LiU-FP2010 Part II: Lecture 5 Type Classes

Henrik Nilsson

University of Nottingham, UK

LiU-FP2010 Part II: Lecture 5 - p.1/27

LiU-FP2010 Part II: Lecture 5 - p.3/27

Haskell Overloading (2)

A function like the identity function

id :: a -> a id x = x

is *polymorphic* precisely because it works uniformly for all types: there is no need to "inspect" the argument.

In contrast, to compare two "things" for equality, they very much have to be inspected, and an *appropriate method of comparison* needs to be used.

Haskell Overloading (1)

What is the type of (==)?

E.g. the following both work:

1 == 2 'a' == 'b'

I.e., (==) can be used to compare both numbers and characters.

Maybe (==) :: a -> a -> Bool?

No!!! Cannot work uniformly for arbitrary types!

LiU-EP2010 Part II: Lecture 5 - p 2/27

LiU-EP2010 Part II: Lecture 5 - p.4/27

Haskell Overloading (3)

Moreover, some types do not in general admit a decidable equality. E.g. functions (when domain infinite).

Similar remarks apply to many other types. E.g.:

- We may want to be able to add numbers of any kind
- But to add properly, we must understand what we are adding
- Not every type admits addition

Haskell Overloading (4)

Idea:

- Introduce the notion of a type class: a set of types that support certain related operations.
- Constrain those operations to only work for types belonging to the corresponding class.
- Allow a type to be made an instance of (added to) a type class by providing type-specific implementations of the operations of the class.

Instances of Eq(1)

Various types can be made instances of a type class like Eq by providing implementations of the class methods for the type in question:

```
instance Eq Int where
    x == y = primEqInt x y
instance Eq Char where
    x == y = primEqChar x y
```

The Type Class Eq

class Eq a where
 (==) :: a -> a -> Bool

(==) is not a function, but a *method* of the *type class* Eq. It's type signature is:

(==) :: Eq a => a -> a -> Bool

Eq a is a *class constraint*. It says that that the equality method works for any type belonging to the type class Eq.

Instances of Eq (2)

Suppose we have a data type:

data Answer = Yes | No | Unknown

We can make Answer an instance of Eq as follows:

instance Eq	Answer wh	lere
Yes	== Yes	= True
No	== No	= True
Unknown	== Unknow	n = True
_	==	= False

LiU-EP2010 Part II: Lecture 5 - p 5/27

LiU-EP2010 Part II: Lecture 5 - p.6/27

Instances of Eq (3)

Consider:

```
data Tree a = Leaf a
            Node (Tree a) (Tree a)
```

Can Tree be made an instance of Eq?

Instances of Eq (4)

Yes, for any type a that is already an instance of Eq: instance (Eq a) => Eq (Tree a) where Leaf al == Leaf a2 = a1 == a2Node t1l t1r == Node t2l t2r = t1l == t2l && t1r == t2r= False == _

Derived Instances

Instance declarations are often obvious and mechanical. Thus, for certain built-in classes (notably Eq. Ord, Show), Haskell provides a way to automatically derive instances, as long as

- the data type is sufficiently simple
- we are happy with the standard definitions

Thus, we can do:

```
data Tree a = Leaf a
            Node (Tree a) (Tree a)
           deriving Eq
```

LiU-EP2010 Part II: Lecture 5 - p.11/27

Class Hierarchy

Type classes form a hierarchy. E.g.:

class Eq a => Ord a where (<=) :: a -> a -> Bool . . .

Eq is a superclass of Ord; i.e., any type in Ord must also be in Eq.

LiU-EP2010 Part II: Lecture 5 - p 10/27

Haskell vs. OO Overloading (1)

A method, or overloaded function, may thus be understood as a family of functions where the right one is chosen depending on the types.

A bit like OO languages like Java. But the underlying mechanism is quite different and much more general. Consider read:

read :: (Read a) => String -> a

Note: overloaded on the *result* type! A method that converts from a string to *any* other type in class Read!

Implementation (1)

The class constraints represent extra implicit arguments that are filled in by the compiler. These arguments are (roughly) the functions to use.

Thus, internally (==) is a *higher order function* with *three* arguments:

(==) eqF x y = eqF x y

Haskell vs. OO Overloading (2)

```
> let xs = [1,2,3] :: [Int]
> let ys = [1,2,3] :: [Double]
> xs
[1,2,3]
> ys
[1.0,2.0,3.0]
> (read "42" : xs)
[42,1,2,3]
> (read "42" : ys)
[42.0,1.0,2.0,3.0]
> read "'a'" :: Char
'a'
```

Implementation (2)

An expression like

1 == 2

is essentially translated into

(==) primEqInt 1 2

LiU-EP2010 Part II: Lecture 5 - p. 13/27

Implementation (3)

So one way of understanding a type like

(==) :: Eq a => a -> a -> Bool

is that $\mathbb{E}_{\mathbb{T}}$ a corresponds to an extra implicit argument.

The implicit argument corresponds to a so called directory, or tuple/record of functions, one for each method of the type class in question.

Some Standard Haskell Classes (2)

class (Eq a, Show a) => Num a where

(+), (-), (*)	::	a -> a -> a	
negate	::	a -> a	
abs, signum	::	a -> a	
fromInteger	::	Integer -> a	

Quiz: What is the type of a numeric literal like 42? 42 :: Int? Why?

Some Standard Haskell Classes (1)

class Eq a where
 (==), (/=) :: a -> a -> Bool

class Show a where

```
show :: a -> String
```

Application: Automatic Differentiation

- Automatic Differentiation: method for augmenting code so that derivative(s) computed along with main result.
- Purely algebraic method: arbitrary code can be handled
- Exact results
- But no separate, self-contained representation of the derivative.

LiU-EP2010 Part II: Lecture 5 - p 17/27

LiU-EP2010 Part II: Lecture 5 - p 18/27

Automatic Differentiation: Key Idea

Consider a code fragment:

```
z1 = x + y
z2 = x * z1
```

Suppose the derivatives of x and y w.r.t. common variable is available in the variables x' and y'.

Then code can be augmented to compute derivatives of z1 and z2:

$$z1 = x + y$$

 $z1' = x' + y'$
 $z2 = x * z1$
 $z2' = x' * z1 + x * z1'$

Functional Automatic Differentiation (1)

Introduce a new numeric type C: value of a continuously differentiable function at a point along with *all* derivatives at that point:

```
data C = C Double C
valC (C a _) = a
derC (C _ x') = x'
```

Approaches

- Source-to-source translation
- Overloading of arithmetic operators and mathematical functions

The following variation is due to Jerzy Karczmarczuk. Infinite list of derivatives allows derivatives of *arbitrary* order to be computed.

Functional Automatic Differentiation (2)

Constants and the variable of differentiation:

```
zeroC :: C
zeroC = C 0.0 zeroC
constC :: Double -> C
constC a = C a zeroC
dVarC :: Double -> C
dVarC a = C a (constC 1.0)
```

LiU-EP2010 Part II: Lecture 5 - p 22/27

Functional Automatic Differentiation (3)

Part of numerical instance:

Reading

 Jerzy Karczmarczuk. Functional differentiation of computer programs. *Higher-Order and Symbolic Computation*, 14(1):35–57, March 2001.

Functional Automatic Differentiation (4)

Computation of $y = 3t^2 + 7$ at t = 2:

t = dVarC 2 y = 3 * t * t + 7

valC y	\Rightarrow	19.0
valC (derC y)	\Rightarrow	12.0
<pre>valC (derC (derC y))</pre>	\Rightarrow	6.0
<pre>valC (derC (derC (derC y)))</pre>	\Rightarrow	0.0

LiU-EP2010 Part II: Lecture 5 - p 26/27