Conundrum

“Shall | be pure or impure?” (Wadler, 1992)

« Absence of effects
- facilitates understanding and reasoning
- makes lazy evaluation viable
- allows choice of reduction order, e.g. parallel
University of Nottingham, UK - enhances modularity and reuse.

Henrik Nilsson

- Effects (state, exceptions, ...) can
- help making code concise
- facilitate maintenance
- improve the efficiency.

A Blessing and a Curse Example: A Compiler Fragment (1)
« The BIG advantage of pure functional Identification is the task of relating each applied
programming is identifier occurrence to its declaration or
“everything is explicit;” definition:

l.e., flow of data manifest, no side effects.
Makes it a lot easier to understand large

» The BIG problem with pure functional }

programml_ng '_S o In the body of set , the one applied occurrence of
“everything is explicit”

Can add a lot of clutter, make it hard to
maintain code * n refers to the argument n.

public class C {

« X refers to the instance variable x

LiU-FP2010 Part II: Lecture 4 —p.2/52 LiU-FP2010 Part II: Lecture 4 — p.4/52

Example: A Compiler Fragment (2) Example: A Compiler Fragment (4)

Consider an AST Exp for a simple expression Goals of the identification phase:
language. Exp is a parameterized type: the type
parameter a allows varlables to be annotated
with ax_attribute of type

« Annotate each applied identifier occurrence
with attributes of the corresponding variable
declaration.

data Exp l.e., map unannotateg Exp () to

Litlnt | nt ASTEprttr

« Report conflicting valiable definitions and
Unqupp UnQO (Exp a)

I

| fined variables.
| BinOApp BinOp (Exp a) (Exp a)

I

|

| f (Exp a) (Exp a) (Exp a) identification ::
Let [(1d, Type, Exp a)] (Exp a) -> (Exp Aty Error gD

_ H TR e mpase _

Example: A Compiler Fragment (3) Example: A Compiler Fragment (5)

Example: Before Identification

Example: The following code fragment

Let "x", IntType, Litlnt 7
let int x =7 in x + 35 [(yp)]

(Bi nOpApp Pl us
would be represented like this (before (Var "x" ())
identification): (Litint 35))
Let [("x", IntType, Litint 7)] After identification:
(Bi nOpApp Pl us Let [("x", IntType, Litint 7)]
(Var "x" ()) (Bi nOpApp Pl us
(Litlnt 35)) (Var "x" (1, IntType))
(Litlnt 35))

_ p TR et Tpes2 _

Example: A Compiler Fragment (6)

ent er Var inserts a variable at the given scope
level and of the given type into an environment.

» Check that no variable with same name has
been defined at the same scope level.

« If not, the new variable is entered, and the
resulting environment s returned.

« Otherwise aNerror message is returned.

entervVar :: Id ->

> B ther (B ErorMeD
_ PO Farly Lesre - paloE

Example: A Compiler Fragment (7)

Functions that do the real work:

i dent Aux ::
Int -> Env -> Exp ()
-> (Exp Attr, [ErrorMsg])

i dent Defs :
Int -> Env -> [(Id, Type, Exp ())]
-> ([(1d, Type, Exp Attr)],
Env,
[ErrorMsg])

_ puro R e proee

Example: A Compiler Fragment (8)

identDefs | env [] = (][], env, [])
identDefs | env ((i,t,e) : ds) =

((i,t,e’) : ds’, env'’, nmel++ne2++nE3)
wher e
(e', mel) = identAux | env e
(env', me2) =
case enterVar i | t env of

Left env’ -> (env', [])
Right m ->(env, [mM)
(ds’, env'’', nme3) =
identDefs | env’ ds

°

Example: A Compiler Fragment (9)

Error checking and collection of error messages
arguably added a lot of clutter . The core of the
algorithm is this:

identDefs | env [] = ([], env)
identDefs | env ((i,t,e) : ds) =
((i,t,e’) : ds’, env'’)

wher e
e’ = ijdentAux | env e
env’ = enterVar i | t env

(ds’, env'’) identDefs | env’ ds

Errors are just a side effect .

LiU-FP2010 Part II: Lecture 4 — p.12/52

ThisLecture

Answer to Conundrum: Monads (1)

« Monads bridges the gap: allow effectful
programming in a pure setting. Pragmatic introduction to monads:

» Key idea: Computational types : an object of

type M A denotes a computation of an "
object of type A. « ldentifying a common pattern

- Thus we shall be both pure and impure, * Monads as a design pattern
whatever takes our fancy!

« Effectful computations

« Monads originated in Category Theory.

« Adapted by
- Moggi for structuring denotational semantics

Wcturing functional programs
Answer to Conundrum: Monads (2) Example 1. A Simple Evaluator

Monads data Exp = Lit Integer
 promote disciplined use of effects since the | Add Exp Exp
type reflects which effects can occur; | Sub Exp Exp
- allow great flexibility in tailoring the effect | Ml Bxp Bxp
structure to precise needs; | Div Bxp Bxp
« support changes to the effect structure with eval :: Exp -> Integer
minimal impact on the overall program structure; eval (Lit n) -
- allow integration into a pure setting of real eval (Add el e2) = eval el + eval e2
effects such as eval (Sub el e2) = eval el - eval e2
- 1/O eval (Mul el e2) = eval el * eval e2

. eval (Div el e2) eval el ‘div' eval e2
LiU-FP2010 Part II: Lecture 4 — p.14/52 _ LiU-FP2010 Part II: Lecture 4 — p.16/52

Making the Evaluator Safe (1)

data Maybe a = Nothing | Just a

safeEval :: Exp -> Maybe Integer
safeEval (Lit n) = Just n
saf eEval (Add el e2) =
case safeEval el of
Not hi ng -> Not hi ng
Just nl1 ->
case safeEval e2 of
Not hi ng -> Not hi ng

Just n2 -> Just (nl + n2)

LiU-FP2010 Part II: Lecture 4 — p.17/52

Making the Evaluator Safe (2)

safeEval (Sub el e2) =
case safeEval el of
Not hi ng -> Not hi ng
Just nl1 ->
case safeEval e2 of
Not hi ng -> Not hi ng
Just n2 -> Just (nl -

n2)

LiU-FP2010 Part II: Lecture 4 — p.18/52

Making the Evaluator Safe (3)

saf eEval (Mul el e2) =
case safeEval el of
Not hi ng -> Not hi ng
Just nl ->
case saf eEval e2 of
Not hi ng -> Not hi ng

Just n2 -> Just (nl * n2)

LiU-FP2010 Part II: Lecture 4 — p.19/52

Making the Evaluator Safe (4)

safeEval (Div el e2) =
case safeEval el of
Not hi ng -> Not hi ng
Just nl ->
case saf eEval e2 of
Not hi ng -> Not hi ng
Just n2 ->
if n2 ==
t hen Not hi ng

el se Just (nl ‘div' n2)

LiU-FP2010 Part II: Lecture 4 — p.20/52

Any Common Pattern?

Clearly a lot of code duplication!
Can we factor out a common pattern?

We note:

« Sequencing of evaluations (or
computations).

- |f one evaluation fails, fail overall.

» Otherwise, make result available to following
evaluations.

Sequencing Evaluations

eval Seq :: Maybe Integer
-> (I nteger -> Maybe I nteger)
-> Maybe | nt eger
eval Seq ma f =
case ma of
Not hi ng -> Not hi ng
Just a ->f a

LiU-FP2010 Part II: Lecture 4 — p.21/52

LiU-FP2010 Part II: Lecture 4 — p.22/52

Exercise 1. Refactoring saf eEval

Rewrite saf eEval , case Add, using eval Seq:
saf eEval (Add el e2) =
[gasel saf eEval el [Gf

nl BB
[gasel saf eEval e2 [ofll

PUSH n2 B3 Just (nl + n2)

eval Seq ma f =

[casel ma [Gf

a B3 f a

LiU-FP2010 Part II: Lecture 4 — p.23/52

Exercise 1: Solution

safeEval :: Exp -> Maybe | nteger
safeEval (Add el e2) =
eval Seq (safeEval el)
(\nl -> eval Seq (safeEval e2)
(\n2 -> Just (nl1+n2)))

or

safeEval :: Exp -> Maybe I nteger

safeEval (Add el e2) =
saf eEval el ‘eval Seq' (\nl ->
saf eEval e2 ‘eval Seq' (\n2 ->
Just (nl + n2)))

LiU-FP2010 Part II: Lecture 4 — p.24/52

Aside: Scope Rules of A\-abstractions Refactored Safe Evaluator (2)

The scope rules of A-abstractions are such that saf ebval (Ml el e2) =
parentheses can be omitted: saf eEval el ‘eval Seq® \nl ->
saf eEval :: Exp -> '\/aybe | nt eger saf eEval e2 ‘eval Seq‘ \n2 ->
Just (nl * n2)
saf eEval (Add el e2) = safeEval (Div el e2) =
saf eEval el ‘eval Seq' \nl -> safeEval el ‘eval Seq’ \nl ->
saf eEval e2 ‘eval Seq* \n2 -> saf eEval e2 ‘eval Seq" \n2 ->
Just (nl + n2) if n2 ==
t hen Not hi ng

el se Just (nl ‘div' n2)

_ pu TR tecure a2 _ pure R tecure - p a2

Refactored Safe Evaluator (1) Inlining eval Seq (1)

safeEval :: Exp -> Maybe Integer saf eEval (Add el e2) =

safeEval (Lit n) = Just n safeEval el ‘eval Seq® \nl ->

saf eEval (Add el e2) = saf eEval e2 ‘eval Seq' \n2 ->
safeEval el ‘eval Seq’ \nl -> Just (nl + n2)

saf eEval e2 ‘eval Seq* \n2 ->
Just (nl + n2)

safeEval (Sub el e2) =
saf eEval el ‘eval Seq’ \nl ->
saf eEval e2 ‘eval Seq' \n2 ->
Just (nl - n2)

safeEval (Add el e2) =

case (safeEval el) of

Not hi ng -> Not hi ng
Just a -> (\nl -> safeEval e2 ...) a

_ pu TR tecure a2 _ p TR tecure a2

Inlining eval Seq (2)

safeEval (Add el e2) =

case (safeEval el) of

Not hi ng -> Not hi ng
Just nl -> safeEval e2 ‘eval Seq’ (\n2 -> ...)

saf eEval (Add el e2) =
case (safeEval el) of
Not hi ng -> Not hi ng
Just nl -> case safeEval e2 of
Not hi ng -> Not hi ng
Just a -> (\n2 ->...) a

LiU-FP2010 Part II: Lecture 4 — p.29/52

Inlining eval Seq (3)

safeEval (Add el e2) =
case (safeEval el) of
Not hi ng -> Not hi ng
Just nl -> case safeEval e2 of
Not hi ng -> Not hi ng
Just n2 -> (Just nl + n2)

Good excercise: verify the other cases.

LiU-FP2010 Part II: Lecture 4 — p.30/52

Maybe Viewed as a Computation (1)

« Consider a value of type Maybe a as
denoting a computation of a value of type a
that may fail .

« When sequencing possibly failing
computations, a natural choice is to fail
overall once a subcomputation fails.

« l.e. failure is an effect , implicitly affecting
subsequent computations.

« Let's generalize and adopt names reflecting
our intentions.

LiU-FP2010 Part II: Lecture 4 - p.31/52

Vaybe Viewed as a Computation (2)

Successful computation of a value:

nbReturn :: a -> Maybe a
nbRet urn = Just

Sequencing of possibly failing computations:

nbSeq :: Maybe a -> (a -> Maybe b) -> Maybe b
nmbSeq ma f =
case ma of
Not hi ng -> Not hi ng
Just a ->f a

LiU-FP2010 Part II: Lecture 4 — p.32/52

Maybe Viewed as a Computation (3)

Failing computation:

nmbFail :: Maybe a
nmbFai | = Not hi ng

The Safe Evaluator Revisited

saf eEval :: Exp -> Maybe | nteger
safeEval (Lit n) = nbReturn n
safeEval (Add el e2) =
saf eEval el ‘nbSeq’ \nl ->
safeEval e2 ‘nbSeq' \n2 ->
nbReturn (nl + n2)

safekEval (Div el e2) =
safeEval el ‘nbSeq' \nl ->
saf eEval e2 ‘nbSeq’ \n2 ->
if n2 == 0 then nbFai
el se nmbReturn (nl ‘div' n2)))

LiU-FP2010 Part II: Lecture 4 — p.33/52

LiU-FP2010 Part II: Lecture 4 — p.34/52

Example 2: Numbering Trees

data Tree a = Leaf a | Node (Tree a) (Tree a)

nunber Tree :: Tree a -> Tree Int
nunberTree t = fst (ntAux t 0)
wher e
ntAux :: Tree a ->1Int -> (Tree Int,Int)
nt Aux (Leaf _) n (Leaf n, n+l1)
nt Aux (Node t1 t2) n =
let (t1’, n) = ntAux tl n
inlet (t2°, n’) = ntAux t2 n’
in (Node t1" t2', n'")

LiU-FP2010 Part II: Lecture 4 - p.35/52

Observations

» Repetitive pattern: threading a counter
through a sequence of tree numbering
computations .

« It is very easy to pass on the wrong version of
the counter!

Can we do better?

LiU-FP2010 Part II: Lecture 4 — p.36/52

Stateful Computations (1)

+ A stateful computation consumes a state
and returns a result along with a possibly
updated state.

« The following type synonym captures this
idea:
type Sa=1Int -> (a, Int)
(Only I nt state for the sake of simplicity.)
« A value (function) of type S a can now be

viewed as denoting a stateful computation
computing a value of type a.

Stateful Computations (2)

» When sequencing stateful computations, the
resulting state should be passed on to the
next computation.

« |.e. state updating is an effect , implicitly
affecting subsequent computations.
(As we would expect.)

Stateful Computations (3)

Computation of a value without changing the
state (Forref. S a = Int -> (a, Int)):

sReturn :: a -> S a
SReturn a = \n -> (a, n)

Sequencing of stateful computations:
sSeq :: Sa->(a->Shbh) ->Sb
sSeq sa f =\n ->

let (a, nN) =san
inf an

Stateful Computations (4)

Reading and incrementing the state
(Forref: S a = Int -> (a, Int)):

slnc :: S Int
slnc =\n ->(n, n+ 1)

Numbering treesrevisited Comparison of the examples

data Tree a = Leaf a | Node (Tree a) (Tree a) » Both examples chargcterized by sequencing
of effectful computations.
nunberTree :: Tree a -> Tree Int « Both examples could be neatly structured by
nunber Tree t = fst (ntAux t 0) introducing:
wher e - A type denoting computations
ntAux :: Tree a -> S (Tree Int)

- A function constructing an effect-free
computation of a value

- A function constructing a computation by
seqguencing computations

nt Aux (Leaf) =

slnc ‘sSeq' \n -> sReturn (Leaf n)
nt Aux (Node t1 t2) =

ntAux tl1 ‘sSeq’ \tl ->

ntAux t2 ‘sSeq' \t2' -> « In fact, both examples are instances of the
sReturn (Node t1' t2') general notion of a MONAD.

Observations Monadsin Functional Programming

» The “plumbing” has been captured by the A monad is represented by:

abstractions. » A type constructor
M:: *» -> «

M T represents computations of a value of type T.

« In particular:
- counter no longer manipulated directly

- no longer any risk of “passing on” the + A polymorphic function
wrong version of the counter! return :: a -> Ma

for lifting a value to a computation.
A polymorphic function
(>>=) :: Ma->(a->Mb) ->Mb
for sequencing computations.

_ puro TR tecure s paaee _ pre R tecureap a2

Exercise2: | oi nand f map

Equivalently, the notion of a monad can be
captured through the following functions:

return :: a -> Ma

join :: (M(Ma)) -> Ma

frap :: (a ->b) ->(Ma -> Mb)
] oi n “flattens” a computation, f map “lifts” a
function to map computations to computations.

Define j oi n and f map in terms of >>= (and
ret urn), and >>=in terms of j oi n and f map.

(>>=) :: Ma->(a->Mb) ->Mb

_ purRe R tecure - pasee

Exercise 2: Solution

join:: M(Ma) -> Ma
join mm= mm >>= id

frap :: (a->b) ->Ma->Mb
fmap f m= m>>=\a ->return (f a)
or:

frap :: (a->Db) ->Ma->Mb
frmap f m= m>>=return . f

(>>=) :: Ma->(a->Mb) ->Mb
m>>=f =join (fmap f m

LiU-FP2010 Part II: Lecture 4 — p.46/52

Monad laws

Additionally, the following laws must be satisfied:

returnz>>=f = fux
m>>=return = m
(m >>= f) >>= g = m>>= (/\a;—>fx>>= g)

l.e., r et ur n is the right and left identity for >>=,
and >>= |s associative.

°

Exercise 3. Theldentity Monad

The Identity Monad can be understood as
representing effect-free computations:

type | a = a
1. Provide suitable definitions of r et ur n and
>>=,

2. Verify that the monad laws hold for your
definitions.

_ p TR tecure A p a2

Exercise 3. Solution Monadsin Category Theory (2)

return :: a->1 a
return = id . Monao!/tnple in monpld form: More akin to
the j oi n/f map version:
(>>=) :: 1l a->(a->1Dh) ->1 b A monad overacategory.C Is a triple
m>>=f =f m (T,n,), where T : C — C is a functor,
- or: (>>=) =flip (9$) n :ide—T and p : T?-T are natural
transformations.
Simple calculations verify the laws, e.g.: (Additionally, some commuting diagrams
returnz>>=f = idae>>=f must be satisfied.)
= f T

_ purRe TR tecure - pasee _ pure R tecure o2

i onadsin Category Theory ()

* Philip Wadler. The Essence of Functional
Programming. Proceedings of the 19th ACM
Symposium on Principles of Programming Languages
(POPL92), 1992.

* Nick Benton, John Hughes, Eugenio Moggi. Monads
and Effects. In International Summer School on

The notion of a monad originated in Category
Theory. There are several equivalent definitions
(Benton, Hughes, Moggi 2000):

« Kleisli triple/triple in extension form: Most
closely related to the >>= version:

A_ Klesili trlple over a category Cisa Applied Semantics 2000, Caminha, Portugal, 2000.
triple (7,n, _*), where T': |C| — |C|,

ﬁAA->TAfOfA€‘C|,f*TA—>TB e All About Monads.

for f: A — TB. http://ww. haskel | . org/all _about nonads

(Additionally, some laws must be satisfied.)

_ p TR tecurep e _ p TR tecureapsee2

	A Blessing and a Curse
	Conundrum
	Example: A Compiler Fragment (1)
	Example: A Compiler Fragment (2)
	Example: A Compiler Fragment (3)
	Example: A Compiler Fragment (4)
	Example: A Compiler Fragment (5)
	Example: A Compiler Fragment (6)
	Example: A Compiler Fragment (7)
	Example: A Compiler Fragment (8)
	Example: A Compiler Fragment (9)
	Answer to Conundrum: Monads (1)
	Answer to Conundrum: Monads (2)
	This Lecture
	Example 1: A Simple Evaluator
	Making the Evaluator Safe (1)
	Making the Evaluator Safe (2)
	Making the Evaluator Safe (3)
	Making the Evaluator Safe (4)
	Any Common Pattern?
	Sequencing Evaluations
	Exercise 1: Refactoring 	exttt {safeEval}
	Exercise 1: Solution
	Aside: Scope Rules of $lambda $-abstractions
	Refactored Safe Evaluator (1)
	Refactored Safe Evaluator (2)
	Inlining 	exttt {evalSeq} ; (1)
	Inlining 	exttt {evalSeq} ; (2)
	Inlining 	exttt {evalSeq} ; (3)
		exttt {Maybe} Viewed as a Computation (1)
		exttt {Maybe} Viewed as a Computation (2)
		exttt {Maybe} Viewed as a Computation (3)
	The Safe Evaluator Revisited
	Example 2: Numbering Trees
	Observations
	Stateful Computations (1)
	Stateful Computations (2)
	Stateful Computations (3)
	Stateful Computations (4)
	Numbering trees revisited
	Observations
	Comparison of the examples
	Monads in Functional Programming
	Exercise 2: 	exttt {join} and 	exttt {fmap}
	Exercise 2: Solution
	Monad laws
	Exercise 3: The Identity Monad
	Exercise 3: Solution
	Monads in Category Theory (1)
	Monads in Category Theory (2)
	Reading

