LiU-FP2010 Part II, Linkping, 17-19 May 2010
Exercises, Lecture 2: Lazy Functional Programming
Henrik Nilsson

Problems 1, 3, and 4 are part of the examination. 2 and 5 are optional extras.

1. Implement the Sieve of Eratosthenes for computing prime numbers in Haskell.
Recall that the sieve works as follows. Starting from the natural numbers from
2 and up, keep 2 as it is a prime, then strike out all multiples of 2 from the
rest of the numbers. The smallest remaining number is also a prime, so keep it,
then strike out all multiples of it form the the remaining numbers. And so on.
(David Turner was the first to suggest that this algorithm could be implemented
very elegantly and concisely in the purely-functional, non-strict language SASL in
1975: http://en.wikipedia.org/wiki/Sieve of Eratosthenes.)

2. A problem, due to the mathematician W. R. Hamming, is to write a program that
produces an infinite list of numbers with the following properties:
i The list is in ascending order, without duplicates.
ii The list begins with the number 1.

iii If the list contains the number z, then it also contains the numbers 2z, 3z,
and 5.

iv The list contains no other numbers.
The following Haskell code solves the problem:

merge xxs@(x:xs) yys@(y:ys) X : merge Xs ys
= X : merge Xs yys
y

! merge XXs ys

hamming = 1 : merge (map (2*) hamming)
(merge (map (3*%) hamming)
(map (5%) hamming))

Draw the four cyclic graphs that represent hamming after the first 1, 2, 3, and 4
elements have been printed.

3. Implement a simple spreadsheet evaluator as suggested in the lecture notes. For
example, start with the following abstract syntax for the expressions in the spread-
sheet cells:

type CellRef = (Int,Int)

data BinOp = Add | Sub | Mul | Div

data Exp = LitInt Integer -- Integer constants
| Ref CellRef -- Reference to the value of a cell
| BinOpApp BinOp Exp Exp -- Binary operator application
| Sum CellRef CellRef -- Summing a range of cells

Is there any weaknesses of this evaluator? How could you improve on that?

4. Lazy evaluation is very handy for implementing attribute grammar evaluators.
The idea is is to write a recursive function traversing (derivation) trees with in-
herited attributes as extra arguments and synthesised attributes as results (or
attributed tree nodes, depending on the application). Lazy evaluation will take
care of evaluating the attributes in a suitable order (assuming the system of at-
tribute equations has a solution).

Here is a simple attributed grammar. It’s overall purpose is to compute a version
of the tree with all leaves sorted numerically as a synthesised attribute. Inherited
attributes are indicated by |, synthesised attributes by T.

Productions Attribute Equations
S — T Tlitips =]
T|isorted = sort TTstips
STtree = TTtree
T — Tipx TTstips = « : Tlitips
TTssorted = tail Tlisorted
Titree = Tip (head T|sorted)
T — Node T, Tgr Trlitips = T|itips
Trlitips = Tgrlstips
TTstips = Tp1stips
Trlisorted = T|isorted
Trlisorted = T ssorted
TTssorted = TRgrlssorted
TTtree = Node TrTtree TrTtree

Implement an evaluator for this grammar in Haskell. Note that the result is a
one-pass algorithm for sorting a tree. Assuming the following definition of the
tree type:

data Tree = Leaf Int | Node Tree Tree
the type signature for the main tree traversal function could be:
sortTreeAux :: Tree -> [Int] -> [Int] -> ([Int], [Int], Tree)

where the second and third arguments correspond to, respectively, the inherited
attributes itips and isorted, and the result tuple to the synthesised attributes stips,
ssorted, tree in that order.

(This exercise is inspired by Thomas Johnsson’s paper Attribute Grammars as a
Functional Programming Paradigm, FPCA 1987.)

5. Solve some problem(s) using dynamic programming in Haskell. If you have Internet
access, you can find a number of suitable problems for example at the following
addresses:

e http://en.wikipedia.org/wiki/Dynamic programming
e http://mat.gsia.cmu.edu/classes/dynamic/dynamic.html

