
LiU-FP2010 Part II, Linkping, 17–19 May 2010

Exercises, Lectures 4 and 6: Monads

Henrik Nilsson

For the examination, do 1, 3, and 4.

1. Verify that Maybe a indeed is a monad by verifying the monad laws for mbReturn
and mbSeq.

2. It turns out that many familiar data types in fact can be viewed as monads. For
example, [a] can be understood as representing a computation with zero or more
possible results (“nondeterminism”), and thus forms a monad with the appropriate
definitions for return and >>=. Without “cheating” by looking ahead at the next
lecture, show that [a] is a monad. Hint: return corresponds to a computation
with exactly one result, while >>= needs to feed all possible outcomes form the
first computation into the second, and then collect all possible results from that.

3. Below are the type signatures for a number of monad utility functions from the
Haskell prelude and the module Monad. Define these utilities in terms of the basic
monad operations. (If it is not reasonably clear from the type signatures what the
intended meaning of each function is, ask!)

sequence :: Monad m => [m a] -> m [a]

sequence_ :: Monad m => [m a] -> m ()

mapM :: Monad m => (a -> m b) -> [a] -> m [b]

mapM_ :: Monad m => (a -> m b) -> [a] -> m ()

when :: Monad m => Bool -> m () -> m ()

foldM :: Monad m => (a -> b -> m a) -> a -> [b] -> m a

liftM :: Monad m => (a -> b) -> (m a -> m b)

4. The Diagnostics monad D mentioned in the lectures represents computations that
can emit error messages and, if necessary, give up completely and stop. Here is a
variation of some of the operations on this monad:

Operation Type Purpose

emitErrD String -> D () Emit an error message.
failD String -> D a Emit an error message and

stop.
failIfErrorsD String -> D a Stop if one or more error

messages have been emit-
ted.

stopD D a Stop.
runD D a -> (Maybe a, [String]) Run a diagnostic compu-

tation, returning any re-
sult and a list of all emit-
ted error messages.

• Think about what effects the diagnostics monad combine. For example, there
is a standard notion of a writer monad :

type W a = (a, T)

for any type T that is a monoid : has an identity element and an associative
binary operation. Such a monad is typically used for logging purposes. For
example, T could be taken to be lists of error messages (strings), with list
concatenation ++ as the binary operation to combine the output from sequen-
tially composed computations and [] as the identity element. Would a writer
monad be suitable for the logging part of the diagnostics monad as specified
above, or is a more general notion of state needed? Why? Hint: Think about
what information the various operations above need to have access to.



• Implement the diagnostics monad from scratch.

• Reimplement the diagnostics monad by using monad transformers to de-
fine the basic monad, and then defining the application-specific interface de-
scribed above in terms of the standard operations for the monad obtained
through the transformations.


