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This Lecture (1)

Review of basic Haskell features and concepts:

• Recap of much of the first few chapters of
Learn You a Haskell. Your chance to:

- ask questions

- catch up :-)

• Introduce you to some additional features that
we will use or are generally useful.

• Point out some common pitfalls
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What is a Functional Language? (1)

Which functional languages are you aware of?
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What is a Functional Language? (1)

Which functional languages are you aware of?

Surprisingly hard to give a precise definition.
One reasonable if pragmatic view:

• Functional programming is a style of
programming in which the basic method of
computation is function application.

• A functional language is one that supports
and encourages the functional style.

(Another, complementary perspective later.)
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What Is a Functional Language? (2)

This “definition” covers:
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• Pure functional languages: no side effects

- (Weakly) declarative: equational reasoning
valid (with care); referentially transparent.

- Examples: Haskell, Agda, Idris, Elm
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What Is a Functional Language? (2)

This “definition” covers:

• Pure functional languages: no side effects

- (Weakly) declarative: equational reasoning
valid (with care); referentially transparent.

- Examples: Haskell, Agda, Idris, Elm

• Mostly functional languages: some side effects

- Equational reasoning valid for pure fragments.

- Examples: ML, OCaml, Scheme, Erlang

• Arguably even covers multi-paradigm languages

- Examples: F#, Scala, JavaScript
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Example: Computing Sums (1)

Summing the integers from 1 to 10000 in Java:

total = 0;

for (i = 1; i <= 10000; ++i)

total = total + 1;

The method of computation is to execute
operations in sequence, in particular variable
assignment.
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Example: Computing Sums (2)

Summing the integers from 1 to 10000 in the
functional language Haskell:

sum [1..10000]

The method of computation is function application.
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Example: Computing Sums (2)

Summing the integers from 1 to 10000 in the
functional language Haskell:

sum [1..10000]

The method of computation is function application.

Of course, essentially the same program could
be written in, say, Java. Does that make Java a
functional language? Discuss!
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Example: Computing Sums (3)

Some reasons not to adopt the “functional
approach” in Java:

LiU-FP2016: Lecture 1 – p.7/78



Example: Computing Sums (3)

Some reasons not to adopt the “functional
approach” in Java:

• Syntactically awkward (even given suitable
library definitions)

LiU-FP2016: Lecture 1 – p.7/78



Example: Computing Sums (3)
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library definitions)

• Temporarily creating a list of 10000 integers
just to add them seems highly objectionable;
not good Java style.
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Example: Computing Sums (3)

Some reasons not to adopt the “functional
approach” in Java:

• Syntactically awkward (even given suitable
library definitions)

• Temporarily creating a list of 10000 integers
just to add them seems highly objectionable;
not good Java style.

But isn’t the second point a good argument
against the “functional approach” in general?
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Example: Computing Sums (4)

Actually, no!
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Example: Computing Sums (4)

Actually, no!

• Nothing says the entire list needs to be
created at once.
In lazy languages, like Haskell, the list will be
generated as needed, element by element.

• Nothing says the list needs to be created
at all!
Compilers for functional languages, thanks to
equational reasoning being valid, are often
able to completely eliminate intermediate
data structures.
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Example: Computing Sums (5)

• Note that the Haskell code is modular, while
the Java code is not.

• Being overly prescriptive regarding
computational details (evaluation order) often
hampers modularity.

We will discuss the last point in more depth later.
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Typical Functional Features (1)

Nevertheless, some typical features and
characteristics of functional languages can be
identified:

• Light-weight notation geared at

- defining functions

- expressing computation through function
application.

• Functions are first-class entities.

• Recursive (and co-recursive) function and
data definitions central.
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Typical Functional Features (2)

• Implementation techniques aimed at
executing code expressed in a functional style
efficiently.

More?
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This and the Following Lectures

• In this and the following lectures we will
explore Purely Functional Programming in
the setting of Haskell.
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This and the Following Lectures

• In this and the following lectures we will
explore Purely Functional Programming in
the setting of Haskell.

• Some themes:

- Lazy evaluation

- Purely functional data structures

- Effects purely

- Advanced typeful programming
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The GHC System (1)

• GHC supports Haskell 98, Haskell 2010, and
many extensions

• GHC is currently the most advanced Haskell
system available

• GHC is a compiler, but can also be used
interactively: ideal for serious development as
well as teaching and prototyping purposes
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The GHC System (2)

On a Unix system, GHCi can be started from the
prompt by simply typing the command ghci:

isis-1% ghci

___ ___ _

/ _ \ /\ /\/ __(_)

/ /_\// /_/ / / | | GHC Interactive, version 6.3, for Haskell 98.

/ /_\\/ __ / /___| | http://www.haskell.org/ghc/

\____/\/ /_/\____/|_| Type :? for help.

Loading package base ... linking ... done.

Prelude>
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The GHC System (3)

The GHCi > prompt means that the GHCi system
is ready to evaluate an expression.
For example:

> 2+3*4

14

> reverse [1,2,3]

[3,2,1]

> take 3 [1,2,3,4,5]

[1,2,3]
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Function Application (1)

In mathematics, function application is denoted
using parentheses, and multiplication is often
denoted using juxtaposition or space.

f(a,b) + c d

“Apply the function f to a and b, and add the
result to the product of c and d.”
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Function Application (2)

In Haskell, function application is denoted
using space, and multiplication is denoted using

*.

f a b + c*d

Meaning as before, but Haskell syntax.
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Function Application (3)

Moreover, function application is assumed to
have higher priority than all other operators. For
example:

f a + b

means

(f a) + b

not

f (a + b)
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What is a Type?
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What is a Type?

Deep question! But for now:

A type is a name for a collection of related
values. For example, in Haskell the basic type

Bool

contains the two logical values

False True
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What is a Type?

Deep question! But for now:

A type is a name for a collection of related
values. For example, in Haskell the basic type

Bool

contains the two logical values

False True

(Haskell’s type system is nominal as opposed to
structural: a type is only equal to itself.)
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Types in Haskell

• If evaluating an expression e would produce a
value of type t, then e has type t, written

e :: t
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• Every well-formed expression has a type. It can
usually be calculated automatically at compile
time using a process called type inference or
type reconstruction (Hindley-Milner).
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value of type t, then e has type t, written

e :: t

• Every well-formed expression has a type. It can
usually be calculated automatically at compile
time using a process called type inference or
type reconstruction (Hindley-Milner).

• However, giving manifest type declarations for
at least top-level definitions is good practice.
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Types in Haskell

• If evaluating an expression e would produce a
value of type t, then e has type t, written

e :: t

• Every well-formed expression has a type. It can
usually be calculated automatically at compile
time using a process called type inference or
type reconstruction (Hindley-Milner).

• However, giving manifest type declarations for
at least top-level definitions is good practice.

• Sometimes necessary to state type explicitly,
e.g. polymorphic recursion.
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Basic Types

Haskell has a number of basic types, including:

Bool Logical values

Char Single characters

Int Fixed-precision integers

Integer Arbitrary-precision integers

Double Double-precision floating point
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List Types (1)

A list is sequence of values of the same type:

[False,True,False] :: [Bool]

[’a’,’b’,’c’,’d’] :: [Char]

In general:

[t] is the type of lists with elements of
type t.
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List Types (2)

Haskell defines the string type to be a list of
characters:

type String = [Char]

String syntax is supported. For example:

"abcd" = [’a’,’b’,’c’,’d’]
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List Types (2)

Haskell defines the string type to be a list of
characters:

type String = [Char]

String syntax is supported. For example:

"abcd" = [’a’,’b’,’c’,’d’]

Note that the keyword type just introduces a
type synonym or type alias. In contrast, data
and newtype introduce new types.
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Tuple Types

A tuple is a sequence of values of different
types:

(False,True) :: (Bool,Bool)

(False,’a’,True) :: (Bool,Char,Bool)

In general:

(t1, t2, ..., tn) is the type of n-tuples

whose i
th component has type ti for

i ∈ [1 . . . n].
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Aside: Naming Conventions

Haskell enforces certain naming conventions.
For example:

• Type constructors (like Bool) and value
constructors (like True) always begin with a
capital letter.

• Variables (including function names) always
begin with a lowercase letter.

A somewhat similar convention applies to infix
operators where constructors are distinguished
by starting with a colon (:).
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Function Types (1)

A function is a mapping from values of one type
to values of another type:

not :: Bool -> Bool

In general:

t1 -> t2 is the type of functions that map
values of type t1 to values to type t2.
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Function Types (2)

If a function needs more than one argument,
pass a tuple, or use Currying:

(&&) :: Bool -> Bool -> Bool

This really means:

(&&) :: Bool -> (Bool -> Bool)

Idea: a function is applied to its arguments one
by one. This allows partial application.
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Aside: Functions and Operators

• Any (infix) operator can be used as a (prefix)
function by enclosing it in parentheses. E.g.:

True && False

is equivalent to

(&&) True False

• Any function can be used as an operator by
enclosing it in back quotes. E.g.:

add 1 2

is equivalent to

1 ‘add‘ 2
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Polymorphic Functions (1)

A function is called polymorphic (“of many
forms”) if its type contains one or more type
variables.

length :: [a] -> Int

“For any type a, length takes a list of values of
type a and returns an integer.”

This is called Parametric Polymorphism.
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Polymorphic Functions (2)

The type signature of length is really:

length :: forall a . [a] -> Int

• It is understood that a is a type variable, and
thus it ranges over all possible types.
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Polymorphic Functions (2)

The type signature of length is really:

length :: forall a . [a] -> Int

• It is understood that a is a type variable, and
thus it ranges over all possible types.

• Haskell 2010 does not allow explicit foralls:
all type variables are implicitly qualified at the
outermost level.
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Polymorphic Functions (2)

The type signature of length is really:

length :: forall a . [a] -> Int

• It is understood that a is a type variable, and
thus it ranges over all possible types.

• Haskell 2010 does not allow explicit foralls:
all type variables are implicitly qualified at the
outermost level.

• GHC extensions allow explicit foralls (e.g.
-XRankNTypes or equivalent LANGUAGE pragma).
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Exercise 1

Given:

id :: a -> a

not :: Bool -> Bool

foo :: (a -> a) -> a -> a

fie :: (forall a . a -> a) -> a -> a

what is the type of each of:

foo id :: ?? forall a . a -> a

foo not :: ?? Bool -> Bool

fie id :: ?? forall a . a -> a

fie not :: ?? Type error
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Types are Central in Haskell

Some reasons:
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Types are Central in Haskell

Some reasons:

• Expressive type system:

- Parametric Polymorphism

- Type classes

- Many extensions . . .

• Types say a lot about a function because
Haskell is a pure language: no side effects
(Referential Transparency).
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Types are Central in Haskell

Some reasons:

• Expressive type system:

- Parametric Polymorphism

- Type classes

- Many extensions . . .

• Types say a lot about a function because
Haskell is a pure language: no side effects
(Referential Transparency).
For example, a function of type Int -> Int

can only return an integer (or fail to terminate,
which admittedly is a side effect).
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Parametricity

In fact, due to a property called parametricity, it
goes even further: polymorphic types give rise to
free theorems (Wadler 1989). For example:

For any function r :: forall a . [a]->[a],
and every total function f :: t1 -> t2 for
some specific types t1 and t2, we have:

map f . r = r . map f

This holds by virtue of r’s polymorphic type: no
need to even consider its definition!
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Hoogle

Hoogle is a Haskell API search engine:

http://www.haskell.org/hoogle/

Allows searching by function name or by
approximate type signature.

For example, searching on

(a -> b) -> [a] -> [b]

turns up map, fmap, . . .
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Conditional Expressions

As in most programming languages, functions
can be defined using conditional expressions:

abs :: Int -> Int

abs n = if n >= 0 then n else -n

Alternatively, such a function can be defined
using guards:

abs :: Int -> Int

abs n | n >= 0 = n

| otherwise = -n
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Pattern Matching (1)

Many functions have a particularly clear definition
using pattern matching on their arguments:

not :: Bool -> Bool

not False = True

not True = False
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Pattern Matching (2)

Case expressions allow pattern matching to be
performed wherever an expression is allowed,
not just at the top-level of a function definition:

not :: Bool -> Bool

not b = case b of

False -> True

True -> False
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Aside: Layout

Haskell uses layout (indentation) to group code
into blocks. For example, the following is a
syntax error:

not b = case b of

False -> True

True -> False

Alternatively, explicit braces and semicolons can
be used. It’s even possible to mix and match:

not b = case b of {
False -> True ;

True -> False }
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List Patterns (1)

Internally, every non-empty list is constructed by
repeated use of an operator (:) called “cons”
that adds an element to the start of a list, starting
from [], the empty list.

Thus:

[1,2,3,4]

means

1:(2:(3:(4:[])))
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List patterns (2)

Functions on lists can be defined using x:xs

patterns:

head :: [a] -> a

head (x:_) = x

tail :: [a] -> [a]

tail (_:xs) = xs

(Aside: partial. Generally, Haskell programmers
strive to avoid defining or using partial functions.)
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Pattern Matching and Guards

Pattern matching and guards may be combined:

dropWhile :: (a->Bool) -> [a] -> [a]

dropWhile _ [] = []

dropWhile p xxs@(x:xs)

| p x = dropWhile p xs

| otherwise = xxs

(Note the as-pattern (@).)
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List Comprehensions

List comprehensions, similar to standard
mathematical set notation, are very useful for
expressing computations on lists:

[ x * x | x <- [1..10], odd x ]

= [1,9,25,49,81]

[ (x,y) | x <- [1..10],

y <- [1..10],

even (x + y) ]

= [(1,1),(1,3),(1,5), . . .
. . .(10,8),(10,10)]
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Lambda Expressions

A function can be constructed without giving it a
name by using a lambda expression:

\x -> x + 1

“The nameless function that takes a number x
and returns the result x + 1”

Note that the ASCII character \ stands for λ
(lambda).
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Currying Revisited

All functions in Haskell are (nested) λ-abstractions.
This explains how Currying works.

For example:

add x y = x+y

means

add = \x -> (\y -> x+y)

Thus:

add 7 = (\x -> (\y -> x+y)) 7

= (\y -> 7+y)
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Aside: Operator Sections

Another syntactic nicety in Haskell is partially
applied operators or operator sections. For
example:

(+1) = \x -> x + 1 Add 1

(1+) = \x -> 1 + x Add 1

(*2) = \x -> x * 2 Multiply by 2

(/2) = \x -> x / 2 Divide by 2

(1/) = \x -> 1 / x Reciprocal
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Recursive Definitions

• Definitions in Haskell may in general be
(mutually) recursive.

• Order of definition is immaterial.

foo x = ... fum (x - 1) ...

fie x = ... fie (x - 1) ...

fum x = ... foo (x - 1) ...

• To allow inference of maximally polymorphic
types, definitions are grouped into minimal
recursive groups prior to type checking.
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Local Definitions

Haskell provides two ways to introduce local
definitions:

• let-expressions

• where-clauses

f x = h x + c g x = let

where h x = x * x

h x = x * x c = 100

c = 100 in

h x + c

Again, the definitions can be (mutually) recursive.
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Data Declarations (1)

A new type can be declared by specifying its set
of values using a data declaration. For example,
Bool is in principle defined as:

data Bool = False | True
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Data Declarations (2)

What happens is:
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Data Declarations (2)

What happens is:

• A new type Bool is introduced
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Data Declarations (2)

What happens is:

• A new type Bool is introduced

• Constructors (functions to build values of the
type) are introduced:

False :: Bool

True :: Bool

(In this case, just constants.)
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Data Declarations (2)

What happens is:

• A new type Bool is introduced

• Constructors (functions to build values of the
type) are introduced:

False :: Bool

True :: Bool

(In this case, just constants.)

• Because constructor functions are bijective, and
thus in particular injective, pattern matching can
be used to take values of defined types apart.
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Data Declarations (3)

Values of new types can be used in the same
ways as those of built in types. E.g., given:

data Answer = Yes | No | Unknown

we can define:

answers :: [Answer]

answers = [Yes,No,Unknown]

flip :: Answer -> Answer

flip Yes = No

flip No = Yes

flip Unknown = Unknown
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Recursive Types (1)

New types can be declared in terms of themselves.
That is, types can be (mutually) recursive:

data Nat = Zero | Succ Nat

Nat is a new type with constructors

• Zero :: Nat

• Succ :: Nat -> Nat

Effectively, we get both a new way to form terms
and typing rules for these new terms.
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Recursive Types (2)

A value of type Nat is either Zero, or of the form
Succ n where n :: Nat. That is, Nat contains
the following infinite sequence of values:

Zero

Succ Zero

Succ (Succ Zero)
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Recursion and Recursive Types

Using recursion, it is easy to define functions that
convert between values of type Nat and Int:

nat2int :: Nat -> Int

nat2int Zero = 0

nat2int (Succ n) = 1 + nat2int n

int2nat :: Int -> Nat

int2nat 0 = Zero

int2nat n | n >= 1 = Succ (int2nat (n - 1))
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Parameterized Types

Types can also be parameterized on other types:

data List a = Nil | Cons a (List a)

data Tree a = Leaf a

| Node (Tree a) (Tree a)

Resulting constructors:

Nil :: List a

Cons :: a -> List a -> List a

Leaf :: a -> Tree a

Node :: Tree a -> Tree a -> Tree a
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Overloading (1)

Haskell supports a form of overloading: using
the same name to refer to different definitions
depending on the involved types. For example:

(==) :: Eq a => a -> a -> Bool

This means == is defined for any type a

belonging to the type class Eq.

This style of overloading is also known as
ad hoc polymorphism.
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Overloading (2)

In particular, Bool and Char both belong to Eq,
so the following two expressions are well-typed:

True == False

’a’ == ’b’

Behind the scenes, the equality test is
dispatched to the appropriate function for Bool
and Eq respectively.
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Overloading (2)

In particular, Bool and Char both belong to Eq,
so the following two expressions are well-typed:

True == False

’a’ == ’b’

Behind the scenes, the equality test is
dispatched to the appropriate function for Bool
and Eq respectively.

A powerful (and unusual) aspect of Haskell’s
approach to overloading is that overloading on
the result type is possible. E.g.:

read :: Read a => String -> a

LiU-FP2016: Lecture 1 – p.56/78



Overloading (3)

We will discuss type classes in more depth later.
However, it is useful to know that Haskell allow
class instances for new types to be derived for a
handful of built in classes, notably Eq, Ord, and
Show:

data Nat = Zero

| Succ Nat

deriving (Eq, Ord, Show)

Now show (Succ (Succ Zero)) yields
"Succ (Succ Zero)".
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Modules in Haskell (1)

• A Haskell program consists of a set of
modules.

• A module contains definitions:

- functions

- types

- type classes

• The top module is called Main:

module Main where

main = putStrLn "Hello World!"
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Modules in Haskell (2)

By default, only entities defined within a module
are in scope. But a module can import other
modules, bringing their definitions into scope:

module A where

f1 x = x + x

f2 x = x + 3

f3 x = 7

module B where

import A

g x = f1 x * f2 x + f3 x
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The Prelude

There is one special module called the Prelude.
It is imported implicitly into every module and
contains standard definitions, e.g.:

• Basic types (Int, Bool, tuples, [], Maybe, . . . )

• Basic arithmetic operations (+, *, . . . )

• Basic tuple and list operations (fst, snd,
head, tail, take, map, filter, length,
zip, unzip, . . . )

(It is possible to explicitly exclude (parts of) the
Prelude if necessary.)
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Qualified Names (1)

The fully qualified name of an entity x defined
in module M is M.x.

g x = A.f1 x * A.f2 x + f3 x

Note! Different from function composition!!!
Always write function composition with spaces:

f . g

The module name space is hierarchical, with
names of the form M1.M2.. . ..Mn. This allows
related modules to be grouped together.
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Qualified Names (2)

Fully qualified names can be used to resolve
name clashes. Consider:

module A where module C where

f x = 2 * x import A

import B

module B where

f x = 3 * x g x = A.f x + B.f x

Two different functions with the same
unqualified name f in scope in C. Need to write
A.f or B.f to disambiguate.
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Import Variations

Another way to resolve name clashes is to be
more precise about imports:

import A (f1,f2) Only f1 and f2

import A hiding (f1,f2) Everything but f1
and f2

import qualified A All names from A

imported fully
qualified only.

Can be combined in all possible ways; e.g.:

import qualified A hiding (f1, f2)
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Export Lists

It is also possible to be precise about what is
exported:

module A (f1, f2) where

...

Various abbreviations possible; e.g.:

• A type constructor along with all its value
constructors

• Everything imported from a specific module
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Labelled Fields (1)

Suppose we need to represent data about
people:

• Name

• Age

• Phone number

• Post code

One possibility: use a tuple:

type Person = (String, Int, String, String)

henrik = ("Henrik", 25, "8466506", "NG92YZ")
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Labelled Fields (2)

Problems? Well, the type does not say much
about the purpose of the fields! Easy to make
mistakes; e.g.:

getPhoneNumber :: Person -> String

getPhoneNumber (_, _, _, pn) = pn

or

henrik = ("Henrik", 25, "NG92YZ", "8466506")
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Labelled Fields (3)

Can we do better? Yes, we can introduce a new
type with named fields:

data Person = Person {

name :: String,

age :: Int,

phone :: String,

postcode :: String

}

deriving (Eq, Show)
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Labelled Fields (4)

Labelled fields are just “syntactic sugar”: the
defined type really is this:

data Person = Person String Int String String

and can be used as normal.

However, additionally, the field names can be
used to facilitate:

• Construction

• Update

• Selection

• Pattern matching
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Construction

We can construct data without having to
remember the field order:

henrik = Person {
age = 25,

name = "Henrik",

postcode = "NG92YZ",

phone = "8466506"

}
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Update (1)

Fields can be “updated”, creating new values
from old:

> henrik { phone = "1234567" }
Person {name = "Henrik", age = 25,

phone = "1234567",

postcode = "NG92YZ"}

Note: This is a functional “update”! The old
value is left intact.
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Update (2)

How does “update” work?

henrik { phone = "1234567" }

gets translated to something like this:

f (Person a1 a2 _ a4) =

Person a1 a2 "1234567" a4

f henrik
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Selection

We automatically get a selector function for
each field:

name :: Person -> String

age :: Person -> Int

phone :: Person -> String

postcode :: Person -> String

For example:

> name henrik

"Henrik"

> phone henrik

"8466506"
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Pattern matching

Field names can be used in pattern matching,
allowing us to forget about the field order and
pick only fields of interest.

phoneAge (Person {phone = p, age = a}) =

p ++ ": " ++ show a

This facilitates adding new fields to a type as
most of the pattern matching code usually can be
left unchanged.
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Multiple Value Constructors (1)

data Being = Person {

name :: String,

age :: Int,

phone :: String,

postcode :: String

}

| Alien {

name :: String,

age :: Int,

homeworld :: String

}

deriving (Eq, Show)
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Multiple Value Constructors (2)

It is OK to have the same field labels for different
constructors as long as their types agree.
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Distinct Field Labels for Distinct Types

It is not possible to have the same field names
for different types! The following does not work:

data X = MkX { field1 :: Int }

data Y = MkY { field1 :: Int, field2 :: Int }

One work-around: use a prefix convention:

data X = MkX { xField1 :: Int }

data Y = MkY { yField1 :: Int, yField2:: Int}
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Advantages of Labelled Fields

• Makes intent clearer.

• Allows construction and pattern matching
without having to remember the field order.

• Provides a convenient update notation.

• Allows to focus on specific fields of interest
when pattern matching.

• Addition or removal of fields only affects
function definitions where these fields really
are used.
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Reading

• John Hughes. Why Functional Programming
Matters. The Computer Journal,
32(2):98–197, April 1989.

• Philip Wadler. Theorems for Free! In
Functional Programming Languages and
Computer Architecture, FPCA’89, 1989

• Paul Hudak, John Peterson, Joseph Fasel. A
Gentle Introduction to Haskell
http://www.haskell.org/tutorial/

• Miran Lipovača. Learn You a Haskell for Great
Good! http://learnyouahaskell.com/
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