LiU-FP2010 Part II: Lecture 2

Lazy Functional Programming

Henrik Nilsson

University of Nottingham, UK

LiU-FP2010 Part II: Lecture 2 - p.1/45

Imperative vs. Declarative (1)

- Imperative Languages:
 - Implicit state.
 - Computation essentially a sequence of side-effecting actions.
 - Examples: Procedural and OO languages
- Declarative Languages (Lloyd 1994):
 - No implicit state.
 - A program can be regarded as a theory.
 - Computation can be seen as deduction from this theory.
 - Examples: Logic and Functional Languages.

Imperative vs. Declarative (2)

Another perspective:

- Algorithm = Logic + Control
- Declarative programming emphasises the logic ("what") rather than the control ("how").
- Strategy needed for providing the "how":
 - Resolution (logic programming languages)
 - Lazy evaluation (some functional and logic programming languages)
 - (Lazy) narrowing: (functional logic programming languages)

LiU-FP2010 Part II: Lecture 2 - p.3/45

No Control?

Declarative languages for practical use tend to be only **weakly declarative**; i.e., not totally free of control aspects. For example:

- Equations in functional languages are directed.
- Order of patterns often matters for pattern matching.
- Constructs for taking control over the order of evaluation. (E.g. cut in Prolog, seq in Haskell.)

Relinquishing Control

Theme of this lecture: **relinquishing control by exploiting lazy evaluation**.

- Evaluation orders
- Strict vs. Non-strict semantics
- Lazy evaluation
- Applications of lazy evaluation:
 - Programming with infinite structures
 - Circular programming
 - Dynamic programming
 - Attribute grammars

LiU-FP2010 Part II: Lecture 2 - p.5/45

Evaluation Orders (1)

Consider:

```
sqr x = x * x
dbl x = x + x
main = sqr (dbl (2 + 3))
```

Roughly, any expression that can be evaluated or **reduced** by using the equations as rewrite rules is called a **reducible expression** or **redex**.

Assuming arithmetic, the redexes of the body of main are: 2 + 3 dbl (2 + 3)

dbl (2 + 3) sgr (dbl (2 + 3))

Evaluation Orders (2)

Thus, in general, many possible reduction orders. Innermost, leftmost redex first is called *Applicative Order Reduction* (AOR). Recall:

```
sqr x = x * x
dbl x = x + x
main = sqr (dbl (2 + 3))
```

Starting from main:

```
\frac{\text{main}}{\text{main}} \Rightarrow \text{sqr (dbl } (\underline{2+3})) \Rightarrow \text{sqr } (\underline{\text{dbl 5}})
\Rightarrow \text{sqr } (\underline{5+5}) \Rightarrow \text{sqr } 10 \Rightarrow \underline{10 * 10} \Rightarrow 100
```

This is just Call-By-Value.

LiU-FP2010 Part II: Lecture 2 - p.7/45

Evaluation Orders (3)

Outermost, leftmost redex first is called **Normal Order Reduction** (NOR):

```
\frac{\text{main}}{\Rightarrow} \frac{\text{sqr}}{\text{(dbl } (2 + 3))}

\frac{\text{dbl } (2 + 3)}{\text{((2 + 3))}} * \text{dbl } (2 + 3)

\frac{\text{((2 + 3))} + (2 + 3))}{\text{(5 + (2 + 3))}} * \text{dbl } (2 + 3)

\frac{\text{(5 + (2 + 3))} * \text{dbl } (2 + 3)}{\text{(2 + 3)}} * \text{dbl } (2 + 3)

\frac{\text{(5 + 5)}}{\text{(5 + 5)}} * \text{dbl } (2 + 3) * \text{dbl } (2 + 3)

\frac{\text{(5 + 5)}}{\text{(5 + 5)}} * \text{dbl } (2 + 3) * \text{dbl } (2 + 3)
```

(Applications of arithmetic operations only considered redexes once arguments are numbers.) Demand-driven evaluation or *Call-By-Need*

Why Normal Order Reduction? (1)

NOR seems rather inefficient. Any use?

Best possible termination properties.

A pure functional languages is just the λ -calculus in disguise. Two central theorems:

- Church-Rosser Theorem I:
 No term has more than one normal form.
- Church-Rosser Theorem II:
 If a term has a normal form, then NOR will find it.

LiU-FP2010 Part II: Lecture 2 - p.9/45

Why Normal Order Reduction? (2)

- More expressive power; e.g.:
 - "Infinite" data structures
 - Circular programming
- More declarative code as control aspects (order of evaluation) left implicit.

Exercise 1

Consider:

$$f x = 1$$

 $g x = g x$
 $main = f (g 0)$

Attempt to evaluate main using both AOR and NOR. Which order is the more efficient in this case? (Count the number of reduction steps to normal form.)

LiU-FP2010 Part II: Lecture 2 - p.11/4:

Strict vs. Non-strict Semantics (1)

- \(\perp\), or "bottom", the undefined value, representing errors and non-termination.
- A function f is strict iff:

$$f \perp = \perp$$

For example, + is strict in both its arguments:

$$(0/0) + 1 = \bot + 1 = \bot$$

 $1 + (0/0) = 1 + \bot = \bot$

Strict vs. Non-strict Semantics (2)

Again, consider:

$$f x = 1$$

$$q x = q x$$

What is the value of f(0/0)? Or of f(g 0)?

- AOR: f $(0/0) \Rightarrow \bot$; f $(g \ 0) \Rightarrow \bot$ Conceptually, f $\bot = \bot$; i.e., f is strict.
- NOR: \underline{f} (0/0) \Rightarrow 1; \underline{f} (g 0) \Rightarrow 1 Conceptually, foo $\bot = 1$; i.e., foo is non-strict.

Thus, NOR results in non-strict semantics.

LiU-FP2010 Part II: Lecture 2 – p.13/45

Lazy Evaluation (1)

Lazy evaluation is a *technique for implementing NOR* more efficiently:

- A redex is evaluated only if needed.
- Sharing employed to avoid duplicating redexes.
- Once evaluated, a redex is updated with the result to avoid evaluating it more than once.

As a result, under lazy evaluation, any one redex is evaluated at most once.

Lazy Evaluation (2)

Recall: $\begin{array}{c} \text{sqr } (\text{dbl } (2+3)) \\ \text{sqr } x = x * x \\ \text{dbl } x = x + x \\ \text{main } = \\ \text{sqr } (\text{dbl } (2+3)) \\ \Rightarrow ((2+3)) \\ \end{array}$

Exercise 2

Evaluate main using AOR, NOR, and lazy evaluation:

$$f x y z = x * z$$

 $g x = f (x * x) (x * 2) x$
main = $g (1 + 2)$

(Only consider an applications of an arithmetic operator a redex once the arguments are numbers.)

How many reduction steps in each case?

Answer: 7, 8, 6 respectively

LiU-FP2010 Part II: Lecture 2 - p.15/45

Infinite Data Structures (1)

```
take 0 xs = []
take n [] = []
take n (x:xs) = x : take (n-1) xs

from n = n : from (n+1)

nats = from 0

main = take 5 nats
```

LiU-FP2010 Part II: Lecture 2 – p.17/45

LiU-FP2010 Part II: Lecture 2 - p.18/45

Infinite Data Structures (2)

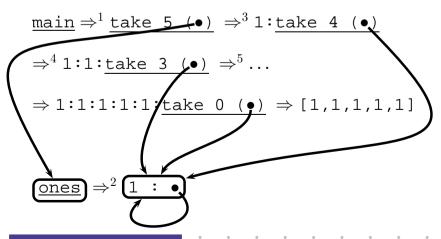
```
\frac{\text{main} \Rightarrow^{1} \text{ take } 5 \quad (\bullet)}{\Rightarrow^{6} \text{ 0:1:} \text{take } 3 \quad (\bullet)} \Rightarrow^{8} \dots
\Rightarrow 0:1:2:3:4: \text{take } 0 \quad (\bullet) \Rightarrow [0,1,2,3,4]
\Rightarrow^{5} \text{ 0:1:} \underbrace{\text{from } 0} \Rightarrow^{3} \text{ 0:} \underbrace{\text{from } 1}
\Rightarrow^{5} \text{ 0:1:} \underbrace{\text{from } 2} \Rightarrow^{7} \dots \Rightarrow \text{ 0:1:2:3:4:} \underbrace{\text{from } 5}
```

Circular Data Structures (2)

```
take 0 xs = []
take n [] = []
take n (x:xs) = x : take (n-1) xs
ones = 1 : ones
main = take 5 ones
```

LiU-FP2010 Part II: Lecture 2 - p.19/45

Circular Data Structures (2)



LiU-FP2010 Part II: Lecture 2 - p.20/45

Exercise 3

Given the following tree type

define:

- An infinite tree where every node is labelled by 1.
- An infinite tree where every node is labelled by its depth from the rote node.

LiU-FP2010 Part II: Lecture 2 – p.21/45

Exercise 3: Solution

Circular Programming (1)

A non-empty tree type:

```
data Tree = Leaf Int | Node Tree Tree
```

Suppose we would like to write a function that replaces each leaf integer in a given tree with the *smallest* integer in that tree.

How many passes over the tree are needed?

One!

LiU-FP2010 Part II: Lecture 2 - p.23/4

Circular Programming (2)

Write a function that replaces all leaf integers by a given integer, and returns the new tree along with the smallest integer of the given tree:

```
fmr :: Int -> Tree -> (Tree, Int)
fmr m (Leaf i) = (Leaf m, i)
fmr m (Node tl tr) =
    (Node tl' tr', min ml mr)
    where
        (tl', ml) = fmr m tl
        (tr', mr) = fmr m tr
```

Circular Programming (3)

For a given tree t, the desired tree is now obtained as the **solution** to the equation:

```
(t', m) = fmr m t

Thus:
  findMinReplace t = t'
     where
     (t', m) = fmr m t
```

Intuitively, this works because fmr can compute its result without needing to know the *value* of m.

LiU-FP2010 Part II: Lecture 2 – p.25/45

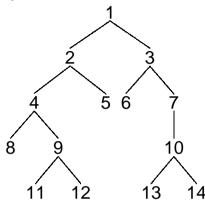
A Simple Spreadsheet Evaluator

The evaluated sheet is again simply the **solution** to the stated equation. No need to worry about evaluation order. **Any caveats?**

|(i,j)| < -indices s

Breadth-first Numbering (1)

Consider the problem of numbering a possibly infinitely deep tree in breadth-first order:



LiU-FP2010 Part II: Lecture 2 - p.27/45

Breadth-first Numbering (2)

The following algorithm is due to G. Jones and J. Gibbons (1992), but the presentation differs.

Consider the following tree type:

Define:

width t i The width of a tree t at level i (0 origin). label t i j The jth label at level i of a tree t (0 origin).

Breadth-first Numbering (3)

The following system of equations defines breadth-first numbering:

$$label t 0 0 = 1 (1)$$

label
$$t(i+1) = label t i + 0 + width t i$$
 (2)

$$label t i (j+1) = label t i j + 1$$
 (3)

Note that label t i 0 is defined for **all** levels i (as long as the widths of all tree levels are finite).

LiU-FP2010 Part II: Lecture 2 - p.29/45

Breadth-first Numbering (4)

The code that follows sets up the defining system of equations:

- Streams (infinite lists) of labels are used as a mediating data structure to allow equations to be set up between adjacent nodes within levels and between the last node at one level and the first node at the next.
- Idea: the tree numbering function for a subtree takes a stream of labels for the *first node* at each level, and returns a stream of labels for the *node after the last node* at each level.

Breadth-first Numbering (5)

 As there manifestly are no cyclic dependences among the equations, we can entrust the details of solving them to the lazy evaluation machinery in the safe knowledge that a solution will be found.

LiU-FP2010 Part II: Lecture 2 - p.31/45

Breadth-first Numbering (6)

```
bfn :: Tree a -> Tree Integer Eqns (1) & (2)

bfn t = t'

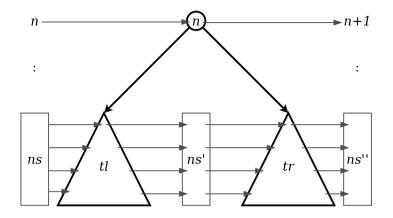
where

(ns, t') = bfnAux (1 : ns) t
```

where
 (ns', tl') = bfnAux ns tl
 (ns'', tr') = bfnAux ns' tr

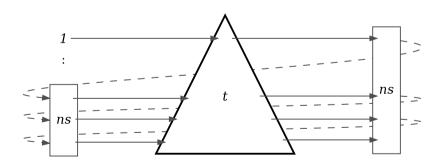
LiU-FP2010 Part II: Lecture 2 - p.32/45

Breadth-first Numbering (7)



LiU-FP2010 Part II: Lecture 2 – p.33/45

Breadth-first Numbering (8)



Dynamic Programming

Dynamic Programming:

- Create a *table* of all subproblems that ever will have to be solved.
- Fill in table without regard to whether the solution to that particular subproblem will be needed.
- Combine solutions to form overall solution.

Lazy Evaluation is a perfect match as saves us from having to worry about finding a suitable evaluation order.

LiU-FP2010 Part II: Lecture 2 - p.35/45

The Triangulation Problem (1)

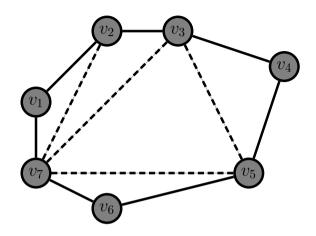
Select a set of *chords* that divides a convex polygon into triangles such that:

- · no two chords cross each other
- the sum of their length is minimal.

We will only consider computing the minimal length.

See Aho, Hopcroft, Ullman (1983) for details.

The Triangulation Problem (2)

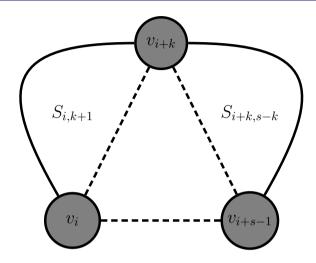


LiU-FP2010 Part II: Lecture 2 - p.37/45

The Triangulation Problem (3)

- Let S_{is} denote the subproblem of size s starting at vertex v_i of finding the minimum triangulation of the polygon $v_i, v_{i+1}, \ldots, v_{i+s-1}$ (counting modulo the number of vertices).
- Subproblems of size less than 4 are trivial.
- Solving S_{is} is done by solving $S_{i,k+1}$ and $S_{i+k,s-k}$ for all k, $1 \le k \le s-2$
- The obvious recursive formulation results in 3^{s-4} (non-trivial) calls.
- But for $n \ge 4$ vertices there are only n(n-3) non-trivial subproblems!

The Triangulation Problem (4)



LiU-FP2010 Part II: Lecture 2 - p.39/45

The Triangulation Problem (5)

- Let C_{is} denote the minimal triangulation cost of S_{is} .
- Let $D(v_p, v_q)$ denote the length of a chord between v_p and v_q (length is 0 for non-chords; i.e. adjacent v_p and v_q).
- For $s \geq 4$:

$$C_{is} = \min_{k \in [1, s-2]} \left\{ \begin{array}{l} C_{i,k+1} + C_{i+k,s-k} \\ + D(v_i, v_{i+k}) + D(v_{i+k}, v_{i+s-1}) \end{array} \right\}$$

• For s < 4, $S_{is} = 0$.

The Triangulation Problem (6)

These equations can be transliterated straight into Haskell:

LiU-FP2010 Part II: Lecture 2 - p.41/45

Attribute Grammars (1)

Lazy evaluation is also very useful for evaluation of *Attribute Grammars*:

- The attribution function is defined recursively over the tree:
 - takes inherited attributes as extra arguments;
 - returns a tuple of all synthesised attributes.
- As long as there exists some possible attribution order, lazy evaluation will take care of the attribute evaluation.

Attribute Grammars (2)

 The earlier examples on Circular Programming and Breadth-first Numbering can be seen as instances of this idea.

LiU-FP2010 Part II: Lecture 2 - p.43/45

Reading

- John W. Lloyd. Practical advantages of declarative programming. In Joint Conference on Declarative Programming, GULP-PRODE'94, 1994.
- John Hughes. Why Functional Programming Matters. The Computer Journal, 32(2):98–197, April 1989.
- Thomas Johnsson. Attribute Grammars as a Functional Programming Paradigm. In Functional Programming Languages and Computer Architecture, FPCA'87, 1987

Reading

- Geraint Jones and Jeremy Gibbons.
 Linear-time breadth-first tree algorithms: An exercise in the arithmetic of folds and zips.

 Technical Report TR-31-92, Oxford University Computing Laboratory, 1992.
- Alfred Aho, John Hopcroft, Jeffrey Ullman.
 Data Structures and Algorithms.
 Addison-Wesley, 1983.

LiU-FP2010 Part II: Lecture 2 – p.45/45