
LiU-FP2010 Part II: Lecture 2
Lazy Functional Programming

Henrik Nilsson

University of Nottingham, UK

LiU-FP2010 Part II: Lecture 2 – p.1/45

Imperative vs. Declarative (1)
• Imperative Languages :

- Implicit state.
- Computation essentially a sequence of

side-effecting actions.
- Examples: Procedural and OO languages

LiU-FP2010 Part II: Lecture 2 – p.2/45

Imperative vs. Declarative (1)
• Imperative Languages :

- Implicit state.
- Computation essentially a sequence of

side-effecting actions.
- Examples: Procedural and OO languages

• Declarative Languages (Lloyd 1994):
- No implicit state.
- A program can be regarded as a theory.
- Computation can be seen as deduction

from this theory.
- Examples: Logic and Functional Languages.

LiU-FP2010 Part II: Lecture 2 – p.2/45

Imperative vs. Declarative (2)

Another perspective:
• Algorithm = Logic + Control

LiU-FP2010 Part II: Lecture 2 – p.3/45

Imperative vs. Declarative (2)

Another perspective:
• Algorithm = Logic + Control
• Declarative programming emphasises the

logic (“what”) rather than the control (“how”).

LiU-FP2010 Part II: Lecture 2 – p.3/45

Imperative vs. Declarative (2)

Another perspective:
• Algorithm = Logic + Control
• Declarative programming emphasises the

logic (“what”) rather than the control (“how”).
• Strategy needed for providing the “how”:

- Resolution (logic programming languages)
- Lazy evaluation (some functional and logic

programming languages)
- (Lazy) narrowing: (functional logic

programming languages)
LiU-FP2010 Part II: Lecture 2 – p.3/45

No Control?

Declarative languages for practical use tend to
be only weakly declarative ; i.e., not totally free
of control aspects. For example:

LiU-FP2010 Part II: Lecture 2 – p.4/45

No Control?

Declarative languages for practical use tend to
be only weakly declarative ; i.e., not totally free
of control aspects. For example:

• Equations in functional languages are
directed.

LiU-FP2010 Part II: Lecture 2 – p.4/45

No Control?

Declarative languages for practical use tend to
be only weakly declarative ; i.e., not totally free
of control aspects. For example:

• Equations in functional languages are
directed.

• Order of patterns often matters for pattern
matching.

LiU-FP2010 Part II: Lecture 2 – p.4/45

No Control?

Declarative languages for practical use tend to
be only weakly declarative ; i.e., not totally free
of control aspects. For example:

• Equations in functional languages are
directed.

• Order of patterns often matters for pattern
matching.

• Constructs for taking control over the order of
evaluation. (E.g. cut in Prolog, seq in
Haskell.)

LiU-FP2010 Part II: Lecture 2 – p.4/45

Relinquishing Control
Theme of this lecture: relinquishing control by
exploiting lazy evaluation .

• Evaluation orders
• Strict vs. Non-strict semantics
• Lazy evaluation
• Applications of lazy evaluation:

- Programming with infinite structures
- Circular programming
- Dynamic programming
- Attribute grammars

LiU-FP2010 Part II: Lecture 2 – p.5/45

Evaluation Orders (1)
Consider:

sqr x = x * x

dbl x = x + x

main = sqr (dbl (2 + 3))

Roughly, any expression that can be evaluated or
reduced by using the equations as rewrite rules
is called a reducible expression or redex.

Assuming arithmetic, the redexes of the body of
main are: 2 + 3

dbl (2 + 3)
sqr (dbl (2 + 3))

LiU-FP2010 Part II: Lecture 2 – p.6/45

Evaluation Orders (2)

Thus, in general, many possible reduction orders.
Innermost, leftmost redex first is called
Applicative Order Reduction (AOR). Recall:

sqr x = x * x

dbl x = x + x

main = sqr (dbl (2 + 3))

Starting from main:

main ⇒ sqr (dbl (2 + 3)) ⇒ sqr (dbl 5)

⇒ sqr (5 + 5) ⇒ sqr 10 ⇒ 10 * 10 ⇒ 100

This is just Call-By-Value .

LiU-FP2010 Part II: Lecture 2 – p.7/45

Evaluation Orders (3)

Outermost, leftmost redex first is called Normal
Order Reduction (NOR):

main ⇒ sqr (dbl (2 + 3))

⇒ dbl (2 + 3) * dbl (2 + 3)

⇒ ((2 + 3) + (2 + 3)) * dbl (2 + 3)

⇒ (5 + (2 + 3)) * dbl (2 + 3)

⇒ (5 + 5) * dbl (2 + 3) ⇒ 10 * dbl (2 + 3)

⇒ ... ⇒ 10 * 10 ⇒ 100

(Applications of arithmetic operations only con-
sidered redexes once arguments are numbers.)
Demand-driven evaluation or Call-By-Need

LiU-FP2010 Part II: Lecture 2 – p.8/45

Why Normal Order Reduction? (1)

NOR seems rather inefficient. Any use?
• Best possible termination properties.

A pure functional languages is just the
λ-calculus in disguise. Two central theorems:
- Church-Rosser Theorem I:

No term has more than one normal form.
- Church-Rosser Theorem II:

If a term has a normal form, then NOR
will find it.

LiU-FP2010 Part II: Lecture 2 – p.9/45

Why Normal Order Reduction? (2)

• More expressive power; e.g.:
- “Infinite” data structures
- Circular programming

• More declarative code as control aspects
(order of evaluation) left implicit.

LiU-FP2010 Part II: Lecture 2 – p.10/45

Exercise 1

Consider:

f x = 1
g x = g x
main = f (g 0)

Attempt to evaluate main using both AOR and
NOR. Which order is the more efficient in this
case? (Count the number of reduction steps to
normal form.)

LiU-FP2010 Part II: Lecture 2 – p.11/45

Strict vs. Non-strict Semantics (1)

• ⊥, or “bottom”, the undefined value ,
representing errors and non-termination .

• A function f is strict iff:

f ⊥ = ⊥

For example, + is strict in both its arguments:

(0/0) + 1 = ⊥ + 1 = ⊥

1 + (0/0) = 1 + ⊥ = ⊥

LiU-FP2010 Part II: Lecture 2 – p.12/45

Strict vs. Non-strict Semantics (2)

Again, consider:

f x = 1

g x = g x

What is the value of f (0/0)? Or of f (g 0)?
• AOR: f (0/0) ⇒ ⊥; f (g 0) ⇒ ⊥

Conceptually, f ⊥ = ⊥; i.e., f is strict.
• NOR: f (0/0) ⇒ 1; f (g 0) ⇒ 1

Conceptually, foo ⊥ = 1; i.e., foo is non-strict.

Thus, NOR results in non-strict semantics.

LiU-FP2010 Part II: Lecture 2 – p.13/45

Lazy Evaluation (1)

Lazy evaluation is a technique for
implementing NOR more efficiently:

LiU-FP2010 Part II: Lecture 2 – p.14/45

Lazy Evaluation (1)

Lazy evaluation is a technique for
implementing NOR more efficiently:

• A redex is evaluated only if needed .

LiU-FP2010 Part II: Lecture 2 – p.14/45

Lazy Evaluation (1)

Lazy evaluation is a technique for
implementing NOR more efficiently:

• A redex is evaluated only if needed .
• Sharing employed to avoid duplicating

redexes.

LiU-FP2010 Part II: Lecture 2 – p.14/45

Lazy Evaluation (1)

Lazy evaluation is a technique for
implementing NOR more efficiently:

• A redex is evaluated only if needed .
• Sharing employed to avoid duplicating

redexes.
• Once evaluated, a redex is updated with the

result to avoid evaluating it more than once.

LiU-FP2010 Part II: Lecture 2 – p.14/45

Lazy Evaluation (1)

Lazy evaluation is a technique for
implementing NOR more efficiently:

• A redex is evaluated only if needed .
• Sharing employed to avoid duplicating

redexes.
• Once evaluated, a redex is updated with the

result to avoid evaluating it more than once.

As a result, under lazy evaluation, any one redex
is evaluated at most once.

LiU-FP2010 Part II: Lecture 2 – p.14/45

Lazy Evaluation (2)

Recall:
sqr x = x * x

dbl x = x + x

main =

sqr (dbl (2+3))

sqr (dbl (2 + 3))

LiU-FP2010 Part II: Lecture 2 – p.15/45

Lazy Evaluation (2)

Recall:
sqr x = x * x

dbl x = x + x

main =

sqr (dbl (2+3))

sqr (dbl (2 + 3))

⇒ dbl (2 + 3) * (•)

LiU-FP2010 Part II: Lecture 2 – p.15/45

Lazy Evaluation (2)

Recall:
sqr x = x * x

dbl x = x + x

main =

sqr (dbl (2+3))

sqr (dbl (2 + 3))

⇒ dbl (2 + 3) * (•)

⇒ ((2 + 3) + (•)) * (•)

LiU-FP2010 Part II: Lecture 2 – p.15/45

Lazy Evaluation (2)

Recall:
sqr x = x * x

dbl x = x + x

main =

sqr (dbl (2+3))

sqr (dbl (2 + 3))

⇒ dbl (2 + 3) * (•)

⇒ ((2 + 3) + (•)) * (•)

⇒ (5 + (•)) * (•)

LiU-FP2010 Part II: Lecture 2 – p.15/45

Lazy Evaluation (2)

Recall:
sqr x = x * x

dbl x = x + x

main =

sqr (dbl (2+3))

sqr (dbl (2 + 3))

⇒ dbl (2 + 3) * (•)

⇒ ((2 + 3) + (•)) * (•)

⇒ (5 + (•)) * (•)

⇒ 10 * (•)

LiU-FP2010 Part II: Lecture 2 – p.15/45

Lazy Evaluation (2)

Recall:
sqr x = x * x

dbl x = x + x

main =

sqr (dbl (2+3))

sqr (dbl (2 + 3))

⇒ dbl (2 + 3) * (•)

⇒ ((2 + 3) + (•)) * (•)

⇒ (5 + (•)) * (•)

⇒ 10 * (•)

⇒ 100

LiU-FP2010 Part II: Lecture 2 – p.15/45

Exercise 2

Evaluate main using AOR, NOR, and lazy
evaluation:

f x y z = x * z

g x = f (x * x) (x * 2) x

main = g (1 + 2)

(Only consider an applications of an arithmetic
operator a redex once the arguments are
numbers.)

How many reduction steps in each case?

LiU-FP2010 Part II: Lecture 2 – p.16/45

Exercise 2

Evaluate main using AOR, NOR, and lazy
evaluation:

f x y z = x * z

g x = f (x * x) (x * 2) x

main = g (1 + 2)

(Only consider an applications of an arithmetic
operator a redex once the arguments are
numbers.)

How many reduction steps in each case?

Answer: 7, 8, 6 respectively
LiU-FP2010 Part II: Lecture 2 – p.16/45

Infinite Data Structures (1)

take 0 xs = []
take n [] = []
take n (x:xs) = x : take (n-1) xs

from n = n : from (n+1)

nats = from 0

main = take 5 nats

LiU-FP2010 Part II: Lecture 2 – p.17/45

Infinite Data Structures (2)

main

nats

LiU-FP2010 Part II: Lecture 2 – p.18/45

Infinite Data Structures (2)

main⇒1 take 5 (•)

nats

LiU-FP2010 Part II: Lecture 2 – p.18/45

Infinite Data Structures (2)

main⇒1 take 5 (•)

nats ⇒2 from 0

LiU-FP2010 Part II: Lecture 2 – p.18/45

Infinite Data Structures (2)

main⇒1 take 5 (•)

nats ⇒2 from 0 ⇒3 0: from 1

LiU-FP2010 Part II: Lecture 2 – p.18/45

Infinite Data Structures (2)

main⇒1 take 5 (•) ⇒4 0:take 4 (•)

nats ⇒2 from 0 ⇒3 0: from 1

LiU-FP2010 Part II: Lecture 2 – p.18/45

Infinite Data Structures (2)

main⇒1 take 5 (•) ⇒4 0:take 4 (•)

nats ⇒2 from 0 ⇒3 0: from 1

⇒5 0:1: from 2

LiU-FP2010 Part II: Lecture 2 – p.18/45

Infinite Data Structures (2)

main⇒1 take 5 (•) ⇒4 0:take 4 (•)

⇒6 0:1:take 3 (•)

nats ⇒2 from 0 ⇒3 0: from 1

⇒5 0:1: from 2

LiU-FP2010 Part II: Lecture 2 – p.18/45

Infinite Data Structures (2)

main⇒1 take 5 (•) ⇒4 0:take 4 (•)

⇒6 0:1:take 3 (•)

nats ⇒2 from 0 ⇒3 0: from 1

⇒5 0:1: from 2 ⇒7 . . .

LiU-FP2010 Part II: Lecture 2 – p.18/45

Infinite Data Structures (2)

main⇒1 take 5 (•) ⇒4 0:take 4 (•)

⇒6 0:1:take 3 (•) ⇒8 . . .

nats ⇒2 from 0 ⇒3 0: from 1

⇒5 0:1: from 2 ⇒7 . . .

LiU-FP2010 Part II: Lecture 2 – p.18/45

Infinite Data Structures (2)

main⇒1 take 5 (•) ⇒4 0:take 4 (•)

⇒6 0:1:take 3 (•) ⇒8 . . .

nats ⇒2 from 0 ⇒3 0: from 1

⇒5 0:1: from 2 ⇒7 . . . ⇒ 0:1:2:3:4: from 5

LiU-FP2010 Part II: Lecture 2 – p.18/45

Infinite Data Structures (2)

main⇒1 take 5 (•) ⇒4 0:take 4 (•)

⇒6 0:1:take 3 (•) ⇒8 . . .

⇒ 0:1:2:3:4:take 0 (•)

nats ⇒2 from 0 ⇒3 0: from 1

⇒5 0:1: from 2 ⇒7 . . . ⇒ 0:1:2:3:4: from 5

LiU-FP2010 Part II: Lecture 2 – p.18/45

Infinite Data Structures (2)

main⇒1 take 5 (•) ⇒4 0:take 4 (•)

⇒6 0:1:take 3 (•) ⇒8 . . .

⇒ 0:1:2:3:4:take 0 (•) ⇒ [0,1,2,3,4]

nats ⇒2 from 0 ⇒3 0: from 1

⇒5 0:1: from 2 ⇒7 . . . ⇒ 0:1:2:3:4: from 5

LiU-FP2010 Part II: Lecture 2 – p.18/45

Circular Data Structures (2)

take 0 xs = []
take n [] = []
take n (x:xs) = x : take (n-1) xs

ones = 1 : ones

main = take 5 ones

LiU-FP2010 Part II: Lecture 2 – p.19/45

Circular Data Structures (2)

main

ones

LiU-FP2010 Part II: Lecture 2 – p.20/45

Circular Data Structures (2)

main⇒1 take 5 (•)

ones

LiU-FP2010 Part II: Lecture 2 – p.20/45

Circular Data Structures (2)

main⇒1 take 5 (•)

ones ⇒2 1 : •

LiU-FP2010 Part II: Lecture 2 – p.20/45

Circular Data Structures (2)

main⇒1 take 5 (•) ⇒3 1:take 4 (•)

ones ⇒2 1 : •

LiU-FP2010 Part II: Lecture 2 – p.20/45

Circular Data Structures (2)

main⇒1 take 5 (•) ⇒3 1:take 4 (•)

⇒4 1:1:take 3 (•)

ones ⇒2 1 : •

LiU-FP2010 Part II: Lecture 2 – p.20/45

Circular Data Structures (2)

main⇒1 take 5 (•) ⇒3 1:take 4 (•)

⇒4 1:1:take 3 (•) ⇒5 . . .

ones ⇒2 1 : •

LiU-FP2010 Part II: Lecture 2 – p.20/45

Circular Data Structures (2)

main⇒1 take 5 (•) ⇒3 1:take 4 (•)

⇒4 1:1:take 3 (•) ⇒5 . . .

⇒ 1:1:1:1:1:take 0 (•)

ones ⇒2 1 : •

LiU-FP2010 Part II: Lecture 2 – p.20/45

Circular Data Structures (2)

main⇒1 take 5 (•) ⇒3 1:take 4 (•)

⇒4 1:1:take 3 (•) ⇒5 . . .

⇒ 1:1:1:1:1:take 0 (•) ⇒ [1,1,1,1,1]

ones ⇒2 1 : •

LiU-FP2010 Part II: Lecture 2 – p.20/45

Exercise 3

Given the following tree type

data Tree = Empty
| Node Tree Int Tree

define:
• An infinite tree where every node is labelled

by 1.
• An infinite tree where every node is labelled

by its depth from the rote node.

LiU-FP2010 Part II: Lecture 2 – p.21/45

Exercise 3: Solution

treeOnes = Node treeOnes 1 treeOnes

treeFrom n = Node (treeFrom (n + 1))
n
(treeFrom (n + 1))

treeDepths = treeFrom 0

LiU-FP2010 Part II: Lecture 2 – p.22/45

Circular Programming (1)

A non-empty tree type:

data Tree = Leaf Int | Node Tree Tree

LiU-FP2010 Part II: Lecture 2 – p.23/45

Circular Programming (1)

A non-empty tree type:

data Tree = Leaf Int | Node Tree Tree

Suppose we would like to write a function that
replaces each leaf integer in a given tree with the
smallest integer in that tree.

LiU-FP2010 Part II: Lecture 2 – p.23/45

Circular Programming (1)

A non-empty tree type:

data Tree = Leaf Int | Node Tree Tree

Suppose we would like to write a function that
replaces each leaf integer in a given tree with the
smallest integer in that tree.

How many passes over the tree are needed?

LiU-FP2010 Part II: Lecture 2 – p.23/45

Circular Programming (1)

A non-empty tree type:

data Tree = Leaf Int | Node Tree Tree

Suppose we would like to write a function that
replaces each leaf integer in a given tree with the
smallest integer in that tree.

How many passes over the tree are needed?

One!

LiU-FP2010 Part II: Lecture 2 – p.23/45

Circular Programming (2)

Write a function that replaces all leaf integers by
a given integer, and returns the new tree along
with the smallest integer of the given tree:

fmr :: Int -> Tree -> (Tree, Int)

fmr m (Leaf i) = (Leaf m, i)

fmr m (Node tl tr) =

(Node tl’ tr’, min ml mr)

where

(tl’, ml) = fmr m tl

(tr’, mr) = fmr m tr

LiU-FP2010 Part II: Lecture 2 – p.24/45

Circular Programming (3)

For a given tree t, the desired tree is now
obtained as the solution to the equation:

(t’, m) = fmr m t

Thus:

findMinReplace t = t’

where

(t’, m) = fmr m t

Intuitively, this works because fmr can compute
its result without needing to know the value of m.

LiU-FP2010 Part II: Lecture 2 – p.25/45

A Simple Spreadsheet Evaluator

a b c

1 c3 + c2

2 a3 * b2 2 a2 + b2

3 7 a2 + a3

s

⇒

a b c

1 37

2 14 2 16

3 7 21

r
r = array (bounds s)

[((i,j), eval r (s!(i,j)))

| (i,j) <- indices s]

The evaluated sheet is again simply the solution
to the stated equation. No need to worry about
evaluation order. Any caveats?

LiU-FP2010 Part II: Lecture 2 – p.26/45

Breadth-first Numbering (1)

Consider the problem of numbering a possibly
infinitely deep tree in breadth-first order:

1

3

7

10

1413

6

2

54

9

1211

8

LiU-FP2010 Part II: Lecture 2 – p.27/45

Breadth-first Numbering (2)

The following algorithm is due to G. Jones and J.
Gibbons (1992), but the presentation differs.

Consider the following tree type:

data Tree a = Empty

| Node (Tree a) a (Tree a)

Define:
width t i The width of a tree t at level i

(0 origin).
label t i j The jth label at level i of a

tree t (0 origin).
LiU-FP2010 Part II: Lecture 2 – p.28/45

Breadth-first Numbering (3)

The following system of equations defines
breadth-first numbering:

label t 0 0 = 1 (1)

label t (i + 1) 0 = label t i 0 + width t i (2)

label t i (j + 1) = label t i j + 1 (3)

Note that label t i 0 is defined for all levels i (as
long as the widths of all tree levels are finite).

LiU-FP2010 Part II: Lecture 2 – p.29/45

Breadth-first Numbering (4)

The code that follows sets up the defining system
of equations:

LiU-FP2010 Part II: Lecture 2 – p.30/45

Breadth-first Numbering (4)

The code that follows sets up the defining system
of equations:

• Streams (infinite lists) of labels are used as a
mediating data structure to allow equations
to be set up between adjacent nodes within
levels and between the last node at one level
and the first node at the next.

LiU-FP2010 Part II: Lecture 2 – p.30/45

Breadth-first Numbering (4)

The code that follows sets up the defining system
of equations:

• Streams (infinite lists) of labels are used as a
mediating data structure to allow equations
to be set up between adjacent nodes within
levels and between the last node at one level
and the first node at the next.

• Idea: the tree numbering function for a subtree
takes a stream of labels for the first node at
each level, and returns a stream of labels for
the node after the last node at each level.

LiU-FP2010 Part II: Lecture 2 – p.30/45

Breadth-first Numbering (5)

• As there manifestly are no cyclic dependences
among the equations, we can entrust the
details of solving them to the lazy evaluation
machinery in the safe knowledge that a
solution will be found.

LiU-FP2010 Part II: Lecture 2 – p.31/45

Breadth-first Numbering (6)
bfn :: Tree a -> Tree Integer

bfn t = t’

where

(ns, t’) = bfnAux (1 : ns) t

bfnAux :: [Integer] -> Tree a

-> ([Integer], Tree Integer)

bfnAux ns Empty = (ns, Empty)

bfnAux (n : ns) (Node tl _ tr) = ((n + 1) : ns’’ ,

Node tl’ n tr’)

where

(ns’, tl’) = bfnAux ns tl

(ns’’, tr’) = bfnAux ns’ tr

Eqns (1) & (2)

Eqn (3)

LiU-FP2010 Part II: Lecture 2 – p.32/45

Breadth-first Numbering (7)

LiU-FP2010 Part II: Lecture 2 – p.33/45

Breadth-first Numbering (8)

LiU-FP2010 Part II: Lecture 2 – p.34/45

Dynamic Programming

Dynamic Programming :
• Create a table of all subproblems that ever

will have to be solved.
• Fill in table without regard to whether the

solution to that particular subproblem will be
needed.

• Combine solutions to form overall solution.

Lazy Evaluation is a perfect match as saves us
from having to worry about finding a suitable
evaluation order.

LiU-FP2010 Part II: Lecture 2 – p.35/45

The Triangulation Problem (1)

Select a set of chords that divides a convex
polygon into triangles such that:

• no two chords cross each other
• the sum of their length is minimal.

We will only consider computing the minimal
length.

See Aho, Hopcroft, Ullman (1983) for details.

LiU-FP2010 Part II: Lecture 2 – p.36/45

The Triangulation Problem (2)

v1

v2 v3

v4

v5

v6

v7

LiU-FP2010 Part II: Lecture 2 – p.37/45

The Triangulation Problem (3)
• Let Sis denote the subproblem of size s

starting at vertex vi of finding the minimum
triangulation of the polygon vi, vi+1, . . . , vi+s−1

(counting modulo the number of vertices).
• Subproblems of size less than 4 are trivial.
• Solving Sis is done by solving Si,k+1 and

Si+k,s−k for all k, 1 ≤ k ≤ s − 2.

• The obvious recursive formulation results in
3s−4 (non-trivial) calls.

• But for n ≥ 4 vertices there are only n(n − 3)
non-trivial subproblems!

LiU-FP2010 Part II: Lecture 2 – p.38/45

The Triangulation Problem (4)

vi

vi+k

vi+s−1

Si,k+1 Si+k,s−k

LiU-FP2010 Part II: Lecture 2 – p.39/45

The Triangulation Problem (5)

• Let Cis denote the minimal triangulation cost
of Sis.

• Let D(vp, vq) denote the length of a chord
between vp and vq (length is 0 for non-chords;
i.e. adjacent vp and vq).

• For s ≥ 4:

Cis = min
k∈[1,s−2]

{

Ci,k+1 + Ci+k,s−k

+D(vi, vi+k) + D(vi+k, vi+s−1)

}

• For s < 4, Sis = 0.

LiU-FP2010 Part II: Lecture 2 – p.40/45

The Triangulation Problem (6)

These equations can be transliterated straight
into Haskell:
triCost :: Polygon -> Double

triCost p = cost!(0,n) where

cost = array ((0,0), (n-1,n))

([((i,s),

minimum [cost!(i, k+1)

+ cost!((i+k) ‘mod‘ n, s-k)

+ dist p i ((i+k) ‘mod‘ n)

+ dist p ((i+k) ‘mod‘ n)

((i+s-1) ‘mod‘ n)

| k <- [1..s-2]])

| i <- [0..n-1], s <- [4..n]] ++

[((i,s), 0.0)

| i <- [0..n-1], s <- [0..3]])

n = snd (bounds b) + 1

LiU-FP2010 Part II: Lecture 2 – p.41/45

Attribute Grammars (1)

Lazy evaluation is also very useful for evaluation
of Attribute Grammars :

• The attribution function is defined recursively
over the tree:
- takes inherited attributes as extra

arguments;
- returns a tuple of all synthesised attributes.

• As long as there exists some possible
attribution order, lazy evaluation will take care
of the attribute evaluation.

LiU-FP2010 Part II: Lecture 2 – p.42/45

Attribute Grammars (2)

• The earlier examples on Circular Programming
and Breadth-first Numbering can be seen as
instances of this idea.

LiU-FP2010 Part II: Lecture 2 – p.43/45

Reading

• John W. Lloyd. Practical advantages of
declarative programming. In Joint Conference
on Declarative Programming,
GULP-PRODE’94, 1994.

• John Hughes. Why Functional Programming
Matters. The Computer Journal,
32(2):98–197, April 1989.

• Thomas Johnsson. Attribute Grammars as a
Functional Programming Paradigm. In
Functional Programming Languages and
Computer Architecture, FPCA’87, 1987

LiU-FP2010 Part II: Lecture 2 – p.44/45

Reading

• Geraint Jones and Jeremy Gibbons.
Linear-time breadth-first tree algorithms: An
exercise in the arithmetic of folds and zips.
Technical Report TR-31-92, Oxford University
Computing Laboratory, 1992.

• Alfred Aho, John Hopcroft, Jeffrey Ullman.
Data Structures and Algorithms.
Addison-Wesley, 1983.

LiU-FP2010 Part II: Lecture 2 – p.45/45

	Imperative vs. Declarative (1)
	Imperative vs. Declarative (2)
	No Control?
	Relinquishing Control
	Evaluation Orders (1)
	Evaluation Orders (2)
	Evaluation Orders (3)
	Why Normal Order Reduction? (1)
	Why Normal Order Reduction? (2)
	Exercise 1
	Strict vs. Non-strict Semantics (1)
	Strict vs. Non-strict Semantics (2)
	Lazy Evaluation (1)
	Lazy Evaluation (2)
	Exercise 2
	Infinite Data Structures (1)
	Infinite Data Structures (2)
	Circular Data Structures (2)
	Circular Data Structures (2)
	Exercise 3
	Exercise 3: Solution
	Circular Programming (1)
	Circular Programming (2)
	Circular Programming (3)
	A Simple Spreadsheet Evaluator
	Breadth-first Numbering (1)
	Breadth-first Numbering (2)
	Breadth-first Numbering (3)
	Breadth-first Numbering (4)
	Breadth-first Numbering (5)
	Breadth-first Numbering (6)
	Breadth-first Numbering (7)
	Breadth-first Numbering (8)
	Dynamic Programming
	The Triangulation Problem (1)
	The Triangulation Problem (2)
	The Triangulation Problem (3)
	The Triangulation Problem (4)
	The Triangulation Problem (5)
	The Triangulation Problem (6)
	Attribute Grammars (1)
	Attribute Grammars (2)
	Reading
	Reading

