
LiU-FP2010 Part II: Lecture 5
Type Classes

Henrik Nilsson

University of Nottingham, UK

LiU-FP2010 Part II: Lecture 5 – p.1/27

Haskell Overloading (1)

What is the type of (==)?

E.g. the following both work:

1 == 2
’a’ == ’b’

I.e., (==) can be used to compare both numbers
and characters.

Maybe (==) :: a -> a -> Bool?

No!!! Cannot work uniformly for arbitrary
types!

LiU-FP2010 Part II: Lecture 5 – p.2/27

Haskell Overloading (2)

A function like the identity function

id :: a -> a id x = x

is polymorphic precisely because it works
uniformly for all types: there is no need to
“inspect” the argument.

In contrast, to compare two “things” for equality,
they very much have to be inspected, and an
appropriate method of comparison needs to
be used.

LiU-FP2010 Part II: Lecture 5 – p.3/27

Haskell Overloading (3)

Moreover, some types do not in general admit a
decidable equality. E.g. functions (when domain
infinite).

Similar remarks apply to many other types. E.g.:
• We may want to be able to add numbers of

any kind
• But to add properly, we must understand what

we are adding
• Not every type admits addition

LiU-FP2010 Part II: Lecture 5 – p.4/27

Haskell Overloading (4)

Idea:
• Introduce the notion of a type class : a set of

types that support certain related operations.
• Constrain those operations to only work for

types belonging to the corresponding class.
• Allow a type to be made an instance of

(added to) a type class by providing
type-specific implementations of the
operations of the class.

LiU-FP2010 Part II: Lecture 5 – p.5/27

The Type Class Eq

class Eq a where
(==) :: a -> a -> Bool

(==) is not a function, but a method of the type
class Eq. It’s type signature is:

(==) :: Eq a => a -> a -> Bool

Eq a is a class constraint . It says that that the
equality method works for any type belonging to
the type class Eq.

LiU-FP2010 Part II: Lecture 5 – p.6/27

Instances of Eq (1)

Various types can be made instances of a type
class like Eq by providing implementations of the
class methods for the type in question:

instance Eq Int where
x == y = primEqInt x y

instance Eq Char where
x == y = primEqChar x y

LiU-FP2010 Part II: Lecture 5 – p.7/27

Instances of Eq (2)

Suppose we have a data type:

data Answer = Yes | No | Unknown

We can make Answer an instance of Eq as follows:

instance Eq Answer where
Yes == Yes = True
No == No = True
Unknown == Unknown = True
_ == _ = False

LiU-FP2010 Part II: Lecture 5 – p.8/27

Instances of Eq (3)

Consider:

data Tree a = Leaf a
| Node (Tree a) (Tree a)

Can Tree be made an instance of Eq?

LiU-FP2010 Part II: Lecture 5 – p.9/27

Instances of Eq (4)

Yes, for any type a that is already an instance of Eq:
instance (Eq a) => Eq (Tree a) where

Leaf a1 == Leaf a2 = a1 == a2

Node t1l t1r == Node t2l t2r = t1l == t2l

&& t1r == t2r

_ == _ = False

LiU-FP2010 Part II: Lecture 5 – p.10/27

Derived Instances

Instance declarations are often obvious and
mechanical. Thus, for certain built-in classes
(notably Eq, Ord, Show), Haskell provides a way
to automatically derive instances, as long as

• the data type is sufficiently simple
• we are happy with the standard definitions

Thus, we can do:

data Tree a = Leaf a
| Node (Tree a) (Tree a)
deriving Eq

LiU-FP2010 Part II: Lecture 5 – p.11/27

Class Hierarchy

Type classes form a hierarchy. E.g.:

class Eq a => Ord a where
(<=) :: a -> a -> Bool
...

Eq is a superclass of Ord; i.e., any type in Ord
must also be in Eq.

LiU-FP2010 Part II: Lecture 5 – p.12/27

Haskell vs. OO Overloading (1)

A method, or overloaded function, may thus be
understood as a family of functions where the
right one is chosen depending on the types.

A bit like OO languages like Java. But the
underlying mechanism is quite different and
much more general. Consider read:

read :: (Read a) => String -> a

Note: overloaded on the result type! A method
that converts from a string to any other type in
class Read!

LiU-FP2010 Part II: Lecture 5 – p.13/27

Haskell vs. OO Overloading (2)

> let xs = [1,2,3] :: [Int]
> let ys = [1,2,3] :: [Double]
> xs
[1,2,3]
> ys
[1.0,2.0,3.0]
> (read "42" : xs)
[42,1,2,3]
> (read "42" : ys)
[42.0,1.0,2.0,3.0]
> read "’a’" :: Char
’a’

LiU-FP2010 Part II: Lecture 5 – p.14/27

Implementation (1)

The class constraints represent extra implicit
arguments that are filled in by the compiler.
These arguments are (roughly) the functions to
use.

Thus, internally (==) is a higher order function
with three arguments:

(==) eqF x y = eqF x y

LiU-FP2010 Part II: Lecture 5 – p.15/27

Implementation (2)

An expression like

1 == 2

is essentially translated into

(==) primEqInt 1 2

LiU-FP2010 Part II: Lecture 5 – p.16/27

Implementation (3)

So one way of understanding a type like

(==) :: Eq a => a -> a -> Bool

is that Eq a corresponds to an extra implicit
argument.
The implicit argument corresponds to a so called
directory, or tuple/record of functions, one for
each method of the type class in question.

LiU-FP2010 Part II: Lecture 5 – p.17/27

Some Standard Haskell Classes (1)

class Eq a where

(==), (/=) :: a -> a -> Bool

class (Eq a) => Ord a where

compare :: a -> a -> Ordering

(<), (<=), (>=), (>) :: a -> a -> Bool

max, min :: a -> a -> a

class Show a where

show :: a -> String

LiU-FP2010 Part II: Lecture 5 – p.18/27

Some Standard Haskell Classes (2)

class (Eq a, Show a) => Num a where

(+), (-), (*) :: a -> a -> a

negate :: a -> a

abs, signum :: a -> a

fromInteger :: Integer -> a

Quiz: What is the type of a numeric literal like 42?
42 :: Int? Why?

LiU-FP2010 Part II: Lecture 5 – p.19/27

Application: Automatic Differentiation

• Automatic Differentiation : method for
augmenting code so that derivative(s)
computed along with main result.

• Purely algebraic method: arbitrary code can
be handled

• Exact results
• But no separate, self-contained

representation of the derivative.

LiU-FP2010 Part II: Lecture 5 – p.20/27

Automatic Differentiation: Key Idea
Consider a code fragment:

z1 = x + y
z2 = x * z1

Suppose the derivatives of x and y w.r.t. common
variable is available in the variables x’ and y’.

Then code can be augmented to compute
derivatives of z1 and z2:

z1 = x + y
z1’ = x’ + y’
z2 = x * z1
z2’ = x’ * z1 + x * z1’

LiU-FP2010 Part II: Lecture 5 – p.21/27

Approaches

• Source-to-source translation
• Overloading of arithmetic operators and

mathematical functions

The following variation is due to Jerzy
Karczmarczuk. Infinite list of derivatives allows
derivatives of arbitrary order to be computed.

LiU-FP2010 Part II: Lecture 5 – p.22/27

Functional Automatic Differentiation (1)

Introduce a new numeric type C: value of a
continuously differentiable function at a point
along with all derivatives at that point:

data C = C Double C

valC (C a _) = a
derC (C _ x’) = x’

LiU-FP2010 Part II: Lecture 5 – p.23/27

Functional Automatic Differentiation (2)

Constants and the variable of differentiation:

zeroC :: C
zeroC = C 0.0 zeroC

constC :: Double -> C
constC a = C a zeroC

dVarC :: Double -> C
dVarC a = C a (constC 1.0)

LiU-FP2010 Part II: Lecture 5 – p.24/27

Functional Automatic Differentiation (3)
Part of numerical instance:

instance Num C where
(C a x’) + (C b y’) =

C (a + b) (x’ + y’)

(C a x’) - (C b y’) =
C (a - b) (x’ - y’)

x@(C a x’) * y@(C b y’) =
C (a * b) (x’ * y + x * y’)

fromInteger n =
constC (fromInteger n)LiU-FP2010 Part II: Lecture 5 – p.25/27

Functional Automatic Differentiation (4)

Computation of y = 3t2 + 7 at t = 2:

t = dVarC 2
y = 3 * t * t + 7

valC y ⇒ 19.0
valC (derC y) ⇒ 12.0
valC (derC (derC y)) ⇒ 6.0
valC (derC (derC (derC y))) ⇒ 0.0

LiU-FP2010 Part II: Lecture 5 – p.26/27

Reading

• Jerzy Karczmarczuk. Functional
differentiation of computer programs.
Higher-Order and Symbolic Computation,
14(1):35–57, March 2001.

LiU-FP2010 Part II: Lecture 5 – p.27/27

	Haskell Overloading (1)
	Haskell Overloading (2)
	Haskell Overloading (3)
	Haskell Overloading (4)
	The Type Class 	exttt {Eq}
	Instances of 	exttt {Eq} (1)
	Instances of 	exttt {Eq} (2)
	Instances of 	exttt {Eq} (3)
	Instances of 	exttt {Eq} (4)
	Derived Instances
	Class Hierarchy
	Haskell vs. OO Overloading (1)
	Haskell vs. OO Overloading (2)
	Implementation (1)
	Implementation (2)
	Implementation (3)
	Some Standard Haskell Classes (1)
	Some Standard Haskell Classes (2)
	Application: Automatic Differentiation
	Automatic Differentiation: Key Idea
	Approaches
	Functional Automatic Differentiation (1)
	Functional Automatic Differentiation (2)
	Functional Automatic Differentiation (3)
	Functional Automatic Differentiation (4)
	Reading

