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A Blessing and a Curse

• The BIG advantage of pure functional
programming is

“everything is explicit;”
i.e., flow of data manifest, no side effects.
Makes it a lot easier to understand large
programs.

• The BIG problem with pure functional
programming is

“everything is explicit.”
Can add a lot of clutter, make it hard to
maintain code
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Conundrum

“Shall I be pure or impure?” (Wadler, 1992)
• Absence of effects

- facilitates understanding and reasoning
- makes lazy evaluation viable
- allows choice of reduction order, e.g. parallel
- enhances modularity and reuse.

• Effects (state, exceptions, . . . ) can
- help making code concise
- facilitate maintenance
- improve the efficiency.
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Example: A Compiler Fragment (1)

Identification is the task of relating each applied
identifier occurrence to its declaration or
definition:

public class C {
int x, n;
void set(int n) { x = n; }

}

In the body of set, the one applied occurrence of
• x refers to the instance variable x

• n refers to the argument n.
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Example: A Compiler Fragment (2)

Consider an AST Exp for a simple expression
language. Exp is a parameterized type: the type
parameter a allows variables to be annotated
with an attribute of type a.

data Exp a

= LitInt Int

| Var Id a

| UnOpApp UnOp (Exp a)

| BinOpApp BinOp (Exp a) (Exp a)

| If (Exp a) (Exp a) (Exp a)

| Let [(Id, Type, Exp a)] (Exp a)
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Example: A Compiler Fragment (3)

Example: The following code fragment

let int x = 7 in x + 35

would be represented like this (before
identification):

Let [("x", IntType, LitInt 7)]

(BinOpApp Plus

(Var "x" ())

(LitInt 35))
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Example: A Compiler Fragment (4)

Goals of the identification phase:
• Annotate each applied identifier occurrence

with attributes of the corresponding variable
declaration.
I.e., map unannotated AST Exp () to
annotated AST Exp Attr.

• Report conflicting variable definitions and
undefined variables.

identification ::

Exp () -> (Exp Attr, [ErrorMsg])
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Example: A Compiler Fragment (5)

Example: Before Identification

Let [("x", IntType, LitInt 7)]

(BinOpApp Plus

(Var "x" ())

(LitInt 35))

After identification:

Let [("x", IntType, LitInt 7)]

(BinOpApp Plus

(Var "x" (1, IntType))

(LitInt 35))
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Example: A Compiler Fragment (6)

enterVar inserts a variable at the given scope
level and of the given type into an environment.

• Check that no variable with same name has
been defined at the same scope level.

• If not, the new variable is entered, and the
resulting environment is returned.

• Otherwise an error message is returned.

enterVar :: Id -> Int -> Type -> Env

-> Either Env ErrorMsg
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Example: A Compiler Fragment (7)

Functions that do the real work:

identAux ::

Int -> Env -> Exp ()

-> (Exp Attr, [ErrorMsg])

identDefs ::

Int -> Env -> [(Id, Type, Exp ())]

-> ([(Id, Type, Exp Attr)],

Env,

[ErrorMsg])
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Example: A Compiler Fragment (8)

identDefs l env [] = ([], env, [])

identDefs l env ((i,t,e) : ds) =

((i,t,e’) : ds’, env’’, ms1++ms2++ms3)

where

(e’, ms1) = identAux l env e

(env’, ms2) =

case enterVar i l t env of

Left env’ -> (env’, [])

Right m -> (env, [m])

(ds’, env’’, ms3) =

identDefs l env’ ds
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Example: A Compiler Fragment (9)

Error checking and collection of error messages
arguably added a lot of clutter . The core of the
algorithm is this:

identDefs l env [] = ([], env)

identDefs l env ((i,t,e) : ds) =

((i,t,e’) : ds’, env’’)

where

e’ = identAux l env e

env’ = enterVar i l t env

(ds’, env’’) = identDefs l env’ ds

Errors are just a side effect .
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Answer to Conundrum: Monads (1)
• Monads bridges the gap: allow effectful

programming in a pure setting.
• Key idea: Computational types : an object of

type MA denotes a computation of an
object of type A.

• Thus we shall be both pure and impure,
whatever takes our fancy!

• Monads originated in Category Theory.
• Adapted by

- Moggi for structuring denotational semantics
- Wadler for structuring functional programs
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Answer to Conundrum: Monads (2)
Monads

• promote disciplined use of effects since the
type reflects which effects can occur;

• allow great flexibility in tailoring the effect
structure to precise needs;

• support changes to the effect structure with
minimal impact on the overall program structure;

• allow integration into a pure setting of real
effects such as
- I/O
- mutable state.
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This Lecture

Pragmatic introduction to monads:

• Effectful computations
• Identifying a common pattern
• Monads as a design pattern
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Example 1: A Simple Evaluator

data Exp = Lit Integer

| Add Exp Exp

| Sub Exp Exp

| Mul Exp Exp

| Div Exp Exp

eval :: Exp -> Integer

eval (Lit n) = n

eval (Add e1 e2) = eval e1 + eval e2

eval (Sub e1 e2) = eval e1 - eval e2

eval (Mul e1 e2) = eval e1 * eval e2

eval (Div e1 e2) = eval e1 ‘div‘ eval e2
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Making the Evaluator Safe (1)

data Maybe a = Nothing | Just a

safeEval :: Exp -> Maybe Integer

safeEval (Lit n) = Just n

safeEval (Add e1 e2) =

case safeEval e1 of

Nothing -> Nothing

Just n1 ->

case safeEval e2 of

Nothing -> Nothing

Just n2 -> Just (n1 + n2)
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Making the Evaluator Safe (2)

safeEval (Sub e1 e2) =

case safeEval e1 of

Nothing -> Nothing

Just n1 ->

case safeEval e2 of

Nothing -> Nothing

Just n2 -> Just (n1 - n2)
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Making the Evaluator Safe (3)

safeEval (Mul e1 e2) =

case safeEval e1 of

Nothing -> Nothing

Just n1 ->

case safeEval e2 of

Nothing -> Nothing

Just n2 -> Just (n1 * n2)
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Making the Evaluator Safe (4)

safeEval (Div e1 e2) =

case safeEval e1 of

Nothing -> Nothing

Just n1 ->

case safeEval e2 of

Nothing -> Nothing

Just n2 ->

if n2 == 0

then Nothing

else Just (n1 ‘div‘ n2)
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Any Common Pattern?

Clearly a lot of code duplication!
Can we factor out a common pattern?

We note:
• Sequencing of evaluations (or

computations ).
• If one evaluation fails, fail overall.
• Otherwise, make result available to following

evaluations.
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Sequencing Evaluations

evalSeq :: Maybe Integer

-> (Integer -> Maybe Integer)

-> Maybe Integer

evalSeq ma f =

case ma of

Nothing -> Nothing

Just a -> f a
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Exercise 1: Refactoring safeEval
Rewrite safeEval, case Add, using evalSeq:
safeEval (Add e1 e2) =

case safeEval e1 of

Nothing -> Nothing

Just n1 ->

case safeEval e2 of

Nothing -> Nothing

Just n2 -> Just (n1 + n2)

evalSeq ma f =

case ma of

Nothing -> Nothing

Just a -> f a
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Exercise 1: Solution

safeEval :: Exp -> Maybe Integer

safeEval (Add e1 e2) =

evalSeq (safeEval e1)

(\n1 -> evalSeq (safeEval e2)

(\n2 -> Just (n1+n2)))

or
safeEval :: Exp -> Maybe Integer

safeEval (Add e1 e2) =

safeEval e1 ‘evalSeq‘ (\n1 ->

safeEval e2 ‘evalSeq‘ (\n2 ->

Just (n1 + n2)))
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Aside: Scope Rules of λ-abstractions

The scope rules of λ-abstractions are such that
parentheses can be omitted:
safeEval :: Exp -> Maybe Integer

...

safeEval (Add e1 e2) =

safeEval e1 ‘evalSeq‘ \n1 ->

safeEval e2 ‘evalSeq‘ \n2 ->

Just (n1 + n2)

...
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Refactored Safe Evaluator (1)

safeEval :: Exp -> Maybe Integer

safeEval (Lit n) = Just n

safeEval (Add e1 e2) =

safeEval e1 ‘evalSeq‘ \n1 ->

safeEval e2 ‘evalSeq‘ \n2 ->

Just (n1 + n2)

safeEval (Sub e1 e2) =

safeEval e1 ‘evalSeq‘ \n1 ->

safeEval e2 ‘evalSeq‘ \n2 ->

Just (n1 - n2)
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Refactored Safe Evaluator (2)

safeEval (Mul e1 e2) =

safeEval e1 ‘evalSeq‘ \n1 ->

safeEval e2 ‘evalSeq‘ \n2 ->

Just (n1 * n2)

safeEval (Div e1 e2) =

safeEval e1 ‘evalSeq‘ \n1 ->

safeEval e2 ‘evalSeq‘ \n2 ->

if n2 == 0

then Nothing

else Just (n1 ‘div‘ n2)
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Inlining evalSeq (1)

safeEval (Add e1 e2) =

safeEval e1 ‘evalSeq‘ \n1 ->

safeEval e2 ‘evalSeq‘ \n2 ->

Just (n1 + n2)

=

safeEval (Add e1 e2) =

case (safeEval e1) of

Nothing -> Nothing

Just a -> (\n1 -> safeEval e2 ...) a
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Inlining evalSeq (2)
=

safeEval (Add e1 e2) =

case (safeEval e1) of

Nothing -> Nothing

Just n1 -> safeEval e2 ‘evalSeq‘ (\n2 -> ...)

=

safeEval (Add e1 e2) =

case (safeEval e1) of

Nothing -> Nothing

Just n1 -> case safeEval e2 of

Nothing -> Nothing

Just a -> (\n2 -> ...) a
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Inlining evalSeq (3)

=

safeEval (Add e1 e2) =

case (safeEval e1) of

Nothing -> Nothing

Just n1 -> case safeEval e2 of

Nothing -> Nothing

Just n2 -> (Just n1 + n2)

Good excercise: verify the other cases.
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Maybe Viewed as a Computation (1)

• Consider a value of type Maybe a as
denoting a computation of a value of type a
that may fail .

• When sequencing possibly failing
computations, a natural choice is to fail
overall once a subcomputation fails.

• I.e. failure is an effect , implicitly affecting
subsequent computations.

• Let’s generalize and adopt names reflecting
our intentions.
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Maybe Viewed as a Computation (2)

Successful computation of a value:

mbReturn :: a -> Maybe a

mbReturn = Just

Sequencing of possibly failing computations:

mbSeq :: Maybe a -> (a -> Maybe b) -> Maybe b

mbSeq ma f =

case ma of

Nothing -> Nothing

Just a -> f a
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Maybe Viewed as a Computation (3)

Failing computation:

mbFail :: Maybe a

mbFail = Nothing
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The Safe Evaluator Revisited

safeEval :: Exp -> Maybe Integer

safeEval (Lit n) = mbReturn n

safeEval (Add e1 e2) =

safeEval e1 ‘mbSeq‘ \n1 ->

safeEval e2 ‘mbSeq‘ \n2 ->

mbReturn (n1 + n2)

...

safeEval (Div e1 e2) =

safeEval e1 ‘mbSeq‘ \n1 ->

safeEval e2 ‘mbSeq‘ \n2 ->

if n2 == 0 then mbFail

else mbReturn (n1 ‘div‘ n2)))
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Example 2: Numbering Trees

data Tree a = Leaf a | Node (Tree a) (Tree a)

numberTree :: Tree a -> Tree Int

numberTree t = fst (ntAux t 0)

where

ntAux :: Tree a -> Int -> (Tree Int,Int)

ntAux (Leaf _) n = (Leaf n, n+1)

ntAux (Node t1 t2) n =

let (t1’, n’) = ntAux t1 n

in let (t2’, n’’) = ntAux t2 n’

in (Node t1’ t2’, n’’)

LiU-FP2010 Part II: Lecture 4 – p.35/52

Observations

• Repetitive pattern: threading a counter
through a sequence of tree numbering
computations .

• It is very easy to pass on the wrong version of
the counter!

Can we do better?
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Stateful Computations (1)

• A stateful computation consumes a state
and returns a result along with a possibly
updated state.

• The following type synonym captures this
idea:
type S a = Int -> (a, Int)

(Only Int state for the sake of simplicity.)
• A value (function) of type S a can now be

viewed as denoting a stateful computation
computing a value of type a.
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Stateful Computations (2)

• When sequencing stateful computations, the
resulting state should be passed on to the
next computation.

• I.e. state updating is an effect , implicitly
affecting subsequent computations.
(As we would expect.)
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Stateful Computations (3)

Computation of a value without changing the
state (For ref.: S a = Int -> (a, Int)):

sReturn :: a -> S a

sReturn a = \n -> (a, n)

Sequencing of stateful computations:

sSeq :: S a -> (a -> S b) -> S b

sSeq sa f = \n ->

let (a, n’) = sa n

in f a n’
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Stateful Computations (4)

Reading and incrementing the state
(For ref.: S a = Int -> (a, Int)):

sInc :: S Int

sInc = \n -> (n, n + 1)

LiU-FP2010 Part II: Lecture 4 – p.40/52



Numbering trees revisited
data Tree a = Leaf a | Node (Tree a) (Tree a)

numberTree :: Tree a -> Tree Int

numberTree t = fst (ntAux t 0)

where

ntAux :: Tree a -> S (Tree Int)

ntAux (Leaf _) =

sInc ‘sSeq‘ \n -> sReturn (Leaf n)

ntAux (Node t1 t2) =

ntAux t1 ‘sSeq‘ \t1’ ->

ntAux t2 ‘sSeq‘ \t2’ ->

sReturn (Node t1’ t2’)
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Observations

• The “plumbing” has been captured by the
abstractions.

• In particular:
- counter no longer manipulated directly
- no longer any risk of “passing on” the

wrong version of the counter!
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Comparison of the examples
• Both examples characterized by sequencing

of effectful computations.
• Both examples could be neatly structured by

introducing:
- A type denoting computations
- A function constructing an effect-free

computation of a value
- A function constructing a computation by

sequencing computations
• In fact, both examples are instances of the

general notion of a MONAD.
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Monads in Functional Programming

A monad is represented by:
• A type constructor

M :: * -> *
M T represents computations of a value of type T.

• A polymorphic function
return :: a -> M a

for lifting a value to a computation.
• A polymorphic function

(>>=) :: M a -> (a -> M b) -> M b

for sequencing computations.
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Exercise 2: join and fmap

Equivalently, the notion of a monad can be
captured through the following functions:

return :: a -> M a
join :: (M (M a)) -> M a
fmap :: (a -> b) -> (M a -> M b)

join “flattens” a computation, fmap “lifts” a
function to map computations to computations.

Define join and fmap in terms of >>= (and
return), and >>= in terms of join and fmap.

(>>=) :: M a -> (a -> M b) -> M b
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Exercise 2: Solution

join :: M (M a) -> M a

join mm = mm >>= id

fmap :: (a -> b) -> M a -> M b

fmap f m = m >>= \a -> return (f a)

or:
fmap :: (a -> b) -> M a -> M b

fmap f m = m >>= return . f

(>>=) :: M a -> (a -> M b) -> M b

m >>= f = join (fmap f m)
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Monad laws

Additionally, the following laws must be satisfied:

return x >>= f = f x

m >>= return = m

(m >>= f) >>= g = m >>= (λx → f x >>= g)

I.e., return is the right and left identity for >>=,
and >>= is associative.
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Exercise 3: The Identity Monad

The Identity Monad can be understood as
representing effect-free computations:

type I a = a

1. Provide suitable definitions of return and
>>=.

2. Verify that the monad laws hold for your
definitions.
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Exercise 3: Solution
return :: a -> I a

return = id

(>>=) :: I a -> (a -> I b) -> I b

m >>= f = f m

-- or: (>>=) = flip ($)

Simple calculations verify the laws, e.g.:

return x >>= f = id x >>= f

= x >>= f

= f x
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Monads in Category Theory (1)

The notion of a monad originated in Category
Theory. There are several equivalent definitions
(Benton, Hughes, Moggi 2000):

• Kleisli triple/triple in extension form: Most
closely related to the >>= version:

A Klesili triple over a category C is a
triple (T, η, _∗), where T : |C| → |C|,
ηA : A → TA for A ∈ |C|, f ∗ : TA → TB
for f : A → TB.

(Additionally, some laws must be satisfied.)
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Monads in Category Theory (2)

• Monad/triple in monoid form: More akin to
the join/fmap version:

A monad over a category C is a triple
(T, η, µ), where T : C → C is a functor,
η : idC→̇T and µ : T 2→̇T are natural
transformations.

(Additionally, some commuting diagrams
must be satisfied.)
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Reading
• Philip Wadler. The Essence of Functional

Programming. Proceedings of the 19th ACM
Symposium on Principles of Programming Languages
(POPL’92), 1992.

• Nick Benton, John Hughes, Eugenio Moggi. Monads
and Effects. In International Summer School on
Applied Semantics 2000, Caminha, Portugal, 2000.

• All About Monads.
http://www.haskell.org/all_about_monads
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