LiU-FP2010 Part II, Linkping, 17-19 May 2010
Exercises, Lecture 5: Type Classes

Henrik Nilsson

For the examination, do all of the following:
1. Define a type-class Size for an overloaded operation
size :: Size a => a -> Integer

that estimates the number of nodes of a data structure. Define instances for the
following types:

O The unit type

Bool Booleans

Char Characters

Int Fixed-precision integers

Double Double-precision floating point numbers
(t1, ..., tp) Tuples for n € [2,4]

(] Lists of elements of type ¢

Maybe t The option type

For example, we take the size of values of primitive types like (), Bool, and Int
to be 1, the size of a tuple to be 1 4+ the sum of the sizes of the fields, the size
of a list to be the sum of the sizes of the contained elements plus the number of
(:)-cells and an additional one for the empty list, and so on.

2. Interval arithmetic, as the name suggests, is arithmetic defined on numerical in-
tervals. For example, it can be used to compute error bounds. Say we know
x € [z, ug), and y € [ly, uy), then

T+Y € la+1ly,us+uy] and z—y €[l —uy,uz — 1]

Let us represent an interval as follows:

data Ivl = Ivl Double Double deriving (Show, Eq)

Note: the Eq instance is perhaps not very useful, but necessary in order to make
Ivl a Num instance.

Make Ivl an instance of the type classes Num and Fractional (Methods (+), (=),
(%), abs, signum, fromInteger for Eq; methods (/), (recip), (fromRational)
for Fractional). You should enforce the invariant that for any value Ivl [w,
Il < u. Use error to give suitable error messages when partial operations are
undefined.

The above instances will make it possible to use overloaded numerical literals
to construct intervals containing only that specific number. E.g. 1 denotes
Ivl 1.0 1.0 when used at type Ivl. Define an operator

(+/-) :: Double -> Double -> Ivl

for constructing symmetric intervals around a specific number. E.g. 1 +/- 0.5
denotes Ivl 0.5 1.5.

As an alternative to making certain operations partial, would it be feasible and
useful to consider and compute with an extended set of intervals? Say adding
specific value constructors to the type Ivl for representating the intervals [0, c0),
(—00,0], (—00,00)?

