LiU-FP2010 Part II: Lecture 1

Review of Haskell: A lightening tour in 90 minutes

Partly adapted from slides by Graham Hutton

University of Nottingham, UK

What is a Functional Language? (1)

LiU-FP2010 Part II: Lecture 1 - p.1/78

LiU-FP2010 Part II: Lecture 1 - p.3/78

Surprisingly hard to give a precise definition. One reasonable if pragmatic view:

- Functional programming is a style of programming in which the basic method of computation is function application.
- A functional language is one that supports and encourages the functional style.

(I will provide a another, complementary perspective later.)

This Lecture (1)

Overview of Haskell. Not necessarily very systematic, but I hope to:

- Review some concepts and ides from Part I in the setting of Haskell
- · Give you a good idea what Haskell looks like
- · Make you aware of central features
- Highlight some differences to SML/OCaml
- · Point out some common pitfalls

You'll get a chance to hone your Haskell skills in a lab session after this lecture.

What Is a Functional Language? (2)

This "definition" covers both:

- Pure functional languages: no side effects
 - (Weakly) declarative: equational reasoning valid (with care); referentially transparent.
 - Example: Haskell
- *Mostly* functional languages: some side effects, e.g. for I/O.
 - Equational reasoning valid for pure fragments.
 - Examples: ML, OCaml, Scheme, Erlang

(Real purists would point out that non-termination can be seen as a side effect.)

LiU-FP2010 Part II: Lecture 1 - p.4/78

Example: Computing Sums (1)

Summing the integers from 1 to 10000 in Java:

```
total = 0;
for (i = 1; i <= 10000; ++i)
    total = total + 1;
```

The method of computation is to *execute operations in sequence*, in particular *variable assignment*.

LiU-EP2010 Part II: Lecture 1 - p 5/78

LiU-EP2010 Part II: Lecture 1 - p.7/78

Example: Computing Sums (3)

Some reasons not to adopt the "functional approach" in Java:

- Syntactically awkward (even given suitable library definitions)
- Temporarily creating a list of 10000 integers just to add them seems highly objectionable; not good Java style.

But isn't the second point a good argument against the "functional approach" in *general*?

Example: Computing Sums (2)

Summing the integers from 1 to 10000 in the functional language Haskell:

sum [1..10000]

The method of computation is *function application*.

LiU-FP2010 Part II: Lecture 1 - p.6/78

LiU-EP2010 Part II: Lecture 1 - p.8/78

Of course, essentially the same program could be written in, say, Java. Does that make Java a functional language? *Discuss!*

Example: Computing Sums (4)

Actually, no!

• Nothing says the entire list needs to be created at once.

In *lazy* languages, like Haskell, the list will be generated as needed, element by element.

• Nothing says the list needs to be created at all!

Compilers for functional languages, thanks to equational reasoning being valid, are often able to completely *eliminate* intermediate data structures.

Example: Computing Sums (5)

- Note that the Haskell code is *modular*, while the Java code is not.
- Being overly prescriptive regarding computational details (evaluation order) often hampers modularity.

We will discuss the last point in more depth later.

Typical Functional Features (2)

 Implementation techniques aimed at executing code expressed in a functional style efficiently.

More?

Typical Functional Features (1)

Nevertheless, some typical features and characteristics of functional languages can be identified:

- Light-weight notation geared at
 - defining functions
 - expressing computation through function application.
- Functions are first-class entities.
- Recursive (and co-recursive) function and data definitions central.

LiU-EP2010 Part II: Lecture 1 - p 10/78

LiU-FP2010 Part II: Lecture 1 - p 12/78

This and the Following Lectures

- In this and the following lectures we will explore *Purely Functional Programming* through the use of *Haskell*.
- Some themes:
 - Relinquishing control: exploiting lazy evaluation
 - Purely functional data structures
 - Effects without compromising purity
 - Concurrency in a pure FP setting
 - Haskell features (e.g. Type Classes)

LiU-FP2010 Part II: Lecture 1 – p.11/78

LiU-EP2010 Part II: Lecture 1 - p 9/78

The GHC System (1)

- GHC supports Haskell 98, Haskell 2010, and many extensions
- GHC is currently the most advanced Haskell system available
- GHC is a compiler, but can also be used interactively: ideal for serious development as well as teaching and prototyping purposes

LiU-FP2010 Part II: Lecture 1 - p.13/78

LiU-FP2010 Part II: Lecture 1 - p.15/78

The GHC System (2)

On a Unix system, GHCi can be started from the prompt by simply typing the command ghci:

isis-1% ghci

GHC Interactive, version 6.3, for Haskell 98. http://www.haskell.org/ghc/ Type :? for help.

LiU-FP2010 Part II: Lecture 1 - p.14/78

Loading package base ... linking ... done. Prelude>

The GHC System (3)

The GHCi > prompt means that the GHCi system is ready to evaluate an expression. For example:

```
> 2+3*4
14
> reverse [1,2,3]
[3,2,1]
> take 3 [1,2,3,4,5]
[1,2,3]
```

Function Application (1)

In mathematics, function application is denoted using parentheses, and multiplication is often denoted using juxtaposition or space.

f(a,b) + c d

"Apply the function \pm to a and b, and add the result to the product of c and d. "

Function Application (2)

In Haskell, *function application* is denoted using space, and multiplication is denoted using *.

f a b + c * d

Meaning as before, but Haskell syntax.

What is a Type?

A type is a name for a collection of related values. For example, in Haskell the basic type

Bool

contains the two logical values

False

True

Function Application (3)

Moreover, function application is assumed to have *higher priority* than all other operators. For example:

fa + bmeans (f a) + bf(a + b)

Types in Haskell

not

LiU-EP2010 Part II: Lecture 1 - p. 17/78

LiU-EP2010 Part II: Lecture 1 - p 19/78

• If evaluating an expression e would produce a value of type t, then e has type t, written e :: t

LiU-EP2010 Part II: Lecture 1 - p 18/78

LiU-EP2010 Part II: Lecture 1 - p 20/78

- Every well-formed expression has a type. It can usually be calculated automatically at compile time using a process called *type inference* or type reconstruction (Hindley-Milner).
- However, giving manifest type declarations for at least top-level definitions is good practice.
- Sometimes necessary to state type explicitly, e.g. polymorphic recursion.

Basic Types

Haskell has a number of *basic types*, including:

Bool	Logical values
Char	Single characters
Int	Fixed-precision integers
Integer	Arbitrary-precision integers
Double	Double-precision floating point

List Types (1)

A *list* is sequence of values of the *same* type:

[False,True,False] :: [Bool]

['a','b','c','d'] :: [Char]

In general:

[t] is the type of lists with elements of type t.

LIU-FP2010 Part II: Lecture 1 - p.21/78 List Types (2)

Haskell defines the string string type to be a list of characters:

```
type String = [Char]
```

String syntax is supported. For example:

Tuple Types

A tuple is a sequence of values of *different* types:

(False,True) :: (Bool,Bool)

(False,'a',True) :: (Bool,Char,Bool)

In general:

 (t_1, t_2, \ldots, t_n) is the type of *n*-tuples whose i^{th} component has type t_i for $i \in [1 \dots n]$.

LiU-EP2010 Part II: Lecture 1 - p.22/78

Aside: Naming Conventions

Haskell *enforces* certain naming conventions. For example:

- Type constructors (like Bool) and value constructors (like True) always begin with a capital letter.
- Variables (including function names) always begin with a lowercase letter.

A somewhat similar convention applies to infix operators where constructors are distinguished by starting with a colon (:).

Function Types (2)

If a function needs more than one argument, pass a tuple, or use *Currying*:

(&&) :: Bool -> Bool -> Bool

This really means:

(&&) :: Bool -> (Bool -> Bool)

Idea: arguments are applied one by one. This allows *partial application*.

Function Types (1)

A *function* is a mapping from values of one type to values of another type:

not :: Bool -> Bool

In general:

 $t_1 \rightarrow t_2$ is the type of functions that map values of type t_1 to values to type t_2 .

Aside: Functions and Operators

 Any (infix) operator can be used as a (prefix) function by enclosing it in parentheses. E.g.:

LiU-EP2010 Part II: Lecture 1 - p 26/78

LiU-EP2010 Part II: Lecture 1 - p 28/78

True && False

- is equivalent to
 - (&&) True False
- Any function can be used as an operator by enclosing it in back quotes. E.g.:

add 1 2 is equivalent to 1 `add` 2

LilLEP2010 Part II: Locture 1 - p 25/78

Polymorphic Functions (1)

A function is called *polymorphic* ("of many forms") if its type contains one or more type variables.

```
length :: [a] -> Int
```

"For any type a, length takes a list of values of type a and returns an integer."

This is called *Parametric Polymorphism*.

Exercise

Given:

```
id :: a -> a
not :: Bool -> Bool
foo :: (a -> a) -> a -> a
fie :: (forall a . a -> a) -> a -> a
```

what is the type of each of:

foo id :: ?? foo not :: ?? fie id :: ?? fie not :: ??

LiU-FP2010 Part II: Lecture 1 – p.31/78

LiU-EP2010 Part II: Lecture 1 - p.29/78

Polymorphic Functions (2)

The type signature of length is really:

length :: forall a . [a] -> Int

- It is understood that a is a type variable, and thus it ranges over all possible types.
- Haskell 98 does not allow explicit foralls: all type variables are implicitly qualified at the outermost level.

LiU-EP2010 Part II: Lecture 1 - p.30/78

LiU-FP2010 Part II: Lecture 1 - p.32/78

• Haskell extensions allow explicit foralls.

Types are Central in Haskell

Types in Haskell play a much more central role than in many other languages. Some reasons:

• Haskell's type system is very expressive thanks to Parametric Polymorphism:

(++) :: [a] -> [a] -> [a]

• The types say a *lot* about what functions do because Haskell is a pure language: no side effects (Referential Transparency).

For example, all a function of type Int -> Int can do is to return an integer or fail to terminate. Cannot launch a missile behind our backs.

Parametricity

In fact, due to a property called *parametricity*, it goes even further: polymorphic types give rise to *free theorems* (Wadler 1989). For example:

For any function r :: forall a . [a] -> [a],and every total function $f :: t_1 -> t_2$ for some specific types t_1 and t_2 , we have:

map f . r = r . map f

This holds by virtue of r's polymorphic type: no need to even consider its definition!

Hoogle

Hoogle is a Haskell API search engine:

http://www.haskell.org/hoogle/

Allows searching by function name or by *approximate type signature*.

For example, searching on

(a -> b) -> [a] -> [b]

turns up map, fmap, ...

Conditional Expressions

As in most programming languages, functions can be defined using *conditional expressions*:

```
abs :: Int -> Int
abs n = if n >= 0 then n else -n
```

Alternatively, such a function can be defined using *guards*:

```
abs :: Int -> Int
abs n | n >= 0 = n
| otherwise = -n
```

Pattern Matching (1)

Many functions have a particularly clear definition using *pattern matching* on their arguments:

```
not :: Bool -> Bool
not False = True
not True = False
```

LiU-EP2010 Part II: Lecture 1 - p.33/78

LiU-EP2010 Part II: Lecture 1 - p.34/78

Pattern Matching (2)

Case expressions allow pattern matching to be performed wherever an expression is allowed, not just at the top-level of a function definition:

```
not :: Bool -> Bool
not b = case b of
False -> True
True -> False
```


Internally, every non-empty list is constructed by repeated use of an operator (:) called "cons" that adds an element to the start of a list, starting from [], the *empty list*.

Thus:

[1,2,3,4]

means

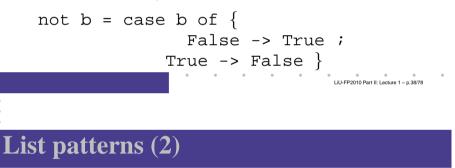
```
1:(2:(3:(4:[])))
```

Aside: Layout

Haskell uses *layout* (indentation) to group code into blocks. For example, the following is a *syntax error*:

```
not b = case b of
False -> True
True -> False
```

Alternatively, explicit braces and semicolons can be used. It's even possible to mix and match:



Functions on lists can be defined using x : xs patterns:

```
head :: [a] -> a
head (x:_) = x
tail :: [a] -> [a]
tail (_:xs) = xs
```

Pattern Matching and Guards

Pattern matching and guards may be combined:

Lambda Expressions

A function can be constructed without giving it a name by using a *lambda expression*:

\x -> x + 1

"The nameless function that takes a number ${\bf x}$ and returns the result ${\bf x}$ + 1"

Note that the ASCII character \setminus stands for λ (lambda).

List Comprehensions

List comprehensions, similar to standard mathematical set notation, are very useful for expressing computations on lists:

```
[x * x | x <- [1..10], odd x]
= [1,9,25,49,81]
[(x,y) | x <- [1..10], y <- [1..10], y <- [1..10], even (x + y)]
= [(1,1),(1,3),(1,5),...
...(10,8),(10,10)]
```

Currying Revisited

Lambda expressions can be used to give a formal meaning to functions defined using *currying*.

For example:

add x y = x+y

means

add = $\langle x \rightarrow (\langle y \rightarrow x + y \rangle)$

LiU-FP2010 Part II: Lecture 1 - p.41/78

Aside: Operator Sections

Another syntactic nicety in Haskell is partially applied operators or *operator sections*. For example:

 $(+1) = \ \ x \to x + 1 \ \ Add 1$ $(1+) = \ \ x \to 1 + x \ \ Add 1$ $(*2) = \ \ x \to x + 2 \ \ Multiply by 2$ $(/2) = \ \ x \to x / 2 \ \ Divide by 2$ $(1/) = \ \ x \to 1 / x \ \ Reciprocal$

Local Definitions

Haskell provides two ways to introduce local definitions:

- let-expressions
- where-clauses

f x = h x + c g x = let where h x = x * x c = 100 c = 100 in h x + c

Again, the definitions can be (mutually) recursive.

LiU-EP2010 Part II: Lecture 1 - p.45/78

Recursive Definitions

- Definitions in Haskell may in general be (mutually) recursive.
- No special letrec form.
- Order of definition is immaterial.

foo x = ... fum (x - 1) ... fie x = ... fie (x - 1) ... fum x = ... foo (x - 1) ...

• To allow inference of maximally polymorphic types, definitions are grouped into minimal recursive groups prior to type checking.

Data Declarations (1)

A new type can be declared by specifying its set of values using a *data declaration*. For example, Bool is in principle defined as:

data Bool = False | True

LiU-FP2010 Part II: Lecture 1 - p.46/78

Data Declarations (2)

What happens is:

- A new type Bool is introduced
- Constructors (functions to build values of the type) are introduced:

```
False :: Bool
True :: Bool
```

(In this case, just constants.)

 Since constructor functions are bijective, and thus in particular injective, pattern matching can be used to take apart values of defined types.

Recursive Types (1)

In Haskell, new types can be declared in terms of themselves. That is, types can be *recursive*:

```
data Nat = Zero | Succ Nat
```

Nat is a new type with constructors

- Zero :: Nat
- Succ :: Nat -> Nat

Effectively, we get both a new way form terms and typing rules for these new terms.

Data Declarations (3)

Values of new types can be used in the same ways as those of built in types. E.g., given:

data Answer = Yes | No | Unknown
we can define:

```
answers :: [Answer]
answers = [Yes,No,Unknown]
flip :: Answer -> Answer
flip Yes = No
flip No = Yes
flip Unknown = Unknown
```

Recursive Types (2)

A value of type Nat is either Zero, or of the form Succ n where n :: Nat. That is, Nat contains the following infinite sequence of values:

Zero

Succ Zero

Succ (Succ Zero)

LiU-EP2010 Part II: Lecture 1 - p.49/78

Recursion and Recursive Types

Using recursion, it is easy to define functions that convert between values of type Nat and Int:

```
nat2int :: Nat -> Int
nat2int Zero = 0
nat2int (Succ n) = 1 + nat2int n
int2nat :: Int -> Nat
int2nat 0 = Zero
int2nat n | n >= 1 = Succ (int2nat (n - 1))
```

Overloading (1)

Haskell supports a form of *overloading*: using the same name to refer to different definitions depending on the involved types. For example:

(==) :: Eq a => a -> a -> Bool

This means == is defined for any type a belonging to the *type class* Eq.

Parameterized Types

Overloading (2)

In particular, Bool and Char both belong to Eq, so the following two expressions are well-typed:

```
True == False
'a' == 'b'
```

Behind the scenes, the equality test is dispatched to the appropriate function for Bool and Eq respectively.

LiU-EP2010 Part II: Lecture 1 - p.53/78

Overloading (3)

We will discuss type classes in more depth later. However, it is useful to know that Haskell allow class instances for new types to be *derived* for a handful of built in classes, notably Eq, Ord, and Show:

data Nat = Zero | Succ Nat deriving (Eq, Ord, Show)

LiU-EP2010 Part II: Lecture 1 - p 57/78

LiU-EP2010 Part II: Lecture 1 - p.59/78

```
Now show (Succ (Succ Zero)) yields "Succ (Succ Zero)".
```

Modules in Haskell (2)

By default, only entities defined within a module are in scope. But a module can *import* other modules, bringing their definitions into scope:

```
module A where

f1 x = x + x

f2 x = x + 3

f3 x = 7

module B where

import A

g x = f1 x * f2 x + f3 x
```

Modules in Haskell (1)

- A Haskell program consists of a set of modules.
- A module contains definitions:
 - functions
 - types
 - type classes
- The top module is called Main: module Main where

main = putStrLn "Hello World!"

LiU-EP2010 Part II: Lecture 1 - p.58/78

LiU-EP2010 Part II: Lecture 1 - p.60/78

The Prelude

There is one special module called the *Prelude*. It is *imported implicitly* into every module and contains standard definitions, e.g.:

- Basic types (Int, Bool, tuples, [], Maybe, ...)
- Basic arithmetic operations (+, *, ...)
- Basic tuple and list operations (fst, snd, head, tail, take, map, filter, length, zip, unzip, ...)

(It is possible to explicitly exclude (parts of) the Prelude if necessary.)

Qualified Names (1)

The *fully qualified name* of an entity x defined in module M is M.x.

g x = A.f1 x * A.f2 x + f3 x

Note! Different from function composition!!! Always write function composition with spaces:

f.g

The module *name space* is *hierarchical*, with names of the form $M_1 \, M_2 \, \dots \, M_n$. This allows related modules to be grouped together.

LiU-FP2010 Part II: Lecture 1 - p.61/78

LiU-EP2010 Part II: Lecture 1 - p.63/78

Import Variations

Another way to resolve name clashes is to be more precise about imports:

import A (f1,f2)	Only f1 and f2
import A hiding (f1,	f2) Everything but f1
import qualified A	and £2 All names from A imported fully qualified only.

Can be combined in all possible ways; e.g.:

import qualified A hiding (f1, f2)

Qualified Names (2)

Fully qualified names can be used to resolve name clashes. Consider:

module A where	module C where		
f x = 2 * x	import A		
	import B		
module B where			
f x = 3 * x	g x = A.f x + B.f		

х

LiU-EP2010 Part II: Lecture 1 - p.62/78

LiU-EP2010 Part II: Lecture 1 - p.64/78

Two *different functions* with the *same unqualified name* f in scope in C. Need to write A.f or B.f to disambiguate.

Export Lists

It is also possible to be precise about what is **exported**:

module A (f1, f2) where

•••

Various abbreviations possible; e.g.:

- A type constructor along with all its value constructors
- Everything imported from a specific module

Labelled Fields (1)

Suppose we need to represent data about people:

- Name
- Age
- Phone number
- Post code

One possibility: use a tuple:

```
type Person = (String, Int, String, String)
henrik = ("Henrik", 25, "8466506", "NG92YZ")
```

LiU-FP2010 Part II: Lecture 1 - p.65/78

LiU-EP2010 Part II: Lecture 1 - p.67/78

Labelled Fields (3)

Can we do better? Yes, we can introduce a new type with *named fields*:

```
data Person = Person {
    name :: String,
    age :: Int,
    phone :: String,
    postcode :: String
    }
    deriving (Eq, Show)
```

Labelled Fields (2)

Problems? Well, the type does not say much about the purpose of the fields! Easy to make mistakes; e.g.:

```
getPhoneNumber :: Person -> String
getPhoneNumber (_, _, _, pn) = pn
```

or

henrik = ("Henrik", 25, "NG92YZ", "8466506")

LiU-EP2010 Part II: Lecture 1 - p.66/78

LiU-EP2010 Part II: Lecture 1 - p.68/78

Labelled Fields (4)

Labelled fields are just "syntactic sugar": the defined type really is this:

data Person = Person String Int String String

and can be used as normal.

However, additionally, the field names can be used to facilitate:

- Construction
- Update
- Selection
- Pattern matching

Construction

We can construct data without having to remember the field order:

```
henrik = Person {
    age = 25,
    name = "Henrik",
    postcode = "NG92YZ",
    phone = "8466506"
}
```


How does "update" work?

```
henrik { phone = "1234567" }
```

gets translated to something like this:

f (Person al a2 _ a4) = Person al a2 "1234567" a4

LiU-EP2010 Part II: Lecture 1 - p 71/78

```
f henrik
```

Update (1)

Fields can be "updated", creating new values from old:

```
> henrik { phone = "1234567" }
Person {name = "Henrik", age = 25,
phone = "1234567",
postcode = "NG92YZ"}
```

LiU-EP2010 Part II: Lecture 1 - p 70/78

LiU-EP2010 Part II: Lecture 1 - p 72/78

Note: This is a *functional* "update"! The old value is left intact.

Selection

We automatically get a *selector function* for each field:

name	::	Person	->	String
age	::	Person	->	Int
phone	::	Person	->	String
postcode	::	Person	->	String

For example:

```
> name henrik
"Henrik"
> phone henrik
"8466506"
```

Pattern matching

Field names can be used in pattern matching, allowing us to forget about the field order and pick *only* fields of interest.

```
phoneAge (Person {phone = p, age = a}) =
    p ++ ": " ++ show a
```

This facilitates adding new fields to a type as most of the pattern matching code usually can be left unchanged.

Multiple Value Constructors (2)

It is OK to have the same field labels for different constructors as long as their types agree.

Multiple Value Constructors (1)

data Being = Person { :: String, name :: Int, aqe phone :: String, postcode :: String Alien { :: String, name :: Int, age homeworld :: String deriving (Eq, Show) LiU-EP2010 Part II: Lecture 1 - p 74/78

Distinct Field Labels for Distinct Types

It is *not* possible to have the same field names for *different* types! The following does not work:

```
data X = MkX { field1 :: Int }
```

data Y = MkY { field1 :: Int, field2 :: Int }

One work-around: use a prefix convention:

data X = MkX { xField1 :: Int }

data Y = MkY { yField1 :: Int, yField2:: Int}

LiU-EP2010 Part II: Lecture 1 - p 76/78

LiU-FP2010 Part II: Lecture 1 – p.75/78

LiU-EP2010 Part II: Lecture 1 - p 73/78

Advantages of Labelled Fields

- · Makes intent clearer.
- Allows construction and pattern matching without having to remember the field order.
- Provides a convenient update notation.
- Allows to focus on specific fields of interest when pattern matching.
- Addition or removal of fields only affects function definitions where these fields really are used.

LiU-FP2010 Part II: Lecture 1 - p.77/78

Reading

- John Hughes. Why Functional Programming Matters. *The Computer Journal*, 32(2):98–197, April 1989.
- Philip Wadler. Theorems for Free! In Functional Programming Languages and Computer Architecture, FPCA'89, 1989
- Paul Hudak, John Peterson, Joseph Fasel. A Gentle Introduction to Haskell http://www.haskell.org/tutorial/
- Miran Lipovača. Learn You a Haskell for Great Good! http://learnyouahaskell.com/

LiU-FP2010 Part II: Lecture 1 - p.78/78