty, Leaf, and Node, for example.

Task 2

Load the module into GHCi. If there are errors, fix them and try again.
Note how the prompt changes to indicate that the definitions in the module
Tree now are in scope. Which are they? What are their types? (Hint: try
the command :type.)

As the module Prelude is implicitly imported into every module unless
explicitly hidden, all Prelude definitions are still available. (The * in the
prompt *Tree> means that the Prelude is in scope.)

5

www.haskell.org


Task 3

Construct some Tree values. Can you print them? Can you compare them
using the operators == or <? If not, fix the problem (hint: make use of a
deriving declaration) and reload the module.

Task 4

The command :show modules shows all loaded modules. Try it. Switch
back so that only Prelude definitions are in scope again. Command :module

Prelude (or just :m Prelude). Are your Tree type and data constructors
now available?

You can still get at your definitions by using their fully qualified names.
That is, by prefixing the name of a defined entity with the name of the module
in which it is defined. For example, if one of your Tree data constructors
is called Node, it is available as Tree.Node. Try this. This works because
GHCi as an extra convenience implicitly imports the definitions of all loaded
modules under their fully qualified names into all scopes. (When a module is
compiled by any Haskell 98 compiler, such as GHC, all used definitions from
other modules must be explicitly imported in one way or another, except for
those from the Prelude.) Now switch back to the Tree scope.

Task 5

Generalise the your Tree definition so that the tree can carry data of an
arbitrary type. That is, make it polymorphic. Load the new definition into
GHCi and test it. What are the types of the Tree data constructors now?
Make sure you understand them!

Task 6

Using your polymorphic data constructors, create trees of integers, charac-
ters, and strings. Check that you can print and compare them and that they
have the expected type.

Task 7

Create a new module called Main (in the file Main.hs). Import the module
Tree into this module.

6



Task 8

Define a function size that returns the size of a tree. The size of the tree is
the number of values carried by the tree.

Task 9

Load the new module into GHCi and test it on trees of a few different sizes.
(Hint: you may want to define a number of test trees under some convenient
names, either in the module Main or in a separate third module of containing
test data that you import into Main.)

Check which modules are loaded now. Switch between the different mod-
ule scopes and figure out which definitions are available where (without giving
their fully qualified names).

Task 10

Define a function insert that inserts a value at the right place in an ordered
tree. A tree is ordered if all values in the left sub tree is strictly smaller
than the value in the top node, and all values in the right subtree is strictly
greater than the value of the top node. A particular value occurs at most
once in a tree.

Task 11

Load the new version of Main. What is the type of insert. Why? Add an
explicit type signature to the definition of insert as documentation!

Task 12

Change your Tree definition so that it uses named (also called labelled) fields.
This is Haskell’s version of records. Let the name for all value fields be value.
Let the names for the left and right subtree be left and right respectively.

Task 13

Load the new definition. Verify that you can construct trees using the named
field notation, and that the order among the fields does not matter when you
do so. For example, assuming the constructors are called Empty, Leaf, and
Node:

7



*Main> Node {left=Leaf {value=1}, value=2, right=Empty}
*Main> Node {right=Empty, left=Leaf {value=1}, value=2}

Verify that you still can construct trees using the normal way of applying
the constructor functions (i.e. with positional arguments). For example

*Main> Node (Leaf 1) 2 Empty

Note that the result tree still gets printed using the named field notation.
What happens if you don’t provide values for all fields? Or indeed for no

field? For example, what are the results of the following? Why?

*Main> :type Node {left=Empty}
*Main> :type Node {}
*Main> Node {left=Empty}
*Main> Node {}

Verify that you automatically got selector functions value, left, and
right, that these have the expected types, and that you can use them to
pick trees apart. What happens if you apply these selector functions to trees
with the wrong top-level constructor, such as:

*Main> value Empty

*Main> left (Leaf 2)

Explain.

Task 14

Redefine your size and insert functions so that they make use of the field
names when pattern matching. Verify that you can match the fields in any
order. Also note that you easily can omit field names that are of no interest
(e.g. value when you’re defining the function size). It may also make
sense to leave out field names that are only of interest in certain conditional
branches of the code to make the pattern matching clearer and draw attention
to what is most important for selecting the right conditional branch. The
remaining fields can always be accessed using the field selectors as and where
needed.

5 Scope Rules

This is an exercise on understanding Haskell’s scope rules. In the following
code fragments, draw an arrow from each use of a variables (x, y, etc.) to
its defining occurrence, if it has one in the provided fragment. For example
for a code fragment like

8



let x = 3 in x + x

you would draw an arrow from each of the x’s in the expression x + x to
the x in x = 3 as that is the corresponding defining occurrence. Note that
a particular variable name, like x, may be used for more than one variable
even within the scope of a definition for the variable in question since inner
definitions are allowed to shadow outer definitions in Haskell. For example,
the value of the Haskell expression

let x = 7 in

(let x = 3 in x + x) * x

is 42. Note that the following fragments are not examples of good style
Haskell code! They have deliberately been made somewhat confusing to
make a good exercise on Haskell’s scope rules.

1. f xs ys =

let xs = x : xs in take 10 (ys ++ xs)

where

x = head xs

2. f x y =

let n = 3 in take n (g y) ++ take n (g x)

where

g x = take n xys

where

xys = x : yxs

yxs = y : xys

n = 10

3. f xxs@(x:xs) =

case xs of

[] -> [x] : take n (repeat xs)

(x:xs) -> [x] : take n (repeat xs)

where

n = length xxs

9


	Introduction
	Setting Up
	Linux
	Windows
	Unix and Windows Line-Ending Conventions
	Haskell Layout and the Width of Tab Stops


	Getting Started
	Using GHCi
	Haskell Online

	Trees
	Scope Rules

