
LiU-FP2016: Lecture 1

Review of Haskell:
A lightening tour in 90 minutes

Partly adapted from slides by Graham Hutton

University of Nottingham, UK

LiU-FP2016: Lecture 1 – p.1/78

This Lecture (1)

Review of basic Haskell features and concepts:

LiU-FP2016: Lecture 1 – p.2/78

This Lecture (1)

Review of basic Haskell features and concepts:

• Recap of much of the first few chapters of
Learn You a Haskell. Your chance to:

LiU-FP2016: Lecture 1 – p.2/78

This Lecture (1)

Review of basic Haskell features and concepts:

• Recap of much of the first few chapters of
Learn You a Haskell. Your chance to:

- ask questions

LiU-FP2016: Lecture 1 – p.2/78

This Lecture (1)

Review of basic Haskell features and concepts:

• Recap of much of the first few chapters of
Learn You a Haskell. Your chance to:

- ask questions

- catch up :-)

LiU-FP2016: Lecture 1 – p.2/78

This Lecture (1)

Review of basic Haskell features and concepts:

• Recap of much of the first few chapters of
Learn You a Haskell. Your chance to:

- ask questions

- catch up :-)

• Introduce you to some additional features that
we will use or are generally useful.

LiU-FP2016: Lecture 1 – p.2/78

This Lecture (1)

Review of basic Haskell features and concepts:

• Recap of much of the first few chapters of
Learn You a Haskell. Your chance to:

- ask questions

- catch up :-)

• Introduce you to some additional features that
we will use or are generally useful.

• Point out some common pitfalls

LiU-FP2016: Lecture 1 – p.2/78

What is a Functional Language? (1)

Which functional languages are you aware of?

LiU-FP2016: Lecture 1 – p.3/78

What is a Functional Language? (1)

Which functional languages are you aware of?

Surprisingly hard to give a precise definition.
One reasonable if pragmatic view:

LiU-FP2016: Lecture 1 – p.3/78

What is a Functional Language? (1)

Which functional languages are you aware of?

Surprisingly hard to give a precise definition.
One reasonable if pragmatic view:

• Functional programming is a style of
programming in which the basic method of
computation is function application.

LiU-FP2016: Lecture 1 – p.3/78

What is a Functional Language? (1)

Which functional languages are you aware of?

Surprisingly hard to give a precise definition.
One reasonable if pragmatic view:

• Functional programming is a style of
programming in which the basic method of
computation is function application.

• A functional language is one that supports
and encourages the functional style.

LiU-FP2016: Lecture 1 – p.3/78

What is a Functional Language? (1)

Which functional languages are you aware of?

Surprisingly hard to give a precise definition.
One reasonable if pragmatic view:

• Functional programming is a style of
programming in which the basic method of
computation is function application.

• A functional language is one that supports
and encourages the functional style.

(Another, complementary perspective later.)

LiU-FP2016: Lecture 1 – p.3/78

What Is a Functional Language? (2)

This “definition” covers:

LiU-FP2016: Lecture 1 – p.4/78

What Is a Functional Language? (2)

This “definition” covers:

• Pure functional languages: no side effects

- (Weakly) declarative: equational reasoning
valid (with care); referentially transparent.

- Examples: Haskell, Agda, Idris, Elm

LiU-FP2016: Lecture 1 – p.4/78

What Is a Functional Language? (2)

This “definition” covers:

• Pure functional languages: no side effects

- (Weakly) declarative: equational reasoning
valid (with care); referentially transparent.

- Examples: Haskell, Agda, Idris, Elm

• Mostly functional languages: some side effects

- Equational reasoning valid for pure fragments.

- Examples: ML, OCaml, Scheme, Erlang

LiU-FP2016: Lecture 1 – p.4/78

What Is a Functional Language? (2)

This “definition” covers:

• Pure functional languages: no side effects

- (Weakly) declarative: equational reasoning
valid (with care); referentially transparent.

- Examples: Haskell, Agda, Idris, Elm

• Mostly functional languages: some side effects

- Equational reasoning valid for pure fragments.

- Examples: ML, OCaml, Scheme, Erlang

• Arguably even covers multi-paradigm languages

- Examples: F#, Scala, JavaScript

LiU-FP2016: Lecture 1 – p.4/78

Example: Computing Sums (1)

Summing the integers from 1 to 10000 in Java:

total = 0;

for (i = 1; i <= 10000; ++i)

total = total + 1;

The method of computation is to execute
operations in sequence, in particular variable
assignment.

LiU-FP2016: Lecture 1 – p.5/78

Example: Computing Sums (2)

Summing the integers from 1 to 10000 in the
functional language Haskell:

sum [1..10000]

The method of computation is function application.

LiU-FP2016: Lecture 1 – p.6/78

Example: Computing Sums (2)

Summing the integers from 1 to 10000 in the
functional language Haskell:

sum [1..10000]

The method of computation is function application.

Of course, essentially the same program could
be written in, say, Java. Does that make Java a
functional language? Discuss!

LiU-FP2016: Lecture 1 – p.6/78

Example: Computing Sums (3)

Some reasons not to adopt the “functional
approach” in Java:

LiU-FP2016: Lecture 1 – p.7/78

Example: Computing Sums (3)

Some reasons not to adopt the “functional
approach” in Java:

• Syntactically awkward (even given suitable
library definitions)

LiU-FP2016: Lecture 1 – p.7/78

Example: Computing Sums (3)

Some reasons not to adopt the “functional
approach” in Java:

• Syntactically awkward (even given suitable
library definitions)

• Temporarily creating a list of 10000 integers
just to add them seems highly objectionable;
not good Java style.

LiU-FP2016: Lecture 1 – p.7/78

Example: Computing Sums (3)

Some reasons not to adopt the “functional
approach” in Java:

• Syntactically awkward (even given suitable
library definitions)

• Temporarily creating a list of 10000 integers
just to add them seems highly objectionable;
not good Java style.

But isn’t the second point a good argument
against the “functional approach” in general?

LiU-FP2016: Lecture 1 – p.7/78

Example: Computing Sums (4)

Actually, no!

LiU-FP2016: Lecture 1 – p.8/78

Example: Computing Sums (4)

Actually, no!

• Nothing says the entire list needs to be
created at once.

LiU-FP2016: Lecture 1 – p.8/78

Example: Computing Sums (4)

Actually, no!

• Nothing says the entire list needs to be
created at once.
In lazy languages, like Haskell, the list will be
generated as needed, element by element.

LiU-FP2016: Lecture 1 – p.8/78

Example: Computing Sums (4)

Actually, no!

• Nothing says the entire list needs to be
created at once.
In lazy languages, like Haskell, the list will be
generated as needed, element by element.

• Nothing says the list needs to be created
at all!

LiU-FP2016: Lecture 1 – p.8/78

Example: Computing Sums (4)

Actually, no!

• Nothing says the entire list needs to be
created at once.
In lazy languages, like Haskell, the list will be
generated as needed, element by element.

• Nothing says the list needs to be created
at all!
Compilers for functional languages, thanks to
equational reasoning being valid, are often
able to completely eliminate intermediate
data structures.

LiU-FP2016: Lecture 1 – p.8/78

Example: Computing Sums (5)

• Note that the Haskell code is modular, while
the Java code is not.

• Being overly prescriptive regarding
computational details (evaluation order) often
hampers modularity.

We will discuss the last point in more depth later.

LiU-FP2016: Lecture 1 – p.9/78

Typical Functional Features (1)

Nevertheless, some typical features and
characteristics of functional languages can be
identified:

• Light-weight notation geared at

- defining functions

- expressing computation through function
application.

• Functions are first-class entities.

• Recursive (and co-recursive) function and
data definitions central.

LiU-FP2016: Lecture 1 – p.10/78

Typical Functional Features (2)

• Implementation techniques aimed at
executing code expressed in a functional style
efficiently.

More?

LiU-FP2016: Lecture 1 – p.11/78

This and the Following Lectures

• In this and the following lectures we will
explore Purely Functional Programming in
the setting of Haskell.

LiU-FP2016: Lecture 1 – p.12/78

This and the Following Lectures

• In this and the following lectures we will
explore Purely Functional Programming in
the setting of Haskell.

• Some themes:

- Lazy evaluation

- Purely functional data structures

- Effects purely

- Advanced typeful programming

LiU-FP2016: Lecture 1 – p.12/78

The GHC System (1)

• GHC supports Haskell 98, Haskell 2010, and
many extensions

• GHC is currently the most advanced Haskell
system available

• GHC is a compiler, but can also be used
interactively: ideal for serious development as
well as teaching and prototyping purposes

LiU-FP2016: Lecture 1 – p.13/78

The GHC System (2)

On a Unix system, GHCi can be started from the
prompt by simply typing the command ghci:

isis-1% ghci

___ ___ _

/ _ \ /\ /\/ __(_)

/ /_\// /_/ / / | | GHC Interactive, version 6.3, for Haskell 98.

/ /_\\/ __ / /___| | http://www.haskell.org/ghc/

____/\/ /_/____/|_| Type :? for help.

Loading package base ... linking ... done.

Prelude>

LiU-FP2016: Lecture 1 – p.14/78

The GHC System (3)

The GHCi > prompt means that the GHCi system
is ready to evaluate an expression.
For example:

> 2+3*4

14

> reverse [1,2,3]

[3,2,1]

> take 3 [1,2,3,4,5]

[1,2,3]

LiU-FP2016: Lecture 1 – p.15/78

Function Application (1)

In mathematics, function application is denoted
using parentheses, and multiplication is often
denoted using juxtaposition or space.

f(a,b) + c d

“Apply the function f to a and b, and add the
result to the product of c and d.”

LiU-FP2016: Lecture 1 – p.16/78

Function Application (2)

In Haskell, function application is denoted
using space, and multiplication is denoted using

*.

f a b + c*d

Meaning as before, but Haskell syntax.

LiU-FP2016: Lecture 1 – p.17/78

Function Application (3)

Moreover, function application is assumed to
have higher priority than all other operators. For
example:

f a + b

means

(f a) + b

not

f (a + b)

LiU-FP2016: Lecture 1 – p.18/78

What is a Type?

LiU-FP2016: Lecture 1 – p.19/78

What is a Type?

Deep question! But for now:

LiU-FP2016: Lecture 1 – p.19/78

What is a Type?

Deep question! But for now:

A type is a name for a collection of related
values. For example, in Haskell the basic type

Bool

contains the two logical values

False True

LiU-FP2016: Lecture 1 – p.19/78

What is a Type?

Deep question! But for now:

A type is a name for a collection of related
values. For example, in Haskell the basic type

Bool

contains the two logical values

False True

(Haskell’s type system is nominal as opposed to
structural: a type is only equal to itself.)

LiU-FP2016: Lecture 1 – p.19/78

Types in Haskell

• If evaluating an expression e would produce a
value of type t, then e has type t, written

e :: t

LiU-FP2016: Lecture 1 – p.20/78

Types in Haskell

• If evaluating an expression e would produce a
value of type t, then e has type t, written

e :: t

• Every well-formed expression has a type. It can
usually be calculated automatically at compile
time using a process called type inference or
type reconstruction (Hindley-Milner).

LiU-FP2016: Lecture 1 – p.20/78

Types in Haskell

• If evaluating an expression e would produce a
value of type t, then e has type t, written

e :: t

• Every well-formed expression has a type. It can
usually be calculated automatically at compile
time using a process called type inference or
type reconstruction (Hindley-Milner).

• However, giving manifest type declarations for
at least top-level definitions is good practice.

LiU-FP2016: Lecture 1 – p.20/78

Types in Haskell

• If evaluating an expression e would produce a
value of type t, then e has type t, written

e :: t

• Every well-formed expression has a type. It can
usually be calculated automatically at compile
time using a process called type inference or
type reconstruction (Hindley-Milner).

• However, giving manifest type declarations for
at least top-level definitions is good practice.

• Sometimes necessary to state type explicitly,
e.g. polymorphic recursion.

LiU-FP2016: Lecture 1 – p.20/78

Basic Types

Haskell has a number of basic types, including:

Bool Logical values

Char Single characters

Int Fixed-precision integers

Integer Arbitrary-precision integers

Double Double-precision floating point

LiU-FP2016: Lecture 1 – p.21/78

List Types (1)

A list is sequence of values of the same type:

[False,True,False] :: [Bool]

[’a’,’b’,’c’,’d’] :: [Char]

In general:

[t] is the type of lists with elements of
type t.

LiU-FP2016: Lecture 1 – p.22/78

List Types (2)

Haskell defines the string type to be a list of
characters:

type String = [Char]

String syntax is supported. For example:

"abcd" = [’a’,’b’,’c’,’d’]

LiU-FP2016: Lecture 1 – p.23/78

List Types (2)

Haskell defines the string type to be a list of
characters:

type String = [Char]

String syntax is supported. For example:

"abcd" = [’a’,’b’,’c’,’d’]

Note that the keyword type just introduces a
type synonym or type alias. In contrast, data
and newtype introduce new types.

LiU-FP2016: Lecture 1 – p.23/78

Tuple Types

A tuple is a sequence of values of different
types:

(False,True) :: (Bool,Bool)

(False,’a’,True) :: (Bool,Char,Bool)

In general:

(t1, t2, ..., tn) is the type of n-tuples

whose i
th component has type ti for

i ∈ [1 . . . n].

LiU-FP2016: Lecture 1 – p.24/78

Aside: Naming Conventions

Haskell enforces certain naming conventions.
For example:

• Type constructors (like Bool) and value
constructors (like True) always begin with a
capital letter.

• Variables (including function names) always
begin with a lowercase letter.

A somewhat similar convention applies to infix
operators where constructors are distinguished
by starting with a colon (:).

LiU-FP2016: Lecture 1 – p.25/78

Function Types (1)

A function is a mapping from values of one type
to values of another type:

not :: Bool -> Bool

In general:

t1 -> t2 is the type of functions that map
values of type t1 to values to type t2.

LiU-FP2016: Lecture 1 – p.26/78

Function Types (2)

If a function needs more than one argument,
pass a tuple, or use Currying:

(&&) :: Bool -> Bool -> Bool

This really means:

(&&) :: Bool -> (Bool -> Bool)

Idea: a function is applied to its arguments one
by one. This allows partial application.

LiU-FP2016: Lecture 1 – p.27/78

Aside: Functions and Operators

• Any (infix) operator can be used as a (prefix)
function by enclosing it in parentheses. E.g.:

True && False

is equivalent to

(&&) True False

• Any function can be used as an operator by
enclosing it in back quotes. E.g.:

add 1 2

is equivalent to

1 ‘add‘ 2

LiU-FP2016: Lecture 1 – p.28/78

Polymorphic Functions (1)

A function is called polymorphic (“of many
forms”) if its type contains one or more type
variables.

length :: [a] -> Int

“For any type a, length takes a list of values of
type a and returns an integer.”

This is called Parametric Polymorphism.

LiU-FP2016: Lecture 1 – p.29/78

Polymorphic Functions (2)

The type signature of length is really:

length :: forall a . [a] -> Int

• It is understood that a is a type variable, and
thus it ranges over all possible types.

LiU-FP2016: Lecture 1 – p.30/78

Polymorphic Functions (2)

The type signature of length is really:

length :: forall a . [a] -> Int

• It is understood that a is a type variable, and
thus it ranges over all possible types.

• Haskell 2010 does not allow explicit foralls:
all type variables are implicitly qualified at the
outermost level.

LiU-FP2016: Lecture 1 – p.30/78

Polymorphic Functions (2)

The type signature of length is really:

length :: forall a . [a] -> Int

• It is understood that a is a type variable, and
thus it ranges over all possible types.

• Haskell 2010 does not allow explicit foralls:
all type variables are implicitly qualified at the
outermost level.

• GHC extensions allow explicit foralls (e.g.
-XRankNTypes or equivalent LANGUAGE pragma).

LiU-FP2016: Lecture 1 – p.30/78

Exercise 1

Given:

id :: a -> a

not :: Bool -> Bool

foo :: (a -> a) -> a -> a

fie :: (forall a . a -> a) -> a -> a

what is the type of each of:

foo id :: ?? forall a . a -> a

foo not :: ?? Bool -> Bool

fie id :: ?? forall a . a -> a

fie not :: ?? Type error

LiU-FP2016: Lecture 1 – p.31/78

Types are Central in Haskell

Some reasons:

LiU-FP2016: Lecture 1 – p.32/78

Types are Central in Haskell

Some reasons:

• Expressive type system:

- Parametric Polymorphism

- Type classes

- Many extensions . . .

LiU-FP2016: Lecture 1 – p.32/78

Types are Central in Haskell

Some reasons:

• Expressive type system:

- Parametric Polymorphism

- Type classes

- Many extensions . . .

• Types say a lot about a function because
Haskell is a pure language: no side effects
(Referential Transparency).

LiU-FP2016: Lecture 1 – p.32/78

Types are Central in Haskell

Some reasons:

• Expressive type system:

- Parametric Polymorphism

- Type classes

- Many extensions . . .

• Types say a lot about a function because
Haskell is a pure language: no side effects
(Referential Transparency).
For example, a function of type Int -> Int

can only return an integer (or fail to terminate,
which admittedly is a side effect).

LiU-FP2016: Lecture 1 – p.32/78

Parametricity

In fact, due to a property called parametricity, it
goes even further: polymorphic types give rise to
free theorems (Wadler 1989). For example:

For any function r :: forall a . [a]->[a],
and every total function f :: t1 -> t2 for
some specific types t1 and t2, we have:

map f . r = r . map f

This holds by virtue of r’s polymorphic type: no
need to even consider its definition!

LiU-FP2016: Lecture 1 – p.33/78

Hoogle

Hoogle is a Haskell API search engine:

http://www.haskell.org/hoogle/

Allows searching by function name or by
approximate type signature.

For example, searching on

(a -> b) -> [a] -> [b]

turns up map, fmap, . . .

LiU-FP2016: Lecture 1 – p.34/78

Conditional Expressions

As in most programming languages, functions
can be defined using conditional expressions:

abs :: Int -> Int

abs n = if n >= 0 then n else -n

Alternatively, such a function can be defined
using guards:

abs :: Int -> Int

abs n | n >= 0 = n

| otherwise = -n

LiU-FP2016: Lecture 1 – p.35/78

Pattern Matching (1)

Many functions have a particularly clear definition
using pattern matching on their arguments:

not :: Bool -> Bool

not False = True

not True = False

LiU-FP2016: Lecture 1 – p.36/78

Pattern Matching (2)

Case expressions allow pattern matching to be
performed wherever an expression is allowed,
not just at the top-level of a function definition:

not :: Bool -> Bool

not b = case b of

False -> True

True -> False

LiU-FP2016: Lecture 1 – p.37/78

Aside: Layout

Haskell uses layout (indentation) to group code
into blocks. For example, the following is a
syntax error:

not b = case b of

False -> True

True -> False

Alternatively, explicit braces and semicolons can
be used. It’s even possible to mix and match:

not b = case b of {
False -> True ;

True -> False }
LiU-FP2016: Lecture 1 – p.38/78

List Patterns (1)

Internally, every non-empty list is constructed by
repeated use of an operator (:) called “cons”
that adds an element to the start of a list, starting
from [], the empty list.

Thus:

[1,2,3,4]

means

1:(2:(3:(4:[])))

LiU-FP2016: Lecture 1 – p.39/78

List patterns (2)

Functions on lists can be defined using x:xs

patterns:

head :: [a] -> a

head (x:_) = x

tail :: [a] -> [a]

tail (_:xs) = xs

(Aside: partial. Generally, Haskell programmers
strive to avoid defining or using partial functions.)

LiU-FP2016: Lecture 1 – p.40/78

Pattern Matching and Guards

Pattern matching and guards may be combined:

dropWhile :: (a->Bool) -> [a] -> [a]

dropWhile _ [] = []

dropWhile p xxs@(x:xs)

| p x = dropWhile p xs

| otherwise = xxs

(Note the as-pattern (@).)

LiU-FP2016: Lecture 1 – p.41/78

List Comprehensions

List comprehensions, similar to standard
mathematical set notation, are very useful for
expressing computations on lists:

[x * x | x <- [1..10], odd x]

= [1,9,25,49,81]

[(x,y) | x <- [1..10],

y <- [1..10],

even (x + y)]

= [(1,1),(1,3),(1,5), . . .
. . .(10,8),(10,10)]

LiU-FP2016: Lecture 1 – p.42/78

Lambda Expressions

A function can be constructed without giving it a
name by using a lambda expression:

\x -> x + 1

“The nameless function that takes a number x
and returns the result x + 1”

Note that the ASCII character \ stands for λ
(lambda).

LiU-FP2016: Lecture 1 – p.43/78

Currying Revisited

All functions in Haskell are (nested) λ-abstractions.
This explains how Currying works.

For example:

add x y = x+y

means

add = \x -> (\y -> x+y)

Thus:

add 7 = (\x -> (\y -> x+y)) 7

= (\y -> 7+y)

LiU-FP2016: Lecture 1 – p.44/78

Aside: Operator Sections

Another syntactic nicety in Haskell is partially
applied operators or operator sections. For
example:

(+1) = \x -> x + 1 Add 1

(1+) = \x -> 1 + x Add 1

(*2) = \x -> x * 2 Multiply by 2

(/2) = \x -> x / 2 Divide by 2

(1/) = \x -> 1 / x Reciprocal

LiU-FP2016: Lecture 1 – p.45/78

Recursive Definitions

• Definitions in Haskell may in general be
(mutually) recursive.

• Order of definition is immaterial.

foo x = ... fum (x - 1) ...

fie x = ... fie (x - 1) ...

fum x = ... foo (x - 1) ...

• To allow inference of maximally polymorphic
types, definitions are grouped into minimal
recursive groups prior to type checking.

LiU-FP2016: Lecture 1 – p.46/78

Local Definitions

Haskell provides two ways to introduce local
definitions:

• let-expressions

• where-clauses

f x = h x + c g x = let

where h x = x * x

h x = x * x c = 100

c = 100 in

h x + c

Again, the definitions can be (mutually) recursive.

LiU-FP2016: Lecture 1 – p.47/78

Data Declarations (1)

A new type can be declared by specifying its set
of values using a data declaration. For example,
Bool is in principle defined as:

data Bool = False | True

LiU-FP2016: Lecture 1 – p.48/78

Data Declarations (2)

What happens is:

LiU-FP2016: Lecture 1 – p.49/78

Data Declarations (2)

What happens is:

• A new type Bool is introduced

LiU-FP2016: Lecture 1 – p.49/78

Data Declarations (2)

What happens is:

• A new type Bool is introduced

• Constructors (functions to build values of the
type) are introduced:

False :: Bool

True :: Bool

(In this case, just constants.)

LiU-FP2016: Lecture 1 – p.49/78

Data Declarations (2)

What happens is:

• A new type Bool is introduced

• Constructors (functions to build values of the
type) are introduced:

False :: Bool

True :: Bool

(In this case, just constants.)

• Because constructor functions are bijective, and
thus in particular injective, pattern matching can
be used to take values of defined types apart.

LiU-FP2016: Lecture 1 – p.49/78

Data Declarations (3)

Values of new types can be used in the same
ways as those of built in types. E.g., given:

data Answer = Yes | No | Unknown

we can define:

answers :: [Answer]

answers = [Yes,No,Unknown]

flip :: Answer -> Answer

flip Yes = No

flip No = Yes

flip Unknown = Unknown

LiU-FP2016: Lecture 1 – p.50/78

Recursive Types (1)

New types can be declared in terms of themselves.
That is, types can be (mutually) recursive:

data Nat = Zero | Succ Nat

Nat is a new type with constructors

• Zero :: Nat

• Succ :: Nat -> Nat

Effectively, we get both a new way to form terms
and typing rules for these new terms.

LiU-FP2016: Lecture 1 – p.51/78

Recursive Types (2)

A value of type Nat is either Zero, or of the form
Succ n where n :: Nat. That is, Nat contains
the following infinite sequence of values:

Zero

Succ Zero

Succ (Succ Zero)

LiU-FP2016: Lecture 1 – p.52/78

Recursion and Recursive Types

Using recursion, it is easy to define functions that
convert between values of type Nat and Int:

nat2int :: Nat -> Int

nat2int Zero = 0

nat2int (Succ n) = 1 + nat2int n

int2nat :: Int -> Nat

int2nat 0 = Zero

int2nat n | n >= 1 = Succ (int2nat (n - 1))

LiU-FP2016: Lecture 1 – p.53/78

Parameterized Types

Types can also be parameterized on other types:

data List a = Nil | Cons a (List a)

data Tree a = Leaf a

| Node (Tree a) (Tree a)

Resulting constructors:

Nil :: List a

Cons :: a -> List a -> List a

Leaf :: a -> Tree a

Node :: Tree a -> Tree a -> Tree a

LiU-FP2016: Lecture 1 – p.54/78

Overloading (1)

Haskell supports a form of overloading: using
the same name to refer to different definitions
depending on the involved types. For example:

(==) :: Eq a => a -> a -> Bool

This means == is defined for any type a

belonging to the type class Eq.

This style of overloading is also known as
ad hoc polymorphism.

LiU-FP2016: Lecture 1 – p.55/78

Overloading (2)

In particular, Bool and Char both belong to Eq,
so the following two expressions are well-typed:

True == False

’a’ == ’b’

Behind the scenes, the equality test is
dispatched to the appropriate function for Bool
and Eq respectively.

LiU-FP2016: Lecture 1 – p.56/78

Overloading (2)

In particular, Bool and Char both belong to Eq,
so the following two expressions are well-typed:

True == False

’a’ == ’b’

Behind the scenes, the equality test is
dispatched to the appropriate function for Bool
and Eq respectively.

A powerful (and unusual) aspect of Haskell’s
approach to overloading is that overloading on
the result type is possible. E.g.:

read :: Read a => String -> a

LiU-FP2016: Lecture 1 – p.56/78

Overloading (3)

We will discuss type classes in more depth later.
However, it is useful to know that Haskell allow
class instances for new types to be derived for a
handful of built in classes, notably Eq, Ord, and
Show:

data Nat = Zero

| Succ Nat

deriving (Eq, Ord, Show)

Now show (Succ (Succ Zero)) yields
"Succ (Succ Zero)".

LiU-FP2016: Lecture 1 – p.57/78

Modules in Haskell (1)

• A Haskell program consists of a set of
modules.

• A module contains definitions:

- functions

- types

- type classes

• The top module is called Main:

module Main where

main = putStrLn "Hello World!"

LiU-FP2016: Lecture 1 – p.58/78

Modules in Haskell (2)

By default, only entities defined within a module
are in scope. But a module can import other
modules, bringing their definitions into scope:

module A where

f1 x = x + x

f2 x = x + 3

f3 x = 7

module B where

import A

g x = f1 x * f2 x + f3 x

LiU-FP2016: Lecture 1 – p.59/78

The Prelude

There is one special module called the Prelude.
It is imported implicitly into every module and
contains standard definitions, e.g.:

• Basic types (Int, Bool, tuples, [], Maybe, . . .)

• Basic arithmetic operations (+, *, . . .)

• Basic tuple and list operations (fst, snd,
head, tail, take, map, filter, length,
zip, unzip, . . .)

(It is possible to explicitly exclude (parts of) the
Prelude if necessary.)

LiU-FP2016: Lecture 1 – p.60/78

Qualified Names (1)

The fully qualified name of an entity x defined
in module M is M.x.

g x = A.f1 x * A.f2 x + f3 x

Note! Different from function composition!!!
Always write function composition with spaces:

f . g

The module name space is hierarchical, with
names of the form M1.M2.. . ..Mn. This allows
related modules to be grouped together.

LiU-FP2016: Lecture 1 – p.61/78

Qualified Names (2)

Fully qualified names can be used to resolve
name clashes. Consider:

module A where module C where

f x = 2 * x import A

import B

module B where

f x = 3 * x g x = A.f x + B.f x

Two different functions with the same
unqualified name f in scope in C. Need to write
A.f or B.f to disambiguate.

LiU-FP2016: Lecture 1 – p.62/78

Import Variations

Another way to resolve name clashes is to be
more precise about imports:

import A (f1,f2) Only f1 and f2

import A hiding (f1,f2) Everything but f1
and f2

import qualified A All names from A

imported fully
qualified only.

Can be combined in all possible ways; e.g.:

import qualified A hiding (f1, f2)

LiU-FP2016: Lecture 1 – p.63/78

Export Lists

It is also possible to be precise about what is
exported:

module A (f1, f2) where

...

Various abbreviations possible; e.g.:

• A type constructor along with all its value
constructors

• Everything imported from a specific module

LiU-FP2016: Lecture 1 – p.64/78

Labelled Fields (1)

Suppose we need to represent data about
people:

• Name

• Age

• Phone number

• Post code

One possibility: use a tuple:

type Person = (String, Int, String, String)

henrik = ("Henrik", 25, "8466506", "NG92YZ")

LiU-FP2016: Lecture 1 – p.65/78

Labelled Fields (2)

Problems? Well, the type does not say much
about the purpose of the fields! Easy to make
mistakes; e.g.:

getPhoneNumber :: Person -> String

getPhoneNumber (_, _, _, pn) = pn

or

henrik = ("Henrik", 25, "NG92YZ", "8466506")

LiU-FP2016: Lecture 1 – p.66/78

Labelled Fields (3)

Can we do better? Yes, we can introduce a new
type with named fields:

data Person = Person {

name :: String,

age :: Int,

phone :: String,

postcode :: String

}

deriving (Eq, Show)

LiU-FP2016: Lecture 1 – p.67/78

Labelled Fields (4)

Labelled fields are just “syntactic sugar”: the
defined type really is this:

data Person = Person String Int String String

and can be used as normal.

However, additionally, the field names can be
used to facilitate:

• Construction

• Update

• Selection

• Pattern matching
LiU-FP2016: Lecture 1 – p.68/78

Construction

We can construct data without having to
remember the field order:

henrik = Person {
age = 25,

name = "Henrik",

postcode = "NG92YZ",

phone = "8466506"

}

LiU-FP2016: Lecture 1 – p.69/78

Update (1)

Fields can be “updated”, creating new values
from old:

> henrik { phone = "1234567" }
Person {name = "Henrik", age = 25,

phone = "1234567",

postcode = "NG92YZ"}

Note: This is a functional “update”! The old
value is left intact.

LiU-FP2016: Lecture 1 – p.70/78

Update (2)

How does “update” work?

henrik { phone = "1234567" }

gets translated to something like this:

f (Person a1 a2 _ a4) =

Person a1 a2 "1234567" a4

f henrik

LiU-FP2016: Lecture 1 – p.71/78

Selection

We automatically get a selector function for
each field:

name :: Person -> String

age :: Person -> Int

phone :: Person -> String

postcode :: Person -> String

For example:

> name henrik

"Henrik"

> phone henrik

"8466506"

LiU-FP2016: Lecture 1 – p.72/78

Pattern matching

Field names can be used in pattern matching,
allowing us to forget about the field order and
pick only fields of interest.

phoneAge (Person {phone = p, age = a}) =

p ++ ": " ++ show a

This facilitates adding new fields to a type as
most of the pattern matching code usually can be
left unchanged.

LiU-FP2016: Lecture 1 – p.73/78

Multiple Value Constructors (1)

data Being = Person {

name :: String,

age :: Int,

phone :: String,

postcode :: String

}

| Alien {

name :: String,

age :: Int,

homeworld :: String

}

deriving (Eq, Show)

LiU-FP2016: Lecture 1 – p.74/78

Multiple Value Constructors (2)

It is OK to have the same field labels for different
constructors as long as their types agree.

LiU-FP2016: Lecture 1 – p.75/78

Distinct Field Labels for Distinct Types

It is not possible to have the same field names
for different types! The following does not work:

data X = MkX { field1 :: Int }

data Y = MkY { field1 :: Int, field2 :: Int }

One work-around: use a prefix convention:

data X = MkX { xField1 :: Int }

data Y = MkY { yField1 :: Int, yField2:: Int}

LiU-FP2016: Lecture 1 – p.76/78

Advantages of Labelled Fields

• Makes intent clearer.

• Allows construction and pattern matching
without having to remember the field order.

• Provides a convenient update notation.

• Allows to focus on specific fields of interest
when pattern matching.

• Addition or removal of fields only affects
function definitions where these fields really
are used.

LiU-FP2016: Lecture 1 – p.77/78

Reading

• John Hughes. Why Functional Programming
Matters. The Computer Journal,
32(2):98–197, April 1989.

• Philip Wadler. Theorems for Free! In
Functional Programming Languages and
Computer Architecture, FPCA’89, 1989

• Paul Hudak, John Peterson, Joseph Fasel. A
Gentle Introduction to Haskell
http://www.haskell.org/tutorial/

• Miran Lipovača. Learn You a Haskell for Great
Good! http://learnyouahaskell.com/

LiU-FP2016: Lecture 1 – p.78/78

	This Lecture (1)
	What is a Functional Language? (1)
	What Is a Functional Language? (2)
	Example: Computing Sums (1)
	Example: Computing Sums (2)
	Example: Computing Sums (3)
	Example: Computing Sums (4)
	Example: Computing Sums (5)
	Typical Functional Features (1)
	Typical Functional Features (2)
	This and the Following Lectures
	The GHC System (1)
	The GHC System (2)
	The GHC System (3)
	Function Application (1)
	Function Application (2)
	Function Application (3)
	What is a Type?
	Types in Haskell
	Basic Types
	List Types (1)
	List Types (2)
	Tuple Types
	Aside: Naming Conventions
	Function Types (1)
	Function Types (2)
	Aside: Functions and Operators
	Polymorphic Functions (1)
	Polymorphic Functions (2)
	Exercise 1
	Types are Central in Haskell
	Parametricity
	Hoogle
	Conditional Expressions
	Pattern Matching (1)
	Pattern Matching (2)
	Aside: Layout
	List Patterns (1)
	List patterns (2)
	Pattern Matching and Guards
	List Comprehensions
	Lambda Expressions
	Currying Revisited
	Aside: Operator Sections
	Recursive Definitions
	Local Definitions
	Data Declarations (1)
	Data Declarations (2)
	Data Declarations (3)
	Recursive Types (1)
	Recursive Types (2)
	Recursion and Recursive Types
	Parameterized Types
	Overloading (1)
	Overloading (2)
	Overloading (3)
	Modules in Haskell (1)
	Modules in Haskell (2)
	The Prelude
	Qualified Names (1)
	Qualified Names (2)
	Import Variations
	Export Lists
	Labelled Fields (1)
	Labelled Fields (2)
	Labelled Fields (3)
	Labelled Fields (4)
	Construction
	Update (1)
	Update (2)
	Selection
	Pattern matching
	Multiple Value Constructors (1)
	Multiple Value Constructors (2)
	Distinct Field Labels for Distinct Types
	Advantages of Labelled Fields
	Reading

