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Imperative vs. Declarative (1)
• Imperative Languages :

- Implicit state.
- Computation essentially a sequence of

side-effecting actions.
- Examples: Procedural and OO languages

• Declarative Languages (Lloyd 1994):
- No implicit state.
- A program can be regarded as a theory.
- Computation can be seen as deduction

from this theory.
- Examples: Logic and Functional Languages.
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Imperative vs. Declarative (2)

Another perspective:
• Algorithm = Logic + Control
• Declarative programming emphasises the

logic (“what”) rather than the control (“how”).
• Strategy needed for providing the “how”:

- Resolution (logic programming languages)
- Lazy evaluation (some functional and logic

programming languages)
- (Lazy) narrowing: (functional logic

programming languages)
LiU-FP2010 Part II: Lecture 2 – p.3/45

No Control?

Declarative languages for practical use tend to
be only weakly declarative ; i.e., not totally free
of control aspects. For example:

• Equations in functional languages are
directed.

• Order of patterns often matters for pattern
matching.

• Constructs for taking control over the order of
evaluation. (E.g. cut in Prolog, seq in
Haskell.)
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Relinquishing Control
Theme of this lecture: relinquishing control by
exploiting lazy evaluation .

• Evaluation orders
• Strict vs. Non-strict semantics
• Lazy evaluation
• Applications of lazy evaluation:

- Programming with infinite structures
- Circular programming
- Dynamic programming
- Attribute grammars
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Evaluation Orders (1)
Consider:

sqr x = x * x

dbl x = x + x

main = sqr (dbl (2 + 3))

Roughly, any expression that can be evaluated or
reduced by using the equations as rewrite rules
is called a reducible expression or redex.

Assuming arithmetic, the redexes of the body of
main are: 2 + 3

dbl (2 + 3)
sqr (dbl (2 + 3))
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Evaluation Orders (2)

Thus, in general, many possible reduction orders.
Innermost, leftmost redex first is called
Applicative Order Reduction (AOR). Recall:

sqr x = x * x

dbl x = x + x

main = sqr (dbl (2 + 3))

Starting from main:

main ⇒ sqr (dbl (2 + 3)) ⇒ sqr (dbl 5)

⇒ sqr (5 + 5) ⇒ sqr 10 ⇒ 10 * 10 ⇒ 100

This is just Call-By-Value .

LiU-FP2010 Part II: Lecture 2 – p.7/45

Evaluation Orders (3)

Outermost, leftmost redex first is called Normal
Order Reduction (NOR):

main ⇒ sqr (dbl (2 + 3))

⇒ dbl (2 + 3) * dbl (2 + 3)

⇒ ((2 + 3) + (2 + 3)) * dbl (2 + 3)

⇒ (5 + (2 + 3)) * dbl (2 + 3)

⇒ (5 + 5) * dbl (2 + 3) ⇒ 10 * dbl (2 + 3)

⇒ ... ⇒ 10 * 10 ⇒ 100

(Applications of arithmetic operations only con-
sidered redexes once arguments are numbers.)
Demand-driven evaluation or Call-By-Need
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Why Normal Order Reduction? (1)

NOR seems rather inefficient. Any use?
• Best possible termination properties.

A pure functional languages is just the
λ-calculus in disguise. Two central theorems:
- Church-Rosser Theorem I:

No term has more than one normal form.
- Church-Rosser Theorem II:

If a term has a normal form, then NOR
will find it.
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Why Normal Order Reduction? (2)

• More expressive power; e.g.:
- “Infinite” data structures
- Circular programming

• More declarative code as control aspects
(order of evaluation) left implicit.
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Exercise 1

Consider:

f x = 1
g x = g x
main = f (g 0)

Attempt to evaluate main using both AOR and
NOR. Which order is the more efficient in this
case? (Count the number of reduction steps to
normal form.)
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Strict vs. Non-strict Semantics (1)

• ⊥, or “bottom”, the undefined value ,
representing errors and non-termination .

• A function f is strict iff:

f ⊥ = ⊥

For example, + is strict in both its arguments:

(0/0) + 1 = ⊥ + 1 = ⊥

1 + (0/0) = 1 + ⊥ = ⊥
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Strict vs. Non-strict Semantics (2)

Again, consider:

f x = 1

g x = g x

What is the value of f (0/0)? Or of f (g 0)?
• AOR: f (0/0) ⇒ ⊥; f (g 0) ⇒ ⊥

Conceptually, f ⊥ = ⊥; i.e., f is strict.
• NOR: f (0/0) ⇒ 1; f (g 0) ⇒ 1

Conceptually, foo ⊥ = 1; i.e., foo is non-strict.

Thus, NOR results in non-strict semantics.
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Lazy Evaluation (1)

Lazy evaluation is a technique for
implementing NOR more efficiently:

• A redex is evaluated only if needed .
• Sharing employed to avoid duplicating

redexes.
• Once evaluated, a redex is updated with the

result to avoid evaluating it more than once.

As a result, under lazy evaluation, any one redex
is evaluated at most once.
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Lazy Evaluation (2)

Recall:
sqr x = x * x

dbl x = x + x

main =

sqr (dbl (2+3))

sqr (dbl (2 + 3))

⇒ dbl (2 + 3) * (•)

⇒ ( (2 + 3) + (•)) * (•)

⇒ ( 5 + (•)) * (•)

⇒ 10 * (•)

⇒ 100
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Exercise 2

Evaluate main using AOR, NOR, and lazy
evaluation:

f x y z = x * z

g x = f (x * x) (x * 2) x

main = g (1 + 2)

(Only consider an applications of an arithmetic
operator a redex once the arguments are
numbers.)

How many reduction steps in each case?

Answer: 7, 8, 6 respectively
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Infinite Data Structures (1)

take 0 xs = []
take n [] = []
take n (x:xs) = x : take (n-1) xs

from n = n : from (n+1)

nats = from 0

main = take 5 nats
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Infinite Data Structures (2)

main⇒1 take 5 (•) ⇒4 0:take 4 (•)

⇒6 0:1:take 3 (•) ⇒8 . . .

⇒ 0:1:2:3:4:take 0 (•) ⇒ [0,1,2,3,4]

nats ⇒2 from 0 ⇒3 0: from 1

⇒5 0:1: from 2 ⇒7 . . . ⇒ 0:1:2:3:4: from 5
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Circular Data Structures (2)

take 0 xs = []
take n [] = []
take n (x:xs) = x : take (n-1) xs

ones = 1 : ones

main = take 5 ones
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Circular Data Structures (2)

main⇒1 take 5 (•) ⇒3 1:take 4 (•)

⇒4 1:1:take 3 (•) ⇒5 . . .

⇒ 1:1:1:1:1:take 0 (•) ⇒ [1,1,1,1,1]

ones ⇒2 1 : •
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Exercise 3

Given the following tree type

data Tree = Empty
| Node Tree Int Tree

define:
• An infinite tree where every node is labelled

by 1.
• An infinite tree where every node is labelled

by its depth from the rote node.
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Exercise 3: Solution

treeOnes = Node treeOnes 1 treeOnes

treeFrom n = Node (treeFrom (n + 1))
n
(treeFrom (n + 1))

treeDepths = treeFrom 0
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Circular Programming (1)

A non-empty tree type:

data Tree = Leaf Int | Node Tree Tree

Suppose we would like to write a function that
replaces each leaf integer in a given tree with the
smallest integer in that tree.

How many passes over the tree are needed?

One!
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Circular Programming (2)

Write a function that replaces all leaf integers by
a given integer, and returns the new tree along
with the smallest integer of the given tree:

fmr :: Int -> Tree -> (Tree, Int)

fmr m (Leaf i) = (Leaf m, i)

fmr m (Node tl tr) =

(Node tl’ tr’, min ml mr)

where

(tl’, ml) = fmr m tl

(tr’, mr) = fmr m tr
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Circular Programming (3)

For a given tree t, the desired tree is now
obtained as the solution to the equation:

(t’, m) = fmr m t

Thus:

findMinReplace t = t’

where

(t’, m) = fmr m t

Intuitively, this works because fmr can compute
its result without needing to know the value of m.
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A Simple Spreadsheet Evaluator

a b c

1 c3 + c2

2 a3 * b2 2 a2 + b2

3 7 a2 + a3

s

⇒

a b c

1 37

2 14 2 16

3 7 21

r
r = array (bounds s)

[ ((i,j), eval r (s!(i,j)))

| (i,j) <- indices s ]

The evaluated sheet is again simply the solution
to the stated equation. No need to worry about
evaluation order. Any caveats?
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Breadth-first Numbering (1)

Consider the problem of numbering a possibly
infinitely deep tree in breadth-first order:

1

3

7

10

1413

6

2

54

9

1211

8
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Breadth-first Numbering (2)

The following algorithm is due to G. Jones and J.
Gibbons (1992), but the presentation differs.

Consider the following tree type:

data Tree a = Empty

| Node (Tree a) a (Tree a)

Define:
width t i The width of a tree t at level i

(0 origin).
label t i j The jth label at level i of a

tree t (0 origin).
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Breadth-first Numbering (3)

The following system of equations defines
breadth-first numbering:

label t 0 0 = 1 (1)

label t (i + 1) 0 = label t i 0 + width t i (2)

label t i (j + 1) = label t i j + 1 (3)

Note that label t i 0 is defined for all levels i (as
long as the widths of all tree levels are finite).
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Breadth-first Numbering (4)

The code that follows sets up the defining system
of equations:

• Streams (infinite lists) of labels are used as a
mediating data structure to allow equations
to be set up between adjacent nodes within
levels and between the last node at one level
and the first node at the next.

• Idea: the tree numbering function for a subtree
takes a stream of labels for the first node at
each level, and returns a stream of labels for
the node after the last node at each level.
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Breadth-first Numbering (5)

• As there manifestly are no cyclic dependences
among the equations, we can entrust the
details of solving them to the lazy evaluation
machinery in the safe knowledge that a
solution will be found.
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Breadth-first Numbering (6)
bfn :: Tree a -> Tree Integer

bfn t = t’

where

(ns, t’) = bfnAux (1 : ns) t

bfnAux :: [Integer] -> Tree a

-> ([Integer], Tree Integer)

bfnAux ns Empty = (ns, Empty)

bfnAux (n : ns) (Node tl _ tr) = ( (n + 1) : ns’’ ,

Node tl’ n tr’)

where

(ns’, tl’) = bfnAux ns tl

(ns’’, tr’) = bfnAux ns’ tr

Eqns (1) & (2)

Eqn (3)
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Breadth-first Numbering (7)
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Breadth-first Numbering (8)
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Dynamic Programming

Dynamic Programming :
• Create a table of all subproblems that ever

will have to be solved.
• Fill in table without regard to whether the

solution to that particular subproblem will be
needed.

• Combine solutions to form overall solution.

Lazy Evaluation is a perfect match as saves us
from having to worry about finding a suitable
evaluation order.
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The Triangulation Problem (1)

Select a set of chords that divides a convex
polygon into triangles such that:

• no two chords cross each other
• the sum of their length is minimal.

We will only consider computing the minimal
length.

See Aho, Hopcroft, Ullman (1983) for details.
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The Triangulation Problem (2)

v1

v2 v3

v4

v5

v6

v7
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The Triangulation Problem (3)
• Let Sis denote the subproblem of size s

starting at vertex vi of finding the minimum
triangulation of the polygon vi, vi+1, . . . , vi+s−1

(counting modulo the number of vertices).
• Subproblems of size less than 4 are trivial.
• Solving Sis is done by solving Si,k+1 and

Si+k,s−k for all k, 1 ≤ k ≤ s − 2.

• The obvious recursive formulation results in
3s−4 (non-trivial) calls.

• But for n ≥ 4 vertices there are only n(n − 3)
non-trivial subproblems!
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The Triangulation Problem (4)

vi

vi+k

vi+s−1

Si,k+1 Si+k,s−k
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The Triangulation Problem (5)

• Let Cis denote the minimal triangulation cost
of Sis.

• Let D(vp, vq) denote the length of a chord
between vp and vq (length is 0 for non-chords;
i.e. adjacent vp and vq).

• For s ≥ 4:

Cis = min
k∈[1,s−2]

{

Ci,k+1 + Ci+k,s−k

+D(vi, vi+k) + D(vi+k, vi+s−1)

}

• For s < 4, Sis = 0.
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The Triangulation Problem (6)

These equations can be transliterated straight
into Haskell:
triCost :: Polygon -> Double

triCost p = cost!(0,n) where

cost = array ((0,0), (n-1,n))

([ ((i,s),

minimum [ cost!(i, k+1)

+ cost!((i+k) ‘mod‘ n, s-k)

+ dist p i ((i+k) ‘mod‘ n)

+ dist p ((i+k) ‘mod‘ n)

((i+s-1) ‘mod‘ n)

| k <- [1..s-2] ])

| i <- [0..n-1], s <- [4..n] ] ++

[ ((i,s), 0.0)

| i <- [0..n-1], s <- [0..3] ])

n = snd (bounds b) + 1
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Attribute Grammars (1)

Lazy evaluation is also very useful for evaluation
of Attribute Grammars :

• The attribution function is defined recursively
over the tree:
- takes inherited attributes as extra

arguments;
- returns a tuple of all synthesised attributes.

• As long as there exists some possible
attribution order, lazy evaluation will take care
of the attribute evaluation.
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Attribute Grammars (2)

• The earlier examples on Circular Programming
and Breadth-first Numbering can be seen as
instances of this idea.
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Reading

• John W. Lloyd. Practical advantages of
declarative programming. In Joint Conference
on Declarative Programming,
GULP-PRODE’94, 1994.

• John Hughes. Why Functional Programming
Matters. The Computer Journal,
32(2):98–197, April 1989.

• Thomas Johnsson. Attribute Grammars as a
Functional Programming Paradigm. In
Functional Programming Languages and
Computer Architecture, FPCA’87, 1987
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Reading

• Geraint Jones and Jeremy Gibbons.
Linear-time breadth-first tree algorithms: An
exercise in the arithmetic of folds and zips.
Technical Report TR-31-92, Oxford University
Computing Laboratory, 1992.

• Alfred Aho, John Hopcroft, Jeffrey Ullman.
Data Structures and Algorithms.
Addison-Wesley, 1983.
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