#### LiU-FP2010 Part II: Lecture 3 Purely Functional Data Structures

Henrik Nilsson

University of Nottingham, UK

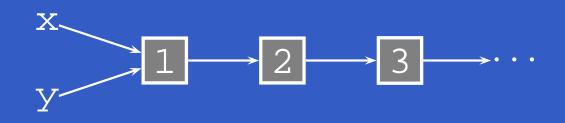
# **Purely Functional Data structures (1)**

Why is there a need to consider purely functional data structures?

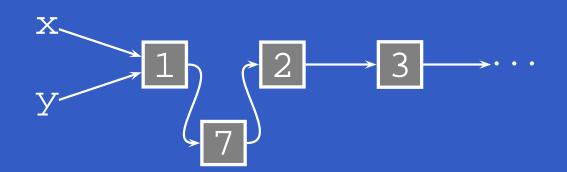
- The standard implementations of many data structures assume imperative update. To what extent truly necessary?
- Purely functional data structures are persistent, while imperative ones are ephemeral:
  - Persistence is a useful property in its own right.
  - Can't expect added benefits for free.

# **Purely Functional Data structures (2)**

#### Linked list:



After insert, if ephemeral:

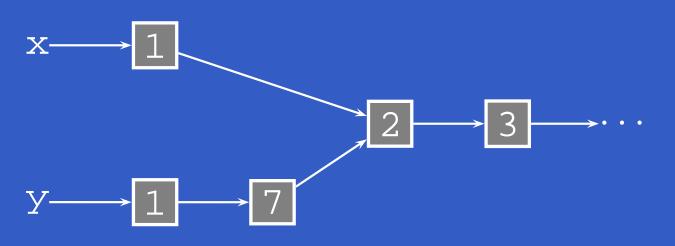


# **Purely Functional Data structures (3)**

#### Linked list:



#### After insert, if persistent:



## **Purely Functional Data structures (4)**

This lecture draws from:

Chris Okasaki. *Purely Functional Data Structures*. Cambridge University Press, 1998.

We will look at some examples of how *numerical* representations can be used to derive purely functional data structures.

## Numerical Representations (1)

Strong analogy between lists and the usual representation of natural numbers:

| data List a =      |         | data Nat =        |
|--------------------|---------|-------------------|
| Nil                |         | Zero              |
| Cons a (List       | a)      | Succ Nat          |
| tail (Cons _ xs) = | XS      | pred (Succ n) = n |
| append Nil         | ys = ys | plus Zero n = n   |
| append (Cons x xs) | ys =    | plus (Succ m) n = |
| Cons x (append     | xs ys)  | Succ (plus m n)   |

# **Numerical Representations (2)**

This analogy can be taken further for designing *container* structures because:

- inserting an element resembles incrementing a number
- combining two containers resembles adding two numbers

etc.

Thus, representations of natural numbers with certain properties induce container types with similar properties. Called *Numerical Representations*.

## **Random Access Lists**

We will consider Random Access Lists in the following. Signature: data RList a

| empty   | ::  | RList a                      |
|---------|-----|------------------------------|
| isEmpty | ::  | RList a -> Bool              |
| cons    | ::  | a -> RList a -> RList a      |
| head    | ::  | RList a -> a                 |
| tail    | ::  | RList a -> RList a           |
| lookup  | ::  | Int -> RList a -> a          |
| update  | ••• | Int -> a -> RList a -> RList |
|         |     |                              |

# **Positional Number Systems (1)**

- A number is written as a sequence of digits
   b<sub>0</sub>b<sub>1</sub>...b<sub>m-1</sub>, where b<sub>i</sub> ∈ D<sub>i</sub> for a fixed family of digit sets given by the positional system.
- $b_0$  is the *least significant* digit,  $b_{m-1}$  the *most* significant digit (note the ordering).
- Each digit  $b_i$  has a weight  $w_i$ . Thus:

$$\operatorname{value}(b_0 b_1 \dots b_{m-1}) = \sum_{0}^{m-1} b_i w_i$$

where the fixed sequence of weights  $w_i$  is given by the positional system.

# **Positional Number Systems (2)**

- A number is written written in base B if  $w_i = B^i$  and  $D_i = \{0, \dots, B-1\}$ .
- The sequence w<sub>i</sub> is usually, but not necessarily, increasing.
- A number system is *redundant* if there is more than one way to represent some numbers (disallowing trailing zeroes).
- A representation of a positional number system can be dense, meaning including zeroes, or sparse, eliding zeroes.

#### **Exercise 1: Positional Number Systems**

Suppose  $w_i = 2^i$  and  $D_i = \{0, 1, 2\}$ . Give three different ways to represent 17.

## **Exercise 1: Solution**

- 10001, since value $(10001) = 1 \cdot 2^0 + 1 \cdot 2^4$
- 1002, since value $(1002) = 1 \cdot 2^0 + 2 \cdot 2^3$
- 1021, since value $(1021) = 1 \cdot 2^0 + 2 \cdot 2^2 + 1 \cdot 2^3$
- 1211, since value(1211) =  $1 \cdot 2^0 + 2 \cdot 2^1 + 1 \cdot 2^2 + 1 \cdot 2^3$

### **From Positional System to Container**

Given a positional system, a numerical representation may be derived as follows:

• for a container of size n, consider a representation  $b_0b_1 \dots b_{m-1}$  of n,

represent the collection of n elements by a sequence of trees of size w<sub>i</sub> such that there are b<sub>i</sub> trees of that size.

For example, given the positional system of exercise 1, a container of size 17 might be represented by 1 tree of size 1, 2 trees of size 2, 1 tree of size 4, and 1 tree of size 8.

# What Kind of Trees?

The kind of tree should be chosen depending on needed sizes and properties. Two possibilities: Complete Binary Leaf Trees

> data Tree a = Leaf a | Node (Tree a) (Tree a)

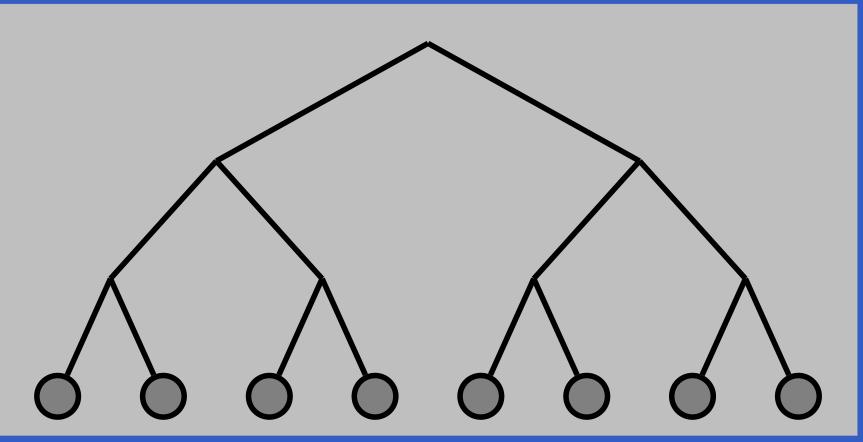
Sizes:  $2^n, n \ge 0$ 

Complete Binary Trees

data Tree a = Leaf a | Node (Tree a) a (Tree a) Sizes:  $2^{n+1} - 1, n \ge 0$ (Balance has to be ensured separately.)

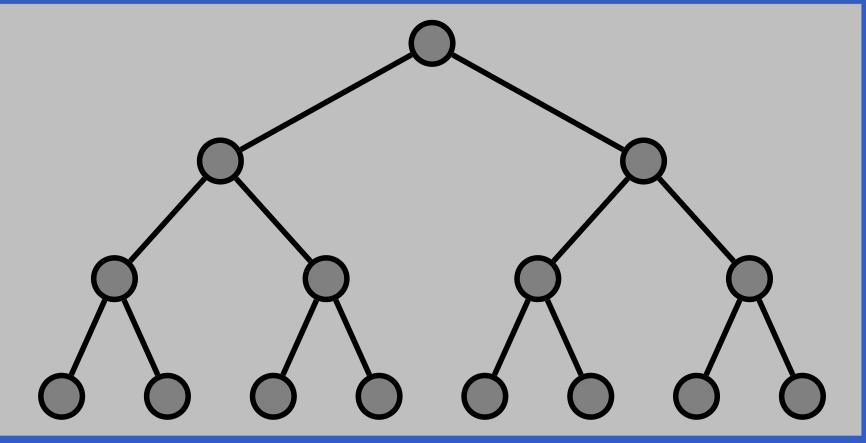
# **Example: Complete Binary Leaf Tree**

#### Size $2^3 = 8$ :



# **Example: Complete Binary Tree**

#### Size $2^4 - 1 = 15$ :



# **Binary Random Access Lists (1)**

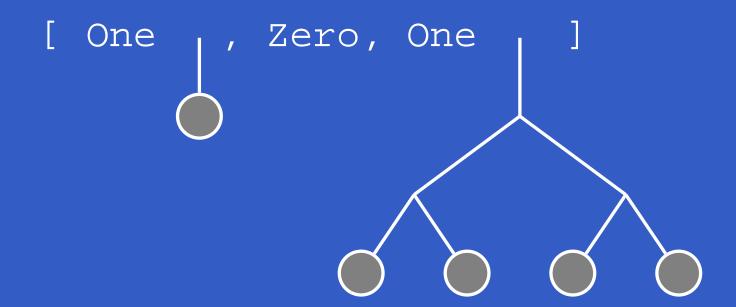
#### **Binary Random Access Lists** are induced by

- the usual binary representation, i.e.  $w_i = 2^i$ ,  $D_i = \{0, 1\}$
- complete binary leaf trees

#### Thus:

# **Binary Random Access Lists (2)**

#### Example: Binary Random Access List of size 5:



LiU-FP2010 Part II: Lecture 3 - p.18/40

# **Binary Random Access Lists (3)**

The increment function on dense binary numbers:

inc [] = [One] inc (Zero : ds) = One : ds inc (One : ds) = Zero : inc ds -- Carry

# **Binary Random Access Lists (4)**

Inserting an element first in a binary random access list is analogous to inc:

cons ::  $\overline{a} \rightarrow RList a \rightarrow RList a$ cons x ts = consTree (Leaf x) ts

consTree :: Tree a -> RList a -> RList a
consTree t [] = [One t]
consTree t (Zero : ts) = (One t : ts)
consTree t (One t' : ts) =
 Zero : consTree (link t t') ts

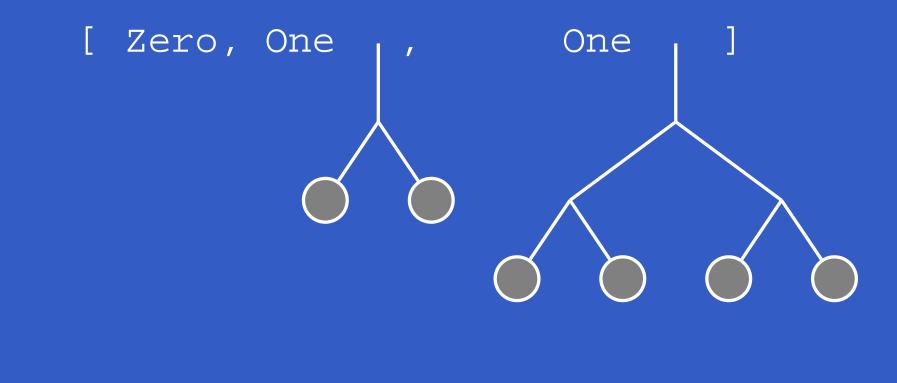
# **Binary Random Access Lists (5)**

The utility function link joins two equally sized trees:

-- t1 and t2 are assumed to be the same size link t1 t2 = Node (2 \* size t1) t1 t2

# **Binary Random Access Lists (6)**

Example: Result of consing element onto list of size 5:



#### Exercise 2: unconsTree

The decrement function on dense binary numbers:

dec [One] = []dec (One : ds) = Zero : ds dec (Zero : ds) = One : dec ds -- Borrow **Define** unconstree following the above pattern: unconsTree :: RList a -> (Tree a, RList a) And then head and tail: head :: RList a -> a tail :: RList a -> RList a

### **Exercise 2: Solution (1)**

Note: partial operation.

# **Exercise 2: Solution (2)**

```
head :: RList a -> a
head ts = x
where
  (Leaf x, _) = unconsTree ts
```

```
tail :: RList a -> RList a
tail ts = ts'
where
  (_, ts') = unconsTree ts
```

# **Binary Random Access Lists (7)**

Lookup is done in two stages: first find the right tree, then lookup in that tree:

lookup :: Int -> RList a -> a lookup i (Zero : ts) = lookup i ts lookup i (One t : ts) | i < s = lookupTree i t | otherwise = lookup (i - s) ts where s = size t Note: partial operation.

## **Binary Random Access Lists (8)**

The operation update has exactly the same structure.

# **Binary Random Access Lists (9)**

#### Time complexity:

- cons, head, tail, perform O(1) work per digit, thus  $O(\log n)$  worst case.
- lookup and update take O(log n) to find the right tree, and then O(log n) to find the right element in that tree, so O(log n) worst case overall.

# **Binary Random Access Lists (9)**

#### Time complexity:

- cons, head, tail, perform O(1) work per digit, thus  $O(\log n)$  worst case.
- lookup and update take  $O(\log n)$  to find the right tree, and then  $O(\log n)$  to find the right element in that tree, so  $O(\log n)$  worst case overall.
- Time complexity for cons, head, tail disappointing: can we do better?

# **Skew Binary Numbers (1)**

**Skew Binary Numbers:** 

- $w_i = 2^{i+1} 1$  (rather than  $2^i$ )
- $D_i = \{0, 1, 2\}$

Representation is redundant. But we obtain a *canonical form* if we insist that only the least significant non-zero digit may be 2.

Note: The weights correspond to the sizes of *complete* binary trees.

# **Skew Binary Numbers (2)**

Theorem: Every natural number n has a unique skew binary canonical form. Proof sketch. By induction on n.

Base case: the case for 0 is direct.

# **Skew Binary Numbers (3)**

- Inductive case. Assume n has a unique skew binary representation  $b_0b_1 \dots b_{m-1}$ 

# **Skew Binary Numbers (3)**

- Inductive case. Assume n has a unique skew binary representation  $b_0b_1 \dots b_{m-1}$ 
  - If the least significant non-zero digit is smaller than 2, then n + 1 has a unique skew binary representation obtained by adding 1 to the least significant digit  $b_0$ .

# **Skew Binary Numbers (3)**

- Inductive case. Assume n has a unique skew binary representation  $b_0b_1 \dots b_{m-1}$ 
  - If the least significant non-zero digit is smaller than 2, then n + 1 has a unique skew binary representation obtained by adding 1 to the least significant digit  $b_0$ .
  - If the least significant non-zero digit  $b_i$  is 2, then note that  $1 + 2(2^{i+1} - 1) = 2^{i+2} - 1$ . Thus n + 1 has a unique skew binary representation obtained by setting  $b_i$  to 0 and adding 1 to  $b_{i+1}$ .

### **Exercise 3: Skew Binary Numbers**

- Give the canonical skew binary representation for 31, 30, 29, and 28.
- Assume a sparse skew binary representation of the natural numbers

type Nat = [Int]

where the integers represent the *weight* of each *non-zero* digit. Assume further that the integers are stored in increasing order, except that the first two may be equal indicating that the smallest non-zero digit is 2. Implement a function inc to increment a natural number.

### **Exercise 3: Solution**

• 00001, 0002, 0021, 0211

### **Skew Binary Random Access Lists (1)**

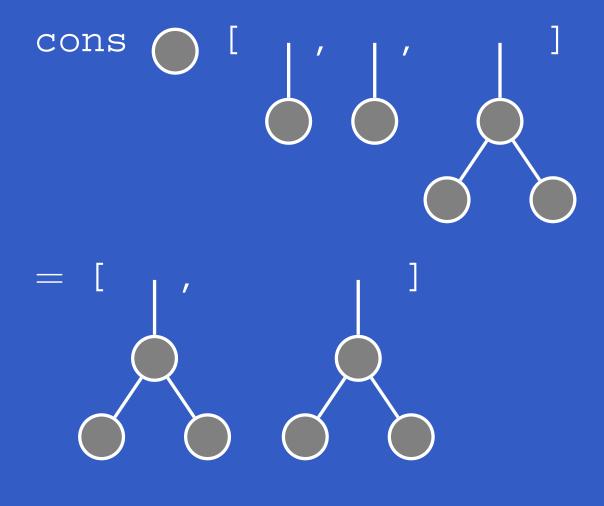
data Tree a = Leaf a | Node (Tree a) a (Tree a)
type RList a = [(Int, Tree a)]

```
empty :: RList a
empty = []
```

```
cons :: a -> RList a -> RList a
cons x ((w1, t1) : (w2, t2) : wts) | w1 == w2 =
        (w1 * 2 + 1, Node t1 x t2) : wts
cons x wts = ((1, Leaf x) : wts)
```

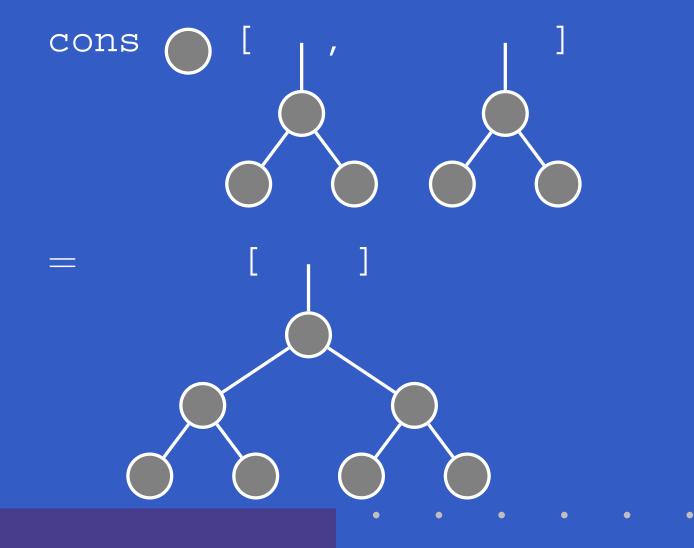
### **Skew Binary Random Access Lists (2)**

Example: Consing onto list of size 5:



### **Skew Binary Random Access Lists (3)**

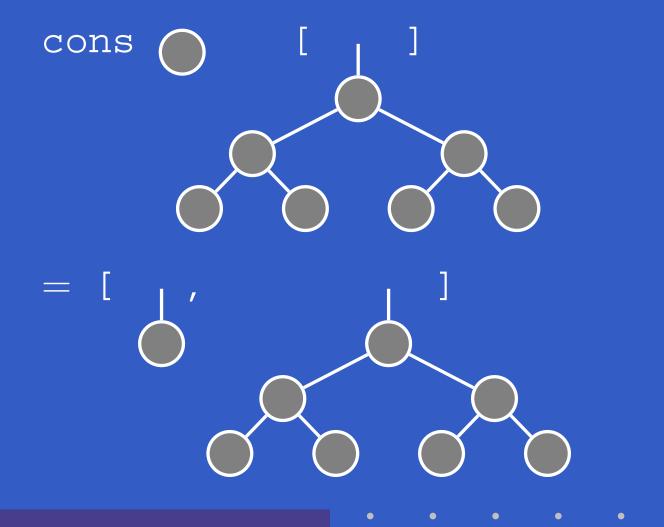
Example: Consing onto list of size 6:



LiU-FP2010 Part II: Lecture 3 - p.36/40

## **Skew Binary Random Access Lists (4)**

Example: Consing onto list of size 7:



LiU-FP2010 Part II: Lecture 3 - p.37/40

# **Skew Binary Random Access Lists (5)**

head :: RList a -> a
head ((\_, Leaf x) : \_) = x
head ((\_, Node \_ x \_) : \_) = x

tail :: RList a -> RList a
tail ((\_, Leaf \_): wts) = wts
tail ((w, Node t1 \_ t2) : wts) =
 (w', t1) : (w', t2) : wts
 where
 \_\_\_\_\_w' = w `div` 2

Note: again, partial operations.

## **Skew Binary Random Access Lists (6)**

lookup :: Int -> RList a -> a lookup i ((w, t) : wts) i < w = lookupTree i w t | otherwise = lookup (i - w) wts lookupTree :: Int -> Int -> Tree a -> a  $lookupTree \_ (Leaf x) = x$ lookupTree i w (Node t1 x t2) i == 0 = x <u>i < w'</u> = lookupTree (i - 1) w' t1 otherwise = lookupTree (i - w' - 1) w' t2 where

$$w' = w 'div' 2$$

# **Skew Binary Random Access Lists (7)**

#### Time complexity:

- cons, head, tail: O(1).
- lookup and update take  $O(\log n)$  to find the right tree, and then  $O(\log n)$  to find the right element in that tree, so  $O(\log n)$  worst case overall.

# **Skew Binary Random Access Lists (7)**

#### Time complexity:

- cons, head, tail: O(1).
- lookup and update take O(log n) to find the right tree, and then O(log n) to find the right element in that tree, so O(log n) worst case overall.

#### Okasaki:

"Although there are better implementations of lists, and better implementations of (persistent) arrays, none are better at both."