LiU-FP2010 Part II: Lecture 6

More about Monads and Other Notions of Effectful Computation

Henrik Nilsson

University of Nottingham, UK

Monads in Haskell

In Haskell, the notion of a monad is captured by a *Type Class*:

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

Allows names of the common functions to be overloaded and sharing of derived definitions.

This Lecture

- Monads in Haskell
- Some standard monads
- Combining effects: monad transformers
- Arrows
- FRP and Yampa

The Maybe Monad in Haskell

instance Monad Maybe where
 -- return :: a -> Maybe a
 return = Just

-- (>>=) :: Maybe a -> (a -> Maybe b) -- -> Maybe b Nothing >>= _ = Nothing (Just x) >>= f = f x

LiU-FP2010 Part II: Lecture 6 - p.1/83

LiU-FP2010 Part II: Lecture 6 - p.3/83

Exercise 1: A State Monad in Haskell

Haskell 98 does not permit type synonyms to be instances of classes. Hence we have to define a new type:

```
newtype S a = S (Int -> (a, Int))
```

```
unS :: S a -> (Int -> (a, Int))
unS (S f) = f
```

Provide a Monad instance for S.

Exercise 1: Solution

```
instance Monad S where
  return a = S (\s -> (a, s))

m >>= f = S $ \s ->
    let (a, s') = unS m s
    in unS (f a) s'
```

Monad-specific Operations (1)

To be useful, monads need to be equipped with additional operations specific to the effects in question. For example:

```
fail :: String -> Maybe a
fail s = Nothing
```

catch :: Maybe a -> Maybe a -> Maybe a
ml `catch` m2 =
 case ml of
 Just _ -> ml
 Nothing -> m2

Monad-specific Operations (2)

Typical operations on a state monad:

set :: Int -> S ()
set a = S (_ -> ((), a))

get :: S Int get = S (\s -> (s, s))

Moreover, need to "run" a computation. E.g.:

runS :: S a -> a
runS m = fst (unS m 0)

LiU-FP2010 Part II: Lecture 6 – p.6/83

LiU-EP2010 Part II: Lecture 6 - p.5/83

The do-notation (1)

Haskell provides convenient syntax for programming with monads:

a <- exp_1 b <- exp_2 return exp_3

do

is syntactic sugar for

```
exp_1 >>= \a ->
exp_2 >>= \b ->
return exp_3
```

The do-notation (2)

Computations can be done solely for effect, ignoring the computed value:

```
exp_1
exp_2
return exp_3
```

do

is syntactic sugar for

```
exp_1 >>= \backslash_- >
exp_2 >>= \backslash_- >
return exp_3
```

The do-notation (3)

A let-construct is also provided:

```
let a = exp_1
b = exp_2
return exp_3
```

is equivalent to

do

LiU-FP2010 Part II: Lecture 6 - p.9/83

LiU-FP2010 Part II: Lecture 6 - p.10/83

do

a <- return exp_1 b <- return exp_2 return exp_3

Numbering Trees in do-notation

```
numberTree :: Tree a -> Tree Int
numberTree t = runS (ntAux t)
where
ntAux :: Tree a -> S (Tree Int)
ntAux (Leaf _) = do
n <- get
set (n + 1)
return (Leaf n)
ntAux (Node t1 t2) = do
t1' <- ntAux t1
t2' <- ntAux t2
return (Node t1' t2')</pre>
```

LiU-EP2010 Part II: Lecture 6 - p 11/83

The Compiler Fragment Revisited (1)

Given a suitable "Diagnostics" monad D that collects error messages, enterVar can be turned from this:

enterVar :: Id -> Int -> Type -> Env -> Either Env ErrorMgs

into this:

enterVarD :: Id -> Int -> Type -> Env -> D Env

and then identDefs from this ...

The Compiler Fragment Revisited (2)

Lil LEP2010 Part II: Locture 6 - p 12/93

LiU-EP2010 Part II: Lecture 6 - p.14/83

```
identDefs l env [] = ([], env, [])
identDefs l env ((i,t,e) : ds) =
  ((i,t,e') : ds', env'', ms1++ms2++ms3)
where
  (e', ms1) = identAux l env e
  (env', ms2) =
      case enterVar i l t env of
      Left env' -> (env', [])
      Right m -> (env, [m])
  (ds', env'', ms3) =
      identDefs l env' ds
```

The Compiler Fragment Revisited (3)

into this:

(Suffix D just to remind us the types have changed.)

The Compiler Fragment Revisited (4)

LiU-EP2010 Part II: Lecture 6 - p 15/83

LiU-EP2010 Part II: Lecture 6 - p 16/83

Compare with the "core" identified earlier!

```
identDefs l env [] = ([], env)
identDefs l env ((i,t,e) : ds) =
  ((i,t,e') : ds', env'')
  where
    e' = identAux l env e
    env' = enterVar i l t env
    (ds', env'') = identDefs l env' ds
```

The monadic version is very close to ideal, without sacrificing functionality, clarity, or pureness!

The List Monad

Computation with many possible results, "nondeterminism":

```
instance Monad [] where
   return a = [a]
   m >>= f = concat (map f m)
   fails = []
```


Result:

return (x,y)

x <- [1, 2] [(1,'a'),(1,'b'), y <- ['a', 'b'] (2, 'a'), (2, 'b')]

LiU-FP2010 Part II: Lecture 6 - p.17/83

The Reader Monad

Computation in an environment:

```
instance Monad ((->) e) where
    return a = const a
    m >>= f = \langle e -> f (m e) e
getEnv :: ((->) e) e
getEnv = id
```

The Haskell IO Monad

In Haskell, IO is handled through the IO monad. IO is *abstract*! Conceptually:

newtype IO a = IO (World -> (a, World))

Some operations:

putChar	::	Char -> IO ()				
putStr	::	String -> IO ()				
putStrLn	::	String -> IO ()				
getChar	::	IO Char				
getLine	::	IO String				
getContents	::	String				

Monad Transformers (1)

What if we need to support more than one type of effect?

For example: State and Error/Partiality?

We could implement a suitable monad from scratch:

newtype SE s a = SE $(s \rightarrow Maybe (a, s))$

LiU-EP2010 Part II: Lecture 6 - p 19/83

Monad Transformers (2)

However:

• Not always obvious how: e.g., should the combination of state and error have been

newtype SE s a = SE (s -> (Maybe a, s))

LiU-EP2010 Part II: Lecture 6 - p.21/83

LiU-EP2010 Part II: Lecture 6 - p.22/83

• Duplication of effort: similar patterns related to specific effects are going to be repeated over and over in the various combinations.

Monad Transformers (3)

Monad Transformers can help:

- A *monad transformer* transforms a monad by adding support for an additional effect.
- A library of monad transformers can be developed, each adding a specific effect (state, error, ...), allowing the programmer to mix and match.
- A form of *aspect-oriented programming*.

Monad Transformers in Haskell (1)

 A monad transformer maps monads to monads. Represented by a type constructor T of the following kind:

T :: (* -> *) -> (* -> *)

 Additionally, a monad transformer adds computational effects. A mapping lift from computations in the underlying monad to computations in the transformed monad is needed:

LiU-EP2010 Part II: Lecture 6 - p 23/83

LiU-FP2010 Part II: Lecture 6 - p.24/83

lift :: M a -> T M a

Monad Transformers in Haskell (2)

• These requirements are captured by the following (multi-parameter) type class:

class (Monad m, Monad (t m))
 => MonadTransformer t m where
 lift :: m a -> t m a

Classes for Specific Effects

A monad transformer adds specific effects to **any** monad. Thus the effect-specific operations needs to be overloaded. For example:

```
class Monad m => E m where
eFail :: m a
eHandle :: m a -> m a -> m a
```

```
class Monad m => S m s | m -> s where
   sSet :: s -> m ()
   sGet :: m s
```

The Identity Monad

We are going to construct monads by successive transformations of the identity monad:

```
newtype I a = I a
unI (I a) = a
instance Monad I where
  return a = I a
  m >>= f = f (unI m)
```

```
runI :: I a -> a
runI = unI
```

LiU-FP2010 Part II: Lecture 6 – p.26/83

LiU-EP2010 Part II: Lecture 6 - p.25/83

The Error Monad Transformer (1)

```
newtype ET m a = ET (m (Maybe a))
unET (ET m) = m
```

Any monad transformed by ET is a monad:

instance Monad m => Monad (ET m) where return a = ET (return (Just a))

m >>= f = ET \$ do
 ma <- unET m
 case ma of
 Nothing -> return Nothing
 Just a -> unET (f a)
 LU-FP2010 Part II: Lecture 6 - p.2783

The Error Monad Transformer (2)

We need the ability to run transformed monads:

```
runET :: Monad m => ET m a -> m a
runET etm = do
ma <- unET etm
case ma of
Just a -> return a
Nothing -> error "Should not happen"
```

ET is a monad transformer:

instance Monad m =>

MonadTransformer ET m where

lift m = ET (m >>= $a \rightarrow$ return (Just a))

LiU-EP2010 Part II: Lecture 6 - p.28/83

The Error Monad Transformer (3)

Any monad transformed by ET is an instance of E:

```
instance Monad m => E (ET m) where
eFail = ET (return Nothing)
m1 `eHandle` m2 = ET $ do
  ma <- unET m1
  case ma of
     Nothing -> unET m2
     Just _ -> return ma
```

Exercise 2: Running Transf. Monads

Let

- ex2 = eFail 'eHandle' return 1
- 1. Suggest a possible type for ex2. (Assume 1 :: Int.)
- 2. Given your type, use the appropriate combination of "run functions" to run ex2.

The Error Monad Transformer (4)

A state monad transformed by \mathtt{ET} is a state monad:

```
instance S m s => S (ET m) s where
   sSet s = lift (sSet s)
   sGet = lift sGet
```

Exercise 2: Solution

ex2 :: ET I Int
ex2 = eFail `eHandle` return 1

ex2result :: Int
ex2result = runI (runET ex2)

LiLI-EP2010 Part II: Lecture 6 - p.29/83

LiU-EP2010 Part II: Lecture 6 - p.31/83

The State Monad Transformer (1)

newtype ST s m a = ST (s -> m (a, s))
unST (ST m) = m

Any monad transformed by ST is a monad:

```
instance Monad m => Monad (ST s m) where
  return a = ST (\s -> return (a, s))
```

LiU-EP2010 Part II: Lecture 6 - p. 33/83

LiU-EP2010 Part II: Lecture 6 - p.34/83

```
m >>= f = ST $ \s -> do
    (a, s') <- unST m s
    unST (f a) s'</pre>
```

The State Monad Transformer (2)

We need the ability to run transformed monads:

```
runST :: Monad m => ST s m a -> s -> m a
runST stf s0 = do
    (a, _) <- unST stf s0
    return a</pre>
```

ST is a monad transformer:

```
instance Monad m =>
    MonadTransformer (ST s) m where
    lift m = ST (\s -> m >>= \a ->
        return (a, s))
```

The State Monad Transformer (3)

Any monad transformed by ST is an instance of S:

```
instance Monad m => S (ST s m) s where
sSet s = ST (\ -> return ((), s))
sGet = ST (\ -> return (s, s))
```

An error monad transformed by ${\rm ST}$ is an error monad:

```
instance E m => E (ST s m) where
eFail = lift eFail
m1 `eHandle` m2 = ST $ \s ->
unST m1 s `eHandle` unST m2 s
```

LiU-EP2010 Part II: Lecture 6 - p.35/83

Lil I-FP2010 Part II: Lecture 6 - p.36/83

Exercise 3: Effect Ordering

Consider the code fragment

```
ex3a :: (ST Int (ET I)) Int
ex3a = (sSet 42 >> eFail) 'eHandle' sGet
```

Note that the exact same code fragment also can be typed as follows:

```
ex3b :: (ET (ST Int I)) Int
ex3b = (sSet 42 >> eFail) 'eHandle' sGet
```

What is

runI (runET (runST ex3a 0))
runI (runST (runET ex3b) 0)

Exercise 3: Solution

```
runI (runET (runST ex3a 0)) = 0
runI (runST (runET ex3b) 0) = 42
```

Why? Because:

```
ST s (ET I) a \cong s -> (ET I) (a, s)

\cong s -> I (Maybe (a, s))

\cong s -> Maybe (a, s)

ET (ST s I) a \cong (ST s I) (Maybe a)

\cong s -> I (Maybe a, s)

\cong s -> I (Maybe a, s)

\cong s -> (Maybe a, s)
```

Exercise 4: Alternative ST?

To think about.

Could $\ensuremath{\mathtt{ST}}$ have been defined in some other way, e.g.

newtype ST s m a = ST (m (s -> (a, s)))

or perhaps

newtype ST s m a = ST (s -> (m a, s))

Problems with Monad Transformers

- With one transformer for each possible effect, we get a lot of combinations: the number grows quadratically; each has to be instantiated explicitly.
- Jaskelioff (2008,2009) has proposed a possible, more extensible alternative.

Arrows (1)

System descriptions in the form of block diagrams are very common. Blocks have inputs and outputs and can be combined into larger blocks. For example, serial composition:

A *combinator* can be defined that captures this idea:

(>>>) :: B a b -> B b c -> B a c

LiU-FP2010 Part II: Lecture 6 – p.38/83

LiU-EP2010 Part II: Lecture 6 - p.39/83

Arrows (2)

But systems can be complex:

How many and what combinators do we need to be able to describe arbitrary systems?

	0	۰	۰	۰	۰	LiU-FP2010 Part II: Lect	e ture 6 – p.41/83
0							
•							
Arrows (3)							

John Hughes' arrow framework:

- Abstract data type interface for function-like types (or "blocks", if you prefer).
- Particularly suitable for types representing process-like computations.
- Related to *monads*, since arrows are computations, but more general.
- Provides a minimal set of "wiring" combinators.

What is an arrow? (1)

- A type constructor a of arity two.
- Three operators:
 - lifting:
 - arr :: (b->c) -> a b c
 - composition:
 - (>>>) :: a b c -> a c d -> a b d
 - widening:
 - first :: a b c -> a (b,d) (c,d)
- A set of *algebraic laws* that must hold.

What is an arrow? (2)

These diagrams convey the general idea:

LiU-EP2010 Part II: Lecture 6 - p.43/83

The Arrow class

In Haskell, a *type class* is used to capture these ideas (except for the laws):

class Arrow a where

arr :: (b -> c) -> a b c (>>>) :: a b c -> a c d -> a b d first :: a b c -> a (b,d) (c,d)

Functions are arrows (2)

Solution:

• arr = id To see this, recall id :: t -> t arr :: (b->c) -> a b c Instantiate with

> a = (->)t = b->c = (->) b c

Functions are arrows (1)

Functions are a simple example of arrows, with (->) as the arrow type constructor.

Exercise 5: Suggest suitable definitions of

- arr
- (>>>)
- first

for this case!

(We have not looked at what the laws are yet, but they are "natural".)

LiU-FP2010 Part II: Lecture 6 – p.46/83

LiU-EP2010 Part II: Lecture 6 - p.45/83

Functions are arrows (3)

- f >>> g = \a -> g (f a) **or**
- f >>> g = g . f **or even**
- (>>>) = flip (.)
- first f = $(b,d) \rightarrow (f b,d)$

LiU-EP2010 Part II: Lecture 6 - p 47/83

Functions are arrows (4)

Arrow instance declaration for functions:

```
instance Arrow (->) where
    arr = id
    (>>>) = flip (.)
    first f = \(b,d) -> (f b,d)
```

The loop combinator (1)

Another important operator is loop: a fixed-point operator used to express recursive arrows or *feedback*:


```
(f >>> g) >>> h = f >>> (g >>> h)
arr (f >>> g) = arr f >>> arr g
arr id >>> f = f
f = f >>> arr id
first (arr f) = arr (first f)
first (f >>> g) = first f >>> first g
```

The loop combinator (2)

Not all arrow instances support loop. It is thus a method of a separate class:

class Arrow a => ArrowLoop a where loop :: a (b, d) (c, d) -> a b c

Remarkably, the four combinators arr, >>>, first, and loop are sufficient to express any conceivable wiring!

LiU-EP2010 Part II: Lecture 6 - p.51/83

Some more arrow combinators (1)

- abc->ade->a(b,d)(c,e)
- (&&&) :: Arrow a => a b c -> a b d -> a b (c,d)

Some more arrow combinators (3)

second :: Arrow a => a b c -> a (d,b) (d,c)
second f = arr swap >>> first f >>> arr swap
swap (x,y) = (y,x)

(***) :: Arrow a =>
 a b c -> a d e -> a (b,d) (c,e)
f *** g = first f >>> second g

(&&) :: Arrow a => a b c -> a b d -> a b (c,d) f &&& g = arr (x - >(x,x)) >>> (f *** g)

Some more arrow combinators (2)

LiU-EP2010 Part II: Lecture 6 - p.53/83

As diagrams:

Exercise 6

LiU-EP2010 Part II: Lecture 6 - p. 55/83

Exercise 6: One solution

Exercise 6: Another solution

Exercise 3: Describe the following circuit:

>>> arr (uncurry (+))

LiU-EP2010 Part II: Lecture 6 - p.58/83

The arrow do notation (1)

Ross Paterson's do-notation for arrows supports *pointed* arrow programming. Only *syntactic sugar*.

proc $pat \rightarrow do [rec]$ $pat_1 \leftarrow sfexp_1 \leftarrow exp_1$ $pat_2 \leftarrow sfexp_2 \leftarrow exp_2$... $pat_n \leftarrow sfexp_n \leftarrow exp_n$ returnA $- \leftarrow exp$

Also: let
$$pat = exp \equiv pat <- \arg d -< exp$$

The arrow do notation (2)

Let us redo exercise 3 using this notation:

circuit_v4 :: A Double Double circuit_v4 = proc x -> do y1 <- a1 -< x y2 <- a2 -< y1 y3 <- a3 -< x returnA -< y2 + y3</pre>

LiU-FP2010 Part II: Lecture 6 – p.60/83

The arrow do notation (3)

y2 <- a2 <<< a1 -< x y3 <- a3 -< x returnA -< y2 + y3

a1, a2 :: A Double Double
a3 :: A (Double,Double) Double

Exercise 5: Describe this using only the arrow combinators.

The arrow do notation (5)

Arrows generalize monads: for every monad type there is an arrow, the *Kleisli category* for the monad:

newtype Kleisli m a b = K (a -> m b)

instance Monad m => Arrow (Kleisli m) where arr f = K (\b -> return (f b)) K f >>> K g = K (\b -> f b >>= g)

LiU-EP2010 Part II: Lecture 6 - p.61/83

Arrows and Monads (2)

But not every arrow is a monad. However, arrows that support an additional apply operation **are** effectively monads:

apply :: Arrow a => a (a b c, b) c

Exercise 7: Verify that

newtype M b = M (A () b)

is a monad if A is an arrow supporting apply; i.e., define return and bind in terms of the arrow operations (and verify that the monad laws hold).

LiU-FP2010 Part II: Lecture 6 - p.65/83

LiU-FP2010 Part II: Lecture 6 - p.66/83

An application: FRP

Functional Reactive Programming (FRP):

- Paradigm for *reactive programming* in a functional setting:
 - Input arrives *incrementally* while system is running.
 - Output is generated in response to input in an interleaved and *timely* fashion.
- Originated from Functional Reactive Animation (Fran) (Elliott & Hudak).
- Has evolved in a number of directions and into different concrete implementations.

Yampa

Yampa:

- The most recent Yale FRP implementation.
- Embedding in Haskell (a Haskell library).
- Arrows used as the basic structuring framework.
- Continuous time.
- Discrete-time signals modelled by continuous-time signals and an option type.
- Advanced *switching constructs* allows for highly dynamic system structure.

LiU-FP2010 Part II: Lecture 6 - p.67/83

LiU-EP2010 Part II: Lecture 6 - p.68/83

Related languages

FRP related to:

- Synchronous languages, like Esterel, Lucid Synchrone.
- Modeling languages, like Simulink.

Distinguishing features of FRP:

- First class reactive components.
- Allows highly dynamic system structure.
- Supports hybrid (mixed continuous and discrete) systems.

FRP applications

Some domains where FRP has been used:

- Graphical Animation (Fran: Elliott, Hudak)
- Robotics (Frob: Peterson, Hager, Hudak, Elliott, Pembeci, Nilsson)
- Vision (FVision: Peterson, Hudak, Reid, Hager)
- GUIs (Fruit: Courtney)
- Hybrid modeling (Nilsson, Hudak, Peterson)

Signal functions

Key concept: functions on signals.

 $x \rightarrow f \rightarrow y$

LiU-EP2010 Part II: Lecture 6 - p 71/83

LiU-EP2010 Part II: Lecture 6 - p 72/83

Intuition:

```
Signal \alpha \approx \text{Time} \rightarrow \alpha

x :: \text{Signal T1}

y :: \text{Signal T2}

SF \alpha \ \beta \approx \text{Signal } \alpha \rightarrow \text{Signal } \beta

f :: \text{SF T1 T2}
```

Additionally: *causality* requirement.

Yampa?

Yampa is a river with long calmly flowing sections and abrupt whitewater transitions in between.

A good metaphor for hybrid systems!

LiU-FP2010 Part II: Lecture 6 – p.70/83

LiU-EP2010 Part II: Lecture 6 - p.69/83

Signal functions and state

Alternative view:

Signal functions can encapsulate state.

x(t) f y(t) [state(t)]

state(t) summarizes input history x(t'), $t' \in [0, t]$.

Functions on signals are either:

- **Stateful**: y(t) depends on x(t) and state(t)
- **Stateless**: y(t) depends only on x(t)

Yampa and Arrows

SF is an arrow. Signal function instances of core combinators:

- arr :: (a -> b) -> SF a b
- >>> :: SF a b -> SF b c -> SF a c
- first :: SF a b -> SF (a,c) (b,c)
- loop :: SF (a,c) (b,c) -> SF a b

But apply has no useful meaning. Hence SF is *not* a monad.

Some further basic signal functions

- identity :: SF a a
 identity = arr id
- constant :: b -> SF a b
 constant b = arr (const b)
- integral :: VectorSpace a s=>SF a a
- time :: SF a Time time = constant 1.0 >>> integral
- (^<<) :: (b->c) -> SF a b -> SF a c f (^<<) sf = sf >>> arr f

Example: A bouncing ball

Part of a model of the bouncing ball

Free-falling ball:

type Pos = Double type Vel = Double

```
fallingBall ::
    Pos -> Vel -> SF () (Pos, Vel)
fallingBall y0 v0 = proc () -> do
    v <- (v0 +) ^<< integral -< -9.81
    y <- (y0 +) ^<< integral -< v
    returnA -< (y, v)</pre>
```

LilLEP2010 Part II: Locture 6 - p 72/83

Lill-EP2010 Part II: Locture 6 - p 75/92

Dynamic system structure

Switching allows the structure of the system to evolve over time:

Examp	le: S	pace	Invad	lers
-------	-------	------	-------	------

Overall game structure

Reading (1)

- Nick Benton, John Hughes, Eugenio Moggi. Monads and Effects. In *International Summer School on Applied Semantics 2000*, Caminha, Portugal, 2000.
- Sheng Liang, Paul Hudak, Mark Jones. Monad Transformers and Modular Interpreters. In *Proceedings* of the 22nd ACM Symposium on Principles of Programming Languages (POPL'95), January 1995, San Francisco, California

LiU-FP2010 Part II: Lecture 6 - p.77/83

Reading (2)

- Mauro Jaskelioff. Monatron: An Extensible Monad Transformer Library. In *Implementation of Functional* Languages (IFL'08), 2008.
- Mauro Jaskelioff. Modular Monad Transformers. In European Symposium on Programming (ESOP,09), 2009.

Reading (4)

- Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson. Arrows, robots, and functional reactive programming. In *Advanced Functional Programming*, 2002. LNCS 2638, pp. 159–187.
- Antony Courtney, Henrik Nilsson, and John Peterson. The Yampa Arcade. In *Proceedings of the 2003 ACM SIGPLAN Haskell Workshop (Haskell'03)*, Uppsala, Sweden, 2003, pp 7–18.

LiU-FP2010 Part II: Lecture 6 - p.83/83

Reading (3)

- John Hughes. Generalising monads to arrows. *Science* of *Computer Programming*, 37:67–111, May 2000
- John Hughes. Programming with arrows. In *Advanced Functional Programming*, 2004. To be published by Springer Verlag.
- Henrik Nilsson, Antony Courtney, and John Peterson. Functional reactive programming, continued. In *Proceedings of the 2002 Haskell Workshop*, pp. 51–64, October 2002.

LiU-FP2010 Part II: Lecture 6 – p.82/83

LiU-FP2010 Part II: Lecture 6 - p.81/83